Prediction of Cross-Platform and Native Apps Technology Opportunities for Beginner Developers Using C 4.5 and Naive Bayes Algorithms

Wawan Gunawan - Universitas Mercu Buana, Jl. Meruya Selatan No 1, Jakarta, 11650, Indonesia
Raychal Wiradiputra - Universitas Mercu Buana, Jl. Meruya Selatan No 1, Jakarta, 11650, Indonesia
Anggi Puspita Sari - Universitas Bina Sarana Informatika, Jl. Meruya Selatan No 1, Jakarta, 11650, Indonesia
Deddy Prayama - Politeknik Negeri Padang, Limau Manis Padang , Sumatera Barat, Indonesia
Esron Rikardo Nainggolan - Universitas Nusa Mandiri, Jalan Jatiwaringin No. 2, Jakarta Timur, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.62527/joiv.7.4.1514

Abstract


The competition between native and cross-platform app development makes application development simpler, safer, and more scalable. However, developers must have sufficient fundamentals, and the industry must conduct good research to shorten development time and minimize expenses. In order to solve these problems, this study made a prediction that discusses the technology that has a chance to survive in the industry so as not to be left behind in technology. Using Naïve Bayes and C 4.5 algorithms into a dataset with nine programming languages related to mobile app development. Results obtained in This research show Dart as a programming language that supports cross-platform frameworks and Kotlin as a programming language that supports native app frameworks is a technology that would have the opportunity in the future with an accuracy level above 90% with Naïve Bayes and C 4.5 algorithms. These results are obtained by testing an algorithm model using MAPE, consistent dataset sharing, and careful data processing. This research Can help entry-level developers learn and deepen the fundamentals of technology and can add knowledge to the industry in choosing a technology.

Keywords


Accuracy; naïve bayes; c 4,5; framework; programming language

Full Text:

PDF

References


M. Ilhami, “Tren dan Peluang Cross-Platform Mobile App untuk Developer Pemula,” KONSTELASI: Konvergensi Teknologi dan Sistem Informasi., vol. 1, no. 2, pp. 402-411, Des. 2021.

K. Gunnarsson and O. Herber, "The Most Popular Programming Languages of GitHub's Trending Repositories," DiVA., to be published. DiVA, id: diva2:1463849.

"Stack Overflow Developer Survey 2022." https://survey.stackoverflow.co/2022/#technology-top-paying-technologies (accessed Oct. 28, 2022).

T. Dorfer, L. Demetz, and S. Huber, "Impact of mobile cross-platform development on CPU, memory and battery of mobile devices when using common mobile app features," Procedia Comput Sci., vol. 175, pp. 189-196, Aug. 2020.

P. M. Léger, T. An Nguyen, P. Charland, S. Sénécal, H. G. Lapierre, and M. Fredette, "How Learner Experience and Types of Mobile Applications Influence Performance: The Case of Digital Annotation," Computers in the Schools., vol. 36, no. 2, pp. 83–104, Apr. 2019.

J. Z. Blanco and D. Lucrédio, “A holistic approach for cross-platform software development,” Journal of Systems and Software, vol. 179, p. 110985, Sep. 2021, doi: 10.1016/j.jss.2021.110985.

"The Six Best Cross-Platform App Development Frameworks | Kotlin." https://kotlinlang.org/docs/cross-platform-frameworks.html#8-educational-materials (accessed Dec. 16, 2022).

C. Rieger and T. A. Majchrzak, "Towards the definitive evaluation framework for cross-platform app development approaches," Journal of Systems and Software., vol. 153, pp. 175–199, Jul. 2019.

Y. I. Kurniawan, “Perbandingan Algoritma Naive Bayes dan C.45 dalam Klasifikasi Data Mining,” Jurnal Teknologi Informasi dan Ilmu Komputer., vol. 5, no. 4, pp. 455-464, Oct. 2018.

N. Nanni and A. Sudransyah, “Perbandingan Kinerja Algoritma Naive Bayes dan C4.5 Untuk Klasifikasi Harga Pangan,” PROtek : Jurnal Ilmiah Teknik Elektro., vol. 7, no. 1, pp. 20–24, May. 2020.

H. Sulaiman, “Perbandingan Algoritma Decision Tree C4.5 Dan Naive Bayes pada Analisa Tekstur Gray Level Co-Occurrence Matrix Menggunakan Citra Wajah,” SISTEMASI., vol. 10, no. 2, pp. 470-479, May. 2021.

K. L. Kohsasih and Z. Situmorang, “Analisis Perbandingan Algoritma C4.5 dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular,” Jurnal Informatika., vol. 9, no. 1, pp. 13–17, Apr. 2022.

S. Cirani, M. Picone, L. Veltri, L. Zaccomer, and F. Zanichelli, “ZWT: A new cross-platform graphical interface framework for Java applications,” SoftwareX, vol. 12, p. 100599, Jul. 2020, doi: 10.1016/j.softx.2020.100599.

Hubert, P. Phoenix, R. Sudaryono, and D. Suhartono, "Classifying Promotion Images Using Optical Character Recognition and Naïve Bayes Classifier," Procedia Comput Sci., vol. 179, pp. 498–506, Jan. 2021.

N. Deepa, J. Sathya Priya, and T. Devi, "Towards applying internet of things and machine learning for the risk prediction of COVID-19 in pandemic situation using Naive Bayes classifier for improving accuracy," Mater Today Proc., vol. 62, pp. 4795–4799, Jan. 2022.

R. Rachman and R. N. Handayani, “Analisis Perbandingan Algoritma C4.5 dan Naïve Bayes Dalam Memprediksi Penyakit Cerebrovascular,” Jurnal Informatika., vol. 8, no. 2, pp. 111–122, Aug. 2021.

L. Ardito, R. Coppola, G. Malnati, and M. Torchiano, "Effectiveness of Kotlin vs. Java in android app development tasks," Inf Softw Technol., vol. 127, p. 106374, Nov. 2020.

D. Ramayanti, W. Gunawan, and I. I. Faishal, “Implementasi QR-Code pada Aplikasi E-Market Mandiri untuk Pemberdayaan Ekonomi Kreatif Berbasis Android,” Jurnal Informatika., vol. 8, no. 1, pp. 34–40, Feb. 2021.

V. Ayumi, “Mobile Application for Monitoring of Addition of Drugs to Infusion Fluids,” International Journal of Scientific Research in Computer Science, Engineering and Information Technology, pp. 48–56, Nov. 2019, doi: 10.32628/cseit195616.

R. Rastogi and M. Bansal, “Diabetes prediction model using data mining techniques,” Measurement: Sensors, vol. 25, p. 100605, Feb. 2023, doi: 10.1016/j.measen.2022.100605.

D. L. Aditya and D. Fitrianah, "Comparative study of fuzzy c-means and k-means algorithm for grouping customer potential in brand limback," Jurnal Riset Informatika., vol. 3, no. 4, pp. 327–334, Sep. 2021.

E. Yaodah Kodratillah, Daririn and C. Naya, “Penerapan data mining untuk prediksi kelulusan siswa menggunakan algoritma naïve bayes pada SMK Garuda,” Jurnal Teknologi Pelita Bangsa., vol. 12, no. 4 pp. 201-206, Des. 2021.

N. Yahya and A. Jananto, “Komparasi Kinerja Algoritma C. 45 Dan Naive Bayes Untuk Prediksi Kegiatan Penerimaanmahasiswa Baru (Studi Kasus: Universitas Stikubank Semarang),” Proceeding SENDI_U., pp. 221-228, Jul. 2019.

M. W. Kattan and T. A. Gerds, "A Framework for the Evaluation of Statistical Prediction Models," Chest., vol. 158, no. 1, pp. S29–S38, Jul. 2020.

S. Ucha Putri, E. Irawan, F. Rizky, “Implementasi Data Mining Untuk Prediksi Penyakit Diabetes Dengan Algoritma C4.5,” Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen)., vol. 2, no. 1, pp. 39–46, Jan. 2021.

T. A.M and A. Yaqin, “Perbandingan Algoritma Naïve Bayes, K-Nearest Neighbors dan Random Forest untuk Klasifikasi Sentimen Terhadap BPJS Kesehatan pada Media Twitter,” InComTech : Jurnal Telekomunikasi dan Komputer., vol. 12, no. 1, pp. 01–10, Apr. 2022.

Z. Ye, P. Song, D. Zheng, X. Zhang, and J. Wu, "A Naive Bayes model on lung adenocarcinoma projection based on tumor microenvironment and weighted gene co-expression network analysis," Infect Dis Model., vol. 7, no. 3, pp. 498–509, Sep. 2022.

B. Ruyu, H. Mo, and L. Haifeng, "A Comparison of Credit Rating Classification Models Based on Spark- Evidence from Lending-club," Procedia Comput Sci., vol. 162, pp. 811–818, Jan. 2019.

D. Fitrianah, D. Fitrianah, W. Gunawan, and A. P. Sari, “Studi Komparasi Algoritma Klasifikasi C5.0, SVM dan Naive Bayes dengan Studi Kasus Prediksi Banjir,” Techno.Com., vol. 21, no. 1, pp. 1–11, Feb. 2022.

D. A. Kurniawan and Y. I. Kurniawan, “Aplikasi Prediksi Kelayakan Calon Anggota Kredit Menggunakan Algoritma Naïve Bayes,” Jurnal Teknologi dan Manajemen Informatika, vol. 4, no. 1, Jan. 2018, doi: 10.26905/jtmi.v4i1.1831.

“Bahasa Pemrograman - Pengertian, Jenis, Macam, Tingkatan & Contoh.” https://www.dosenpendidikan.co.id/bahasa-pemrograman/ (accessed Aug. 17, 2022).

Morissan, “Karakteristik Data,” in Statistik Sosial, 1st ed. Jakarta, Indonesia: KENCANA, 2016, Accessed on: Des. 11, 2022.

H. H. Elmousalami and A. E. Hassanien, "Day Level Forecasting for Coronavirus Disease (COVID-19) Spread: Analysis, Modeling and Recommendations," doi:10.48550/arxiv.2003.07778.

S. Prayudani, A. Hizriadi, Y. Y. Lase, Y. Fatmi, and Al-Khowarizmi, “Analysis Accuracy Of Forecasting Measurement Technique On Random K-Nearest Neighbor (RKNN) Using MAPE And MSE,” Journal of Physics: Conference Series, vol. 1361, no. 1, p. 012089, Nov. 2019, doi: 10.1088/1742-6596/1361/1/012089.

“Cara Menghitung Mean Absolute Percentage Error (MAPE) - khoiri.com.” https://www.khoiri.com/2020/12/pengertian-dan-cara-menghitung-mean-absolute-percentage-error-mape.html (accessed Dec. 10, 2022).

A. T. Nugraha, “Aplikasi pemesanan travel menggunakan Chatbot dengan Machine Learning,” 2020, Accessed: Jan. 17, 2023. [Online]. Available: http://etheses.uin-malang.ac.id/20994/.