Real Time Face Recognition using Eigenface and Viola-Jones Face Detector

Jacky Efendi - Politeknik Caltex Riau, Pekanbaru, Indonesia
Muhammad Zul - Politeknik Caltex Riau, Pekanbaru, Indonesia
Wawan Yunanto - Politeknik Caltex Riau, Pekanbaru, Indonesia

Citation Format:



Authentication is the process of verifying one’s identity, and one of its implementation is in taking attendances in university’s lectures. Attendance taking is a very important matter to every academic institution as a way to examine students’ performance. Signature based attendance taking can be manipulated. Therefore it has problems in verifying the attendance validity. In this final project, a real time eigenface based face recognition is implemented in an application to do attendance taking. The input face image is captured using a webcam. The application itself is built in C#, utilizing EmguCV library. The application is developed using Visual Studio 2015. Face detection is done with Viola-Jones algorithm. The eigenface method is used to do facial recognition on the detected face image. In this final project, a total of 8 testings are done in different conditions. From the testings, it is found that this application can recognize face images with accuracy as high as 90% and as low as 6.67%. This solution can be used as an alternative for real-time attendance taking in an environment with 170 lux light intensity, webcam resolution of 320 x 240 pixel, and the subject standing 1 meter away while not wearing spectacles. The average recognition time is 0.18125 ms.


Authentication; Face Recognition; EmguCV; Eigenface; Attendance; Viola-Jones

Full Text:



Balcoh, N. K., Yousaf, M. H., Ahmad, W., & Baig, M. I. (2012). Algorithm for Efficient Attendance Management: Face Recognition based Approach. IJCSI International Journal of Computer Science Issues, 146-150. (

Muhammad, N. A. (2013). Pembuatan Aplikasi Presensi Perkuliahan Berbasis Fingerprint (Studi Kasus: Jurusan Sistem Informasi Institut Teknologi Sepuluh Nopember Surabaya). Jurnal Teknik POMITS, A465-A469. (

Setiawan, E. B., & Kurniawan, B. (2015). Perancangan Sistem Absensi Kehadiran Perkuliahan dengan Menggunakan Radio Frequency Identification (RFId). Jurnal CoreIT, 44-49. (

Muliawan, M. R. (2015). Implementasi Pengenalan Wajah dengan Metode Eigenface pada Sistem Absensi. Jurnal Coding, Sistem Komputer Untan, 41-50. (

Viola, P., & Jones, M. (2001). Rapid Object Detection Using a Boosted Cascade of Simple Features. Computer Vision and Pattern Recognition, 511-518. (

Fatta, H. A. (2006). Sistem Presensi Karyawan Berbasis Pengenalan Wajah dengan Algoritma Eigenface. Yogyakarta: STMIK AMIKOM.

Slavkovic, Marijeta & Jevtic, Dubravka. (2012). Face Recognition Using Eigenface Approach. Serbian Journal of Electrical Engineering, 9(No. 1), 121-130.

Setiadi, D. (2013). Aplikasi Identifikasi Personal dengan Metode Principle Component Analysis Berbasis Android. Pekanbaru: Politeknik Caltex Riau.

Rahman, M. A. (2010). Sistem Pengenalan Wajah Menggunakan Webcam untuk Absensi dengan Metode Template Matching. Surabaya: Politeknik Negeri Surabaya. (

Indra. (2012). Sistem Pengenalan Wajah dengan Metode Eigenface untuk Absensi pada PT. Florindo Lestari. Jakarta: Universitas Budi Luhur. (

Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3, 71-86. (

Viola, P., & Jones, M. (2004) Robust Real-Time Face Detection. International Journal of Computer Vision, 137-154. (

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters, 861-874. (

Gupta, Sheifali, Sahoo, O. P., Goel, A., & Gupta, R. (2010) A New Optimized Approach to Face Recognition Using Eigenfaces. Global Journal of Computer Science and Technology, 10, 15-17. (


  • There are currently no refbacks.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W :
E :,,

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.