BlogNewsRank: Finding and Ranking Frequent News Topics Using Social Media Factors
DOI: http://dx.doi.org/10.30630/joiv.2.3.134
Abstract
Keywords
Full Text:
PDFReferences
D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,†J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.
T. Hofmann, “Probabilistic latent semantic analysis,†in Proc. 15th Conf. Uncertainty Artif. Intell., 1999, pp. 289–296
T. Hofmann, “Probabilistic latent semantic indexing,†in Proc. 22nd Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, Berkeley, CA, USA, 1999, pp. 50–57.
Q. Diao, J. Jiang, F. Zhu, and E.-P. Lim, “Finding bursty topics from microblogs,†in Proc. 50th Annu. Meeting Assoc. Comput. Linguist. Long Papers, vol. 1. 2012, pp. 536–544.
H. Yin, B. Cui, H. Lu, Y. Huang, and J. Yao, “A uniï¬ed model for stable and temporal topic detection from social media data,†in Proc. IEEE 29th Int. Conf. Data Eng. (ICDE), Brisbane, QLD, Australia, 2013, pp. 661–672.
K. Shubhankar, A. P. Singh, and V. Pudi, “An efï¬cient algorithm for topic ranking and modeling topic evolution,†in Database Expert Syst. Appl., Toulouse, France, 2011, pp. 320–330.
S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual web search engine,†Comput. Netw., vol. 56, no. 18, pp. 3825–3833, 2012.
C. Wang, M. Zhang, L. Ru, and S. Ma, “Automatic online news topic ranking using media focus and user attention based on aging theory,†in Proc. 17th Conf. Inf. Knowl. Manag., Napa County, CA, USA, 2008, pp. 1033–1042.
E. Kwan, P.-L. Hsu, J.-H. Liang, and Y.-S. Chen, “Event identiï¬cation for social streams using keyword-based evolving graph sequences,†in Proc. IEEE/ACM Int. Conf. Adv. Soc. Netw. Anal. Min., Niagara Falls, ON, Canada, 2013, pp. 450–457.
R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,†in Proc. EMNLP, vol. 4. Barcelona, Spain, 2004.