The Design of Convolutional Neural Networks Model for Classification of Ear Diseases on Android Mobile Devices

I Gede Suta Wijaya - Department of Informatics Engineering, University of Mataram
Heru Mulyana - Department of Intelligent System, Universiti Teknologi Mara
Hamsu Kadriyan - Department of ENT-HN, University of Mataram
Riska Fa'rifah - Universitas Telkom, Bandung

Citation Format:



An otorhinolaryngologist (ORL) or general practitioner diagnoses ear disease based on ear image information. However, general practitioners refer patients to ORL for chronic ear disease because the image of ear disease has high complexity, variety, and little difference between diseases. An artificial intelligence-based approach is needed to make it easier for doctors to diagnose ear diseases based on ear image information, such as the Convolutional Neural Network (CNN). This paper describes how CNN was designed to generate CNN models used to classify ear diseases. The model was developed using an ear image dataset from the practice of an ORL at the University of Mataram Teaching Hospital. This work aims to find the best CNN model for classifying ear diseases applicable to android mobile devices. Furthermore, the best CNN model is deployed for an Android-based application integrated with the Endoscope Ear Cleaning Tool Kit for registering patient ear images. The experimental results show 83% accuracy, 86% precision, 86% recall, and 4ms inference time. The application produces a System Usability Scale of 76.88% for testing, which shows it is easy to use. This achievement shows that the model can be developed and integrated into an ENT expert system. In the future, the ENT expert system can be operated by workers in community health centres/clinics to assist leading health them in diagnosing ENT diseases early.


Artificial intelligence; Convolutional Neural Network; ear disease; image classification; Android


Y. Mahendradhata et al., “The Republic of Indonesia Health System Review,” Health Syst. Transit., vol. 7, no. 1, p. 1, 2017.

I. W. A. Arimbawa, I. G. P. S. Wijaya, and I. Bintang, “Comparison of simple and stratified random sampling on porn videos recognition using CNN,” in 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM), Nov. 2019, pp. 1–6, doi: 10.1109/CENIM48368.2019.8973305.

B. Van Ginneken, B. M. T. H. Romeny, and M. A. Viergever, “Computer-aided diagnosis in chest radiography: a survey,” IEEE Trans. Med. Imaging, vol. 20, no. 12, pp. 1228–1241, 2001, doi: 10.1109/42.974918.

B. Alsaaidah, M. R. Al-Hadidi, H. Al-Nsour, R. Masadeh, and N. AlZubi, “Comprehensive Survey of Machine Learning Systems for COVID-19 Detection,” J. Imaging, vol. 8, no. 10, 2022, doi: 10.3390/jimaging8100267.

T. N. Turnip, P. O. Manik, J. H. Tampubolon, and P. A. P. Siahaan, “Klasifikasi Aplikasi Android menggunakan Algoritme K-Means dan Convolutional Neural Network berdasarkan Permission,” J. Teknol. Inf. dan Ilmu Komputer; Vol 7, No 2 April 2020DO - 10.25126/jtiik.2020702641 , Feb. 2020.

Asosiasi Penyelengara Jasa Internet (APJII), “Hasil Survei Penetrasi dan Perilaku Pengguna Internet Indonesia 2018,” 2018.

F. Ekajaya, N. Hidayat, and M. T. Ananta, “Diagnosis Penyakit THT Menggunakan Metode Fuzzy Tsukamoto Berbasis Android,” J. Pengemb. Teknol. Inf. dan Ilmu Komputer; Vol 2 No 8, 2017.

T. Verge, “Google announces over 2 billion monthly active devices on Android,” 2017. .

T. Shafira, Implementasi Convolution Neural Network untuk Klasifikasi Citra Tomat Menggunakan Keras. Yogyakarta: Universitas Islam Indonesia, 2018.

M. Pahar, M. Klopper, R. Warren, and T. Niesler, “COVID-19 Cough Classification using Machine Learning and Global Smartphone Recordings,” Dec. 2020, doi: 10.1016/j.compbiomed.2021.104572.

J. Laguarta, F. Hueto, and B. Subirana, “COVID-19 Artificial Intelligence Diagnosis Using only Cough Recordings,” IEEE Open J. Eng. Med. Biol., vol. 1, pp. 275–281, 2020, doi: 10.1109/OJEMB.2020.3026928.

Jimmy Pujoseno, Impelemntasi Deep Learning Menggunakan Convolution Neural Network untuk Klasifikasi Alat Tulis. Yogyakarta: Universitas Islam Indonesia, 2018.

R. M. Pereira, D. Bertolini, L. O. Teixeira, C. N. Silla, and Y. M. G. Costa, “COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios,” Comput. Methods Programs Biomed., vol. 194, 2020, doi: 10.1016/j.cmpb.2020.105532.

M. F. Aslan, M. F. Unlersen, K. Sabanci, and A. Durdu, “CNN-based transfer learning–BiLSTM network: A novel approach for COVID-19 infection detection,” Appl. Soft Comput., vol. 98, p. 106912, 2021, doi:

D. Cha, C. Pae, S.-B. Seong, J. Y. Choi, and H.-J. Park, “Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database,” EBioMedicine, vol. 45, pp. 606–614, 2019, doi:

X. Zeng et al., “Efficient and accurate identification of ear diseases using an ensemble deep learning model,” Sci. Rep., vol. 11, no. 1, p. 10839, 2021, doi: 10.1038/s41598-021-90345-w.

Imagenet, “Large Scale Visual Recognition Challenge (ILSVRC),” ImageNet Large Scale Vis. Recognit. Chall., 2015.

M. P. Harini, “Pengenalan Pola Wajah Manusia menggunakan Transformasi Wavelet dan LDA (Linear Discriminant Analysis),” Institut Teknologi Telkom, 2007.

W. Verina, “Penerapan Metode Forward Chaining untuk Mendeteksi Penyakit THT,” J. Tek. Inform. Dan Sist. Inf., vol. 1, no. 2, pp. 123–138, 2015.

L. Lisnawita, L. L. Van FC, and E. Lianda, “Sistem Pakar Diagnosa Penyakit THT,” INOVTEK Polbeng - Seri Inform., vol. 1, no. 2, p. 95, 2016, doi: 10.35314/isi.v1i2.120.

C. Ding, T. Bao, S. Karmoshi, and M. Zhu, “Low-resolution face recognition via convolutional neural network,” in 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), 2017, pp. 1157–1161.

O. Surinta and T. Khamket, “Recognizing pornographic images using deep convolutional neural networks,” in 2019 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT-NCON), pp. 150–154.

C. Ouchicha, O. Ammor, and M. Meknassi, “CVDNet : A novel deep learning architecture for detection of coronavirus ( Covid-19 ) from chest x-ray images,” Chaos , Solitons Fractals, vol. 140, 2020, doi: 10.1016/j.chaos.2020.110245.

A.-R. Habib et al., “Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta-analysis,” Clin. Otolaryngol., vol. 47, no. 3, pp. 401–413, 2022, doi:

A. A. Hezam, S. A. Mostafa, Z. Baharum, A. Alanda, and M. Z. Salikon, “Combining Deep Learning Models for Enhancing the Detection of Botnet Attacks in Multiple Sensors Internet of Things Networks,” JOIV Int. J. Informatics Vis., vol. 5, no. 4, pp. 380–387, 2021.

K. Hamsu, I. G. P. S. Wijaya, D. Yudhanto, E. A. Yuliani, and H. Mulyana, “Ear Disease Determination on Computer-Assisted Outer and Middle Ear Images,” in The 3rd International Conference on Bioscience and Biotechnology, 2020.

A. H. Azizan et al., “A Machine Learning Approach for Improving the Performance of Network Intrusion Detection Systems,” Ann. Emerg. Technol. Comput., vol. 5, no. 5, 2021.

I. G. P. S. Wijaya, D. N. Avianty, F. Bimantoro, and R. Lestari, “Ekstraksi Fitur Citra Radiografi Thorax Menggunakan DWT dan Moment Invariant,” J. Comput. Sci. Informatics Eng., vol. 5, no. 2, pp. 158–166, 2021.

D. Iskandar and Y. K. Suprapto, “Perbandingan Akurasi Klasifikasi Tingkat,” J. Ilm. NERO, vol. 2, no. 1, pp. 37–43, 2015.

D. Powers and Ailab, “Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation,” J. Mach. Learn. Technol, vol. 2, pp. 2229–3981, Jan. 2011, doi: 10.9735/2229-3981.

S. Peres, T. Pham, and R. Phillips, “Validation of the System Usability Scale (SUS),” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 57, pp. 192–196, Sep. 2013, doi: 10.1177/1541931213571043.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W :
E :,,

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.