Prediction of State Civil Apparatus Performance Allowances Using the Neural Network Backpropagation Method

Puan Kurniawan - UIN Maulana Malik Ibrahim, Lowokwaru, Malang, 65144, Indonesia
Agung Teguh Almais - UIN Maulana Malik Ibrahim, Lowokwaru, Malang, 65144, Indonesia
M. Amin Hariyadi - UIN Maulana Malik Ibrahim, Lowokwaru, Malang, 65144, Indonesia
M. Ainul Yaqin - UIN Maulana Malik Ibrahim, Lowokwaru, Malang, 65144, Indonesia
Suhartono Suhartono - UIN Maulana Malik Ibrahim, Lowokwaru, Malang, 65144, Indonesia

Citation Format:



Performance allowance is a form of appreciation given by an agency to its human resources. The Office of the Ministry of Religion of Batu City provides performance allowances to civil servants who work in the agency. Several things that affect the provision of performance allowances, such as grade, deduction, taxable income, income tax, and total tax, are used in this study to produce the total gross performance allowances and total performance allowances received. Based on the data obtained, there are some missing data from the parameters of taxable income, income tax, and total tax. This study aims to predict performance allowance when there is missing data. The method used is Neural Network Backpropagation. This study uses 480 data with split data ratios of 50:50, 60:40, 70:30, and 80:20, with epochs 40,000 and a learning rate 0,9. Four types of models used in this study are distinguished based on the number of hidden layers and epochs used. Model A uses two hidden layers to produce the highest accuracy with a 50:50 data split ratio of 65,16%. Model B uses four hidden layers to produce the highest accuracy with a 50:50 data split ratio of 69,34%. Model C uses six hidden layers to produce the highest accuracy with a 50:50 data split ratio of 68,18%. Model D uses eight hidden layers to produce the highest accuracy with a 50:50 data split ratio of 70,90%.


Performance Allowance; Neural Network; Backpropagation; Prediction

Full Text:



A. J. Goga, A. Tërstena, and B. Jashari, “Improving the efficiency of human resources with the use of new technologies and reorganization process,†Int. J. Res. Bus. Soc. Sci. (2147- 4478), vol. 9, no. 1, pp. 31–38, Dec. 2019, doi: 10.20525/ijrbs.v9i1.606.

M. Aljarrah, “The Impact of Enterprise Resource Planning System of Human Resources on the Employees’ Performance Appraisal in Jordan,†WSEAS Trans. Environ. Dev., vol. 17, pp. 351–359, Apr. 2021, doi: 10.37394/232015.2021.17.35.

H. A. C. Johanes Fernandes Andry, “Assessment IT Governance of Human Resources Information System Using COBIT 5,†Int. J. Open Inf. Technol., vol. 8, no. 4, pp. 59–63, 2020.

H. J. Irtaimeh, A. A. Khaddam, K. A. Bataineh, A. M. Obeidat, and S. H. Abualoush, “The Role of Organisational Culture in Enhancing the Human Capital Applied Study on the Social Security Corporation,†Int. J. Learn. Intellect. Cap., vol. 1, no. 1, p. 1, 2018, doi: 10.1504/IJLIC.2018.10013109.

H. Shrouf, S. Al-Qudah, K. Al Khawaldeh, A. M. Obeidat, and A. Al Rawashdeh, “A study on relationship between human resources and strategic performance: The mediating role of productivity,†Manag. Sci. Lett., pp. 3189–3196, 2020, doi: 10.5267/j.msl.2020.5.002.

E. Komara, “Kompetensi Profesional Pegawai ASN (Aparatur Sipil Negara) di Indonesia,†Mimb. Pendidik., vol. 4, no. 1, pp. 73–84, 2019, doi: 10.17509/mimbardik.v4i1.16971.

J. Wahyuhadi, N. Hidayah, and Q. Aini, “Remuneration, Job Satisfaction, and Performance of Health Workers During the COVID-19 Pandemic Period at the Dr. Soetomo Hospital Surabaya, Indonesia,†Psychol. Res. Behav. Manag., vol. Volume 16, pp. 701–711, Mar. 2023, doi: 10.2147/PRBM.S396717.

R. Madhakomala, S. Hadi Nugroho, and K. Gunawan, “The Evaluation of Performance Allowances Policy Towards Professional Improvement of Navy Personnel using System Dynamic Model,†J. Eng. Appl. Sci., vol. 14, no. 10, pp. 3226–3233, Nov. 2019, doi: 10.36478/jeasci.2019.3226.3233.

Y. Mustopa, M. Astuti H, and D. Sukmasari, “Pengaruh Pengendalian Internal Dan Tunjangan Terhadap Kinerja Pegawai Pada Pengadilan Tata Usaha Negara Bandar Lampung,†J. Akunt. dan Keuang., vol. 27, no. 1, pp. 47–54, 2022, doi: 10.23960/jak.v27i1.299.

L. Kurniawati, A. Talkah, and A. Daroini, “Implementasi Kebijakan Pemberian Tunjangan Kinerja (Studi pada ASN Lingkup Pemerintah Kabupaten Tulungagung),†Otonomi, vol. 22, no. 1, p. 24, Apr. 2022, doi: 10.32503/otonomi.v22i1.2397.

M. A. Jaramillo-Morán, D. Fernández-Martínez, A. García-García, and D. Carmona-Fernández, “Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study,†Energies, vol. 14, no. 23, p. 7845, Nov. 2021, doi: 10.3390/en14237845.

F. Rukhiyati, “Sistem Pendukung Keputusan Penentuan Tunjangan Pegawai Dengan Metode SAW Studi Kasus ( PT Pos Yogyakarta),†J. Teknol. Dan Sist. Inf. Bisnis, vol. 4, no. 2, pp. 268–275, 2022, doi: 10.47233/jteksis.v4i2.493.

M. Asrori and A. Z. Falani, “Implementasi Penentuan Pemberian Tunjangan Pendidik & Tenaga Kependidikan Berbasis Fuzzy Database Model Tahani M.,†J. Insa. Comtech, vol. 17, no. 4, p. 419, 2019.

A. E. Hassanien and A. Darwish, Eds., Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges, vol. 77. Cham: Springer International Publishing, 2021.

H. Sarih, A. P. Tchangani, K. Medjaher, and E. Pere, “Data preparation and preprocessing for broadcast systems monitoring in PHM framework,†in 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Apr. 2019, pp. 1444–1449, doi: 10.1109/CoDIT.2019.8820370.

S.-A. N. Alexandropoulos, S. B. Kotsiantis, and M. N. Vrahatis, “Data preprocessing in predictive data mining,†Knowl. Eng. Rev., vol. 34, p. e1, Jan. 2019, doi: 10.1017/S026988891800036X.

K. S. Raju, A. Govardhan, B. P. Rani, R. Sridevi, and M. R. Murty, Eds., Proceedings of the Third International Conference on Computational Intelligence and Informatics, vol. 1090. Singapore: Springer Singapore, 2020.

H.-J. Kim, J.-W. Baek, and K. Chung, “Associative Knowledge Graph Using Fuzzy Clustering and Min-Max Normalization in Video Contents,†IEEE Access, vol. 9, pp. 74802–74816, 2021, doi: 10.1109/ACCESS.2021.3080180.

H. Henderi, “Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer,†IJIIS Int. J. Informatics Inf. Syst., vol. 4, no. 1, pp. 13–20, Mar. 2021, doi: 10.47738/ijiis.v4i1.73.

G. Aksu, C. O. Güzeller, and M. T. Eser, “The Effect of the Normalization Method Used in Different Sample Sizes on the Success of Artificial Neural Network Model,†Int. J. Assess. Tools Educ., vol. 6, no. 2, pp. 170–192, 2019, doi: 10.21449/ijate.479404.

W. Musu, A. Ibrahim, and Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4 . 5,†Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. X, no. 1, pp. 186–195, 2021.

S. W. Iriananda, R. P. Putra, F. Nurdiyansyah, ‪Fitri Marisa, and I. Istiadi, “Klasifikasi Logo Mobil Menggunakan Jaringan Syaraf Tiruan Backpropagation dan Decision Tree,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 7, no. 1, p. 27, 2022, doi: 10.31328/jointecs.v7i1.3464.‬

F. Nurdiansyah and F. Marisa, “Klasifikasi Ayam Petelur Menggunakan Artificial Neural Network dan Decision Tree,†JOINTECS (Journal Inf. Technol. Comput. Sci., vol. 7, no. 3, p. 129, 2022, doi: 10.31328/jointecs.v7i3.4053.

B. Fachri, A. P. Windarto, and I. Parinduri, “Penerapan Backpropagation dan Analisis Sensitivitas pada Prediksi Indikator Terpenting Perusahaan Listrik,†J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 202, 2019, doi: 10.26418/jp.v5i2.31650.

J. Zou, Y. Han, and S.-S. So, “Overview of Artificial Neural Networks,†2008, pp. 14–22.

A. L. Buczak and E. Guven, “A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection,†IEEE Commun. Surv. Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016, doi: 10.1109/COMST.2015.2494502.

R. HECHT-NIELSEN, “Theory of the Backpropagation Neural Network**Based on ‘nonindent’ by Robert Hecht-Nielsen, which appeared in Proceedings of the International Joint Conference on Neural Networks 1, 593–611, June 1989. © 1989 IEEE.,†in Neural Networks for Perception, Elsevier, 1992, pp. 65–93.

L. A. Latumakulita et al., “Combination of Feature Extractions for Classification of Coral Reef Fish Types Using Backpropagation Neural Network,†Int. J. Informatics Vis., vol. 6, no. 3, pp. 643–649, 2022.

C. Sekhar and P. S. Meghana, “A Study on Backpropagation in Artificial Neural Networks,†Asia-Pacific J. Neural Networks Its Appl., vol. 4, no. 1, pp. 21–28, Aug. 2020, doi: 10.21742/AJNNIA.2020.4.1.03.

S. M. Al Sasongko, E. D. Jayanti, and S. Ariessaputra, “Application of Gray Scale Matrix Technique for Identification of Lombok Songket Patterns Based on Backpropagation Learning,†Int. J. Informatics Vis., vol. 6, no. 4, pp. 835–841, 2022, doi: 10.30630/joiv.6.4.1532.

A. T. W. Almais, C. Crysdian, K. F. H. Holle, and A. Roihan, “Smart Assessment Menggunakan Backpropagation Neural Network Smart Assessment using Backpropagation Neural Network,†vol. 21, no. 3, 2022, doi: 10.30812/matrik.v21i3.1382.

M. N. Shodiq, D. H. Kusuma, M. G. Rifqi, A. R. Barakbah, and T. Harsono, “Neural network for earthquake prediction based on automatic clustering in indonesia,†Int. J. Informatics Vis., vol. 2, no. 1, pp. 37–43, 2018, doi: 10.30630/joiv.2.1.106.

S. Prayudani, A. Hizriadi, Y. Y. Lase, Y. Fatmi, and Al-Khowarizmi, “Analysis Accuracy Of Forecasting Measurement Technique On Random K-Nearest Neighbor (RKNN) Using MAPE And MSE,†J. Phys. Conf. Ser., vol. 1361, no. 1, p. 012089, Nov. 2019, doi: 10.1088/1742-6596/1361/1/012089.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,†PeerJ Comput. Sci., vol. 7, p. e623, Jul. 2021, doi: 10.7717/peerj-cs.623.

I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,†JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.

A. de Myttenaere, B. Golden, B. Le Grand, and F. Rossi, “Mean Absolute Percentage Error for regression models,†Neurocomputing, vol. 192, pp. 38–48, Jun. 2016, doi: 10.1016/j.neucom.2015.12.114.

E. Vivas, H. Allende-Cid, and R. Salas, “A Systematic Review of Statistical and Machine Learning Methods for Electrical Power Forecasting with Reported MAPE Score,†Entropy, vol. 22, no. 12, p. 1412, Dec. 2020, doi: 10.3390/e22121412.

F. Liantoni and A. Agusti, “Forecasting Bitcoin using Double Exponential Smoothing Method Based on Mean Absolute Percentage Error,†JOIV Int. J. Informatics Vis., vol. 4, no. 2, p. 91, May 2020, doi: 10.30630/joiv.4.2.335.

A. R. Lubis, S. Prayudani, Y. Fatmi, M. Lubis, and Al-Khowarizmi, “MAPE accuracy of CPO Forecasting by Applying Fuzzy Time Series,†in 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Oct. 2021, pp. 370–373, doi: 10.23919/EECSI53397.2021.9624303.

E. A. Gultom, N. Eltivia, and N. I. Riwajanti, “Shares Price Forecasting Using Simple Moving Average Method and Web Scrapping,†J. Appl. Business, Tax. Econ. Res., vol. 2, no. 3, pp. 288–297, Feb. 2023, doi: 10.54408/jabter.v2i3.164.