Evaluation of the Compatibility of TRMM Satellite Data with Precipitation Observation Data

Nurhamidah Nurhamidah - Andalas University Padang, Indonesia
Rafika Andari - Andalas University Padang, Indonesia
Ahmad Junaidi - Andalas University Padang, Indonesia
Darwizal Daoed - Andalas University Padang, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.7.2.1578


The availability of hydrological data is one of the challenges associated with developing water infrastructure in different areas. This led to the TRMM (Tropical Precipitation Measurement Mission) design by NASA, which involves using satellite weather monitoring technology to monitor and analyze tropical precipitation in different parts of the world. Therefore, this validation study was conducted to compare TRMM precipitation data with observed precipitation to determine its application as an alternate source of hydrological data. The Kuranji watershed was selected as the study site due to the availability of suitable data. Moreover, the validation analyses applied include the Root Mean Squared Error (RMSE), Nash-Sutcliffe Efficiency (NSE), Coefficient Correlation (R), and Relative Error (RE). These used two calculation forms: one for the uncorrected data and another for the corrected data. The results showed that the best-adjusted data validation from the Gunung Nago station in 2016 was recorded to be RMSE = 62,298, NSE = 0.044, R = 0.902, and RE = 11,328. The closeness of the R-value to one implies that the corrected TRMM data outperforms the uncorrected ones. Therefore, it was generally concluded that the TRMM data matches the observed precipitation data and can be used for hydrological study in the Kuranji watershed


precipitation; TRMM; calibration; validation

Full Text:



K. E. Trenberth, A. Dai, R. M. Rasmussen, and D. B. Parsons, "The changing character of precipitation," Bull. Am. Meteorol. Soc., vol. 84, no. 9, pp. 1205-1217+1161, 2003, doi: 10.1175/BAMS-84-9-1205.

[2] Q. Sun, C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. L. Hsu, "A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons," Rev. Geophys., vol. 56, no. 1, pp. 79–107, 2018, doi: 10.1002/2017RG000574.

[3] C. Kidd and G. Huffman, "Global precipitation measurement," Meteorol. Appl., vol. 18, no. 3, pp. 334–353, 2011, doi: 10.1002/met.284.

[4] L. Gerard, J. M. Piriou, R. Brožková, J. F. Geleyn, and D. Banciu, "Cloud and precipitation parameterization in a meso-gamma-scale operational weather prediction model," Mon. Weather Rev., vol. 137, no. 11, pp. 3960–3977, 2009, doi: 10.1175/2009MWR2750.1.

[5] C. Piani et al., "Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models," J. Hydrol., vol. 395, no. 3–4, pp. 199–215, 2010, doi: 10.1016/j.jhydrol.2010.10.024.

[6] W. Y. Li et al., "Spatio-temporal analysis and simulation on shallow precipitation-induced landslides in China using landslide susceptibility dynamics and precipitation I-D thresholds," Sci. China Earth Sci., vol. 60, no. 4, pp. 720–732, 2017, doi: 10.1007/s11430-016-9008-4.

[7] A. Paschalis, S. Fatichi, P. Molnar, S. Rimkus, and P. Burlando, "On the effects of small scale space-time variability of precipitation on basin flood response," J. Hydrol., vol. 514, pp. 313–327, 2014, doi: 10.1016/j.jhydrol.2014.04.014.

[8] X. He, N. W. Chaney, M. Schleiss, and J. Sheffield, "Spatial downscaling of precipitation using adaptable random forests," Water Resour. Res., vol. 52, no. 10, pp. 8217–8237, 2016, doi: 10.1002/2016WR019034.

[9] S. Adarsh and M. Janga Reddy, "Trend analysis of precipitation in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms," Int. J. Climatol., vol. 35, no. 6, pp. 1107–1124, 2015, doi: 10.1002/joc.4042.

[10] F. Su, "Evaluation of TRMM multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin," J. Hydrometeorol., vol. 9, no. 4, pp. 622–640, 2008, doi: 10.1175/2007JHM944.1.

[11] M. Mamenun, H. Pawitan, and A. Sopaheluwakan, “Validasi Dan Koreksi Data Satelit Trmm Pada Tiga Pola Hujan Di Indonesia,” J. Meteorol. dan Geofis., vol. 15, no. 1, pp. 13–23, 2014, doi: 10.31172/jmg.v15i1.169.

[12] Y. Zhao, Q. Xie, Y. Lu, and B. Hu, "Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China," Scientific Reports, vol. 7, no. 1. nature.com, 2017, doi: 10.1038/s41598-017-02704-1.

[13] V. Maggioni, H. J. Vergara, E. N. Anagnostou, J. J. Gourley, Y. Hong, and D. Stampoulis, "Investigating the applicability of error correction ensembles of satellite precipitation products in river flow simulations," J. Hydrometeorol., vol. 14, no. 4, pp. 1194–1211, 2013, doi: 10.1175/JHM-D-12-074.1.

[14] S. Sorooshian et al., "Advanced concepts on remote sensing of precipitation at multiple scales," Bull. Am. Meteorol. Soc., vol. 92, no. 10, pp. 1353–1357, 2011, doi: 10.1175/2011BAMS3158.1.

[15] Q. Zeng et al., "The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach," J. Hydrol., vol. 563, pp. 106–122, 2018, doi: 10.1016/j.jhydrol.2018.05.058.

[16] V. Maggioni and C. Massari, "On the performance of satellite precipitation products in riverine flood modeling: A review," J. Hydrol., vol. 558, pp. 214–224, 2018, doi: 10.1016/j.jhydrol.2018.01.039.

[17] E. Habib, A. T. Haile, Y. Tian, and R. J. Joyce, "Evaluation of the high-resolution CMORPH satellite precipitation product using dense rain gauge observations and radar-based estimates," J. Hydrometeorol., vol. 13, no. 6, pp. 1784–1798, 2012, doi: 10.1175/JHM-D-12-017.1.

[18] J. Li, S. Sorooshian, W. Higgins, X. Gao, B. Imam, and K. Hsu, "Influence of spatial resolution on diurnal variability during the north American monsoon," J. Clim., vol. 21, no. 16, pp. 3967–3988, 2008, doi: 10.1175/2008JCLI2022.1.

[19] V. Maggioni, P. C. Meyers, and M. D. Robinson, "A review of merged high-resolution satellite precipitation product accuracy during the Tropical Precipitation Measuring Mission (TRMM) era," J. Hydrometeorol., vol. 17, no. 4, pp. 1101–1117, 2016, doi: 10.1175/JHM-D-15-0190.1.

[20] H. McMillan, B. Jackson, M. Clark, D. Kavetski, and R. Woods, "Precipitation uncertainty in hydrological modelling: An evaluation of multiplicative error models," J. Hydrol., vol. 400, no. 1–2, pp. 83–94, 2011, doi: 10.1016/j.jhydrol.2011.01.026.

[21] A. Bárdossy and T. Das, "Influence of precipitation observation network on model calibration and application," Hydrol. Earth Syst. Sci., vol. 12, no. 1, pp. 77–89, 2008, doi: 10.5194/hess-12-77-2008.

[22] M. Girons Lopez, H. Wennerström, L. Å. Nordén, and J. Seibert, "Location and density of rain gauges for the estimation of spatial varying precipitation," Geogr. Ann. Ser. A Phys. Geogr., vol. 97, no. 1, pp. 167–179, 2015, doi: 10.1111/geoa.12094.

[23] V. Maggioni, E. I. Nikolopoulos, E. N. Anagnostou, and M. Borga, "Modeling satellite precipitation errors over mountainous terrain: The influence of gauge density, seasonality, and temporal resolution," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 4130–4140, 2017, doi: 10.1109/TGRS.2017.2688998.

[24] E. N. Anagnostou, V. Maggioni, E. I. Nikolopoulos, T. Meskele, F. Hossain, and A. Papadopoulos, "Benchmarking high-resolution global satellite precipitation products to radar and rain-gauge precipitation estimates," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 4 PART 1, pp. 1667–1683, 2010, doi: 10.1109/TGRS.2009.2034736.

[25] L. Porcacchia, P. E. Kirstetter, J. J. Gourley, V. Maggioni, B. L. Cheong, and M. N. Anagnostou, "Toward a polarimetric radar classification scheme for coalescence-dominant precipitation: Application to complex terrain," J. Hydrometeorol., vol. 18, no. 12, pp. 3199–3215, 2017, doi: 10.1175/JHM-D-17-0016.1.

[26] M. L. Tan, "Assessment of TRMM product for precipitation extreme measurement over the Muda River Basin, Malaysia," HydroResearch. Elsevier, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2589757819300186.

[27] D. S. Krisnayanti, D. F. B. Welkis, and ..., “Evaluasi Kesesuaian Data Tropical Precipitation Measuring Mission (TRMM) Dengan Data Pos Hujan Pada Das Temef Di Kabupaten Timor Tengah Selatan,” … Sumber Daya Air, 2020, [Online]. Available: https://jurnalsda.pusair-pu.go.id/index.php/JSDA/article/view/646.

[28] C. A. G. Santos, R. M. B. Neto, R. M. da Silva, and S. G. F. Costa, "Cluster analysis applied to spatiotemporal variability of monthly precipitation over Paraíba state using tropical precipitation measuring mission (TRMM) data," Remote Sens., vol. 11, no. 6, 2019, doi: 10.3390/rs11060637.

[29] T. Kubota, "Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 7. pp. 2259–2275, 2007, doi: 10.1109/TGRS.2007.895337.

[30] T. Ushio et al., "A kalman filter approach to the global satellite mapping of precipitation (GSMaP) from combined passive microwave and infrared radiometric data," J. Meteorol. Soc. Japan, vol. 87 A, no. June 2008, pp. 137–151, 2009, doi: 10.2151/jmsj.87A.137.

[31] K. Aonashi, "Gsmap passive microwave precipitation retrieval algorithm: Algorithm description and validation," J. Meteorol. Soc. Japan, vol. 87, pp. 119–136, 2009, doi: 10.2151/jmsj.87A.119.

[32] G. Huffman, "The TRMM Multi-satellite Precipitation Analysis (TMPA)," Satellite Precipitation Applications for Surface Hydrology. pp. 3–22, 2010, doi: 10.1007/978-90-481-2915-7_1.

[33] A. J. Khan, M. Koch, and K. M. Chinchilla, "Evaluation of gridded multi-satellite precipitation estimation (TRMM-3B42-V7) performance in the Upper Indus Basin (UIB)," Climate, 2018, [Online]. Available: https://www.mdpi.com/336794.

[34] G. Huffman, "The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales," J. Hydrometeorol., vol. 8, no. 1, pp. 38–55, 2007, doi: 10.1175/JHM560.1.

[35] Z. Liu, "Comparison of versions 6 and 7 3-hourly TRMM multi-satellite precipitation analysis (TMPA) research products," Atmos. Res., vol. 163, pp. 91–101, 2015, doi: 10.1016/j.atmosres.2014.12.015.

[36] S. Prakash, A. K. Mitra, I. M. Momin, D. S. Pai, E. N. Rajagopal, and S. Basu, "Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period," J. Hydrometeorol., vol. 16, no. 1, pp. 346–362, 2015, doi: 10.1175/JHM-D-14-0024.1.

[37] A. Milewski, R. Elkadiri, and M. Durham, "Assessment and comparison of TMPA satellite precipitation products in varying climatic and topographic regimes in Morocco," Remote Sens., 2015, [Online]. Available: https://www.mdpi.com/98362.

[38] S. N. M. Zad, Z. Zulkafli, and F. M. Muharram, "Satellite precipitation (TRMM 3B42-V7) performance assessment and adjustment over Pahang river basin, Malaysia," Remote Sens., vol. 10, no. 3, pp. 1–24, 2018, doi: 10.3390/rs10030388.

[39] A. K. Sahoo, J. Sheffield, M. Pan, and E. F. Wood, "Evaluation of the tropical precipitation measuring mission multi-satellite precipitation analysis (TMPA) for assessment of large-scale meteorological drought," Remote Sens. Environ., 2015, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S003442571400488X.

[40] M. D. Syaifullah, “Validasi Data Trmm Terhadap Data Curah Hujan Aktual Di Tiga Das Di Indonesia,” J. Meteorol. dan Geofis., vol. 15, no. 2, pp. 109–118, 2014, doi: 10.31172/jmg.v15i2.180.

[41] Z. Zhang, J. Tian, Y. Huang, X. Chen, S. Chen, and Z. Duan, "Hydrologic evaluation of TRMM and GPM IMERG satellite-based precipitation in a humid basin of China," Remote Sens., 2019, [Online]. Available: https://www.mdpi.com/414654.

[42] S. Chen et al., "Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China," J. Geophys. Res. Atmos., vol. 118, no. 23, pp. 13,060-13,074, 2013, doi: 10.1002/2013JD019964.

[43] S. Moazami, S. Golian, Y. Hong, C. Sheng, and M. R. Kavianpour, Comprehensive evaluation of four high-resolution satellite precipitation products under diverse climate conditions in Iran, vol. 61, no. 2. 2016.

[44] X. Xue, "Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins?," J. Hydrol., vol. 499, pp. 91–99, 2013, doi: 10.1016/j.jhydrol.2013.06.042.

[45] T. G. Romilly, "Evaluation of satellite precipitation estimates over Ethiopian river basins," Hydrol. Earth Syst. Sci., vol. 15, no. 5, pp. 1505–1514, 2011, doi: 10.5194/hess-15-1505-2011.

[46] C. Chen, Z. Yu, L. Li, and C. Yang, "Adaptability evaluation of TRMM satellite precipitation and its application in the Dongjiang River Basin," Procedia Environ. Sci., vol. 10, no. PART A, pp. 396–402, 2011, doi: 10.1016/j.proenv.2011.09.065.

[47] P. T. Nastos, J. Kapsomenakis, and K. M. Philandras, "Evaluation of the TRMM 3B43 gridded precipitation estimates over Greece," Atmos. Res., 2016, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169809515002525.

[48] Y. Cao, W. Zhang, and W. Wang, "Evaluation of TRMM 3B43 data over the Yangtze River Delta of China," Scientific reports. nature.com, 2018, [Online]. Available: https://www.nature.com/articles/s41598-018-23603-z.

[49] W. Li et al., "Evaluating three satellite-based precipitation products of different spatial resolutions in Shanghai based on upscaling of rain gauge," Int. J. Remote Sens., vol. 40, no. 15, pp. 5875–5891, 2019, doi: 10.1080/01431161.2019.1584686.

[50] C. J. Chen, D. L. Jayasekera, and S. U. S. Senarath, "Assessing uncertainty in precipitation and hydrological modeling in the mekong," World Environ. Water Resour. Congr. 2015 Floods, Droughts, Ecosyst. - Proc. 2015 World Environ. Water Resour. Congr., pp. 2510–2519, 2015, doi: 10.1061/9780784479162.246.

[51] J. Fang, W. Yang, Y. Luan, J. Du, A. Lin, and L. Zhao, "Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China," Atmos. Res., 2019, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169809518311499.

[52] J. Cabrera, R. T. Yupanqui, and P. Rau, “Validation of TRMM Daily Precipitation Data for Extreme Events Analysis. the Case of Piura Watershed in Peru,” Procedia Eng., vol. 154, pp. 154–157, 2016, doi: 10.1016/j.proeng.2016.07.436.

[53] T. Condom, P. Rau, and J. C. Espinoza, "Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998-2007," Hydrol. Process., vol. 25, no. 12, pp. 1924–1933, 2011, doi: 10.1002/hyp.7949.

[54] P. S. Katiraie-Boroujerdy, A. A. Asanjan, K. Hsu, and ..., "Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales," Atmos. …, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0169809516302411.

[55] Z. D. Adeyewa and K. Nakamura, "Validation of TRMM radar precipitation data over major climatic regions in Africa," J. Appl. Meteorol., vol. 42, no. 2, pp. 331–347, 2003, doi: 10.1175/1520-0450(2003)042<0331:VOTRRD>2.0.CO;2.

[56] C. Fensterseifer, D. G. Allasia, and ..., "Assessment of the TRMM 3B42 precipitation product in southern Brazil," JAWRA J. …, 2016, doi: 10.1111/1752-1688.12398.

[57] K. A. Adjei, L. Ren, E. K. Appiah-Adjei, K. Kankam-Yeboah, and A. A. Agyapong, "Validation of TRMM Data in the Black Volta Basin of Ghana," J. Hydrol. Eng., vol. 17, no. 5, pp. 647–654, 2012, doi: 10.1061/(asce)he.1943-5584.0000487.

[58] A. W. Worqlul, H. Yen, A. S. Collick, S. A. Tilahun, S. Langan, and ..., "Evaluation of CFSR, TMPA 3B42 and ground-based precipitation data as input for hydrological models, in data-scarce regions: The upper Blue Nile Basin, Ethiopia," Catena, 2017, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0341816217300267.

[59] H. Ouatiki, A. Boudhar, Y. Tramblay, L. Jarlan, and ..., "Evaluation of TRMM 3B42 V7 precipitation product over the Oum Er Rbia watershed in Morocco," Climate, 2017, [Online]. Available: https://www.mdpi.com/173626.

[60] M. Almazroui, "Calibration of TRMM precipitation climatology over Saudi Arabia during 1998-2009," Atmos. Res., vol. 99, no. 3, pp. 400–414, 2011, doi: 10.1016/j.atmosres.2010.11.006.

[61] F. Yuan, "Applications of TRMM- and GPM-era multiple- satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in Myanmar," Remote Sens., vol. 11, no. 2, 2019, doi: 10.3390/rs11020140.

[62] S. Maulidani S, N. Ihsan, and Sulistiawaty, “Analisis Pola Dan Intensitas Curah Hujan Berdasakan Data Observasi Dan Satelit Tropical Precipitation Measuring Missions (Trmm) 3B42 V7 Di Makassar,” J. Sains Dan Pendidik. Fis., vol. 11, no. 1, pp. 98–103, 2015.

[63] A. H. Al Habib, Y. W. Pradana, D. Pangestu, P. A. Winarso, and J. Sujana, “Kajian Pertumbuhan Awan Hujan Pada Saat Banjir Bandang Berbasis Citra Satelit Dan Citra Radar (Studi Kasus : Padang, 2 November 2018),” J. Meteorol. Klimatologi dan Geofis., vol. 6, no. 2, pp. 1–6, 2019, doi: 10.36754/jmkg.v6i2.117.

[64] A. I. Suryani, “Kajian Reklamasi Lahan Daerah Aliran Sungai Batang Kuranji Kota Padang,” J. Spasial, vol. 1, no. 1, 2017, doi: 10.22202/js.v1i1.1571.

[65] H. Maulana, E. Suhartanto, and D. Harisuseno, "Analysis of Water Availability Based on Satellite Precipitation in the Upper Brantas River Basin," Int. Res. J. Adv. Eng. Sci., vol. 4, no. 2, pp. 393–398, 2019.

[66] S. T. P. Indarto, “‘HIDROLOGI DAN PERUBAHAN’ Perspektif untuk Riset dan Pendidikan yang Terintegrasi,” repository.unej.ac.id. [Online]. Available: https://repository.unej.ac.id/bitstream/handle/123456789/74206/3 Orasi_Ilmiah_indarto_190515.pdf?sequence=1.

[67] R. A. Noor, M. Ruslan, G. Rusmayadi, and B. Badaruddin, “Pemanfaatan Data Satelit Tropical Precipitation Measuring Mission (Trmm) Untuk Pemetaan Zona Agroklimat Oldeman Di Kalimantan Selatan,” EnviroScienteae, vol. 12, no. 3, p. 267, 2016, doi: 10.20527/es.v12i3.2452.

[68] N. Yang et al., "Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China," J. Hydrol., vol. 549, pp. 313–325, 2017, doi: 10.1016/j.jhydrol.2017.04.006.

[69] L. Tang, Y. Tian, F. Yan, and E. Habib, "An improved procedure for the validation of satellite-based precipitation estimates," Atmos. Res., vol. 163, pp. 61–73, 2015, doi: 10.1016/j.atmosres.2014.12.016.

[70] M. Sadeghi et al., "PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks," J. Hydrometeorol., vol. 20, no. 12, pp. 2273–2289, 2019, doi: 10.1175/JHM-D-19-0110.1.

[71] A. Serrat-Capdevila, M. Merino, J. B. Valdes, and M. Durcik, "Evaluation of the performance of three satellite precipitation products over Africa," Remote Sens., vol. 8, no. 10, 2016, doi: 10.3390/rs8100836.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Society of Visual Informatocs, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W : http://joiv.org
E : joiv@pnp.ac.id, hidra@pnp.ac.id, rahmat@pnp.ac.id

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.