Fake News Detection in Indonesian Popular News Portal Using Machine Learning For Visual Impairment

Liliek Triyono - Diponegoro University, Semarang, Indonesia
Rahmat Gernowo - Diponegoro University, Semarang, Indonesia
Prayitno Prayitno - Politeknik Negeri Semarang, Semarang, Indonesia
Mosiur Rahaman - Asia University, Taichung City 413, Taiwan
Tri Yudantoro - Politeknik Negeri Semarang, Semarang, Indonesia

Citation Format:

DOI: http://dx.doi.org/10.30630/joiv.7.3.1243


It has become a necessity for people to communicate with each other to complete their needs. The exchange of information conveyed in communication often cannot be directly assessed, especially online news. They just get news and are unable to filter out inappropriate stuff. The media website conveys a great deal of information. Popular news websites are one source for keeping up with the newest news. It requires a significant amount of work to deliver news on prominent websites and to choose content that is not incorrect. To crawl the web and analyse enormous data, massive computer power is required, and solutions to lower the process's space and temporal complexity must be created.Data mining is seen to be a solution to the aforementioned difficulties since it extracts particular information based on defined attributes. This research investigated a model to determine the content of false news information in Indonesian popular news. Firstly, preprocessing process from dataset that collected from keaggle. Secondly, we try use classification methods to determined which the optimal method to classify fake news. Thirdly, we use another public dataset for testing method. Furthermore, five machine learning classifiers are compared: Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree Classifier (DTC), Gradient Boosting Classifier (GBC), and Random Forest (RF). These classifications are utilized independently before being compared based on receiver operating characteristic curves and accuracy. The experimental result shows that DTC has the lowest accuracy of 75.33% and SVM has the highest accuracy of 83.55%. 


Data mining; Hoax; False News; Visual Impairment

Full Text:



D. Crowe, “Flaws in Coronavirus Pandemic Theory,” 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:214775362.

M. N. Alenezi, H. K. Alabdulrazzaq, A. A. Alshaher, and M. M. Alkharang, “Evolution of Malware Threats and Techniques: a Review,” Int. J. Commun. Networks Inf. Secur., vol. 12, 2020, [Online]. Available: https://api.semanticscholar.org/CorpusID:231668374.

W. Yue, C. Li, G. Mao, N. Cheng, and D. Zhou, “Evolution of road traffic congestion control: A survey from perspective of sensing, communication, and computation,” China Commun., vol. 18, pp. 151–177, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:245541734.

D. N. Rapp, S. R. Hinze, K. Kohlhepp, and R. A. Ryskin, “Reducing reliance on inaccurate information.,” Mem. Cognit., vol. 42, no. 1, pp. 11–26, Jan. 2014, doi: 10.3758/s13421-013-0339-0.

O. Balashevych, O. Orliuk, and A. Proskurnia, “THE DEVELOPMENT AND APPROBATION OF THE QUESTIONNAIRE FOR DETECTING THE TENDENCY TO GOSSIP (TTGQ – TENDENCY TO GOSSIP QUESTIONNAIRE): A PILOT STUDY,” Psychol. J., 2023, [Online]. Available: https://api.semanticscholar.org/CorpusID:259956986.

B. Probierz, P. Stefa, J. Kozak, B. Probierz, P. Stefa, and J. Kozak, “Rapid detection of fake news based on machine learning methods,” vol. 00, 2021, doi: 10.1016/j.procs.2021.09.060.

M. Surve, P. Joshi, S. Jamadar, and M. M. N. Vharkate, “Automatic Attendance System using Face Recognition Technique,” Int. J. Recent Technol. Eng., vol. 9, no. 1, pp. 2134–2138, 2020, doi: 10.35940/ijrte.a2644.059120.

P. Jha, “A Survey on various Haze and Underwater Digital Image Enhancement Techniques,” 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:195726425.

J. Dunaway, K. Searles, M. Sui, and N. Paul, “News Attention in a Mobile Era,” J. Comput. Commun., vol. 23, no. 2, pp. 107–124, 2018, doi: 10.1093/jcmc/zmy004.

M. Viviani and G. Pasi, “Credibility in social media: opinions, news, and health information—a survey,” Wiley Interdiscip. Rev. Data Min. Knowl. Discov., vol. 7, no. 5, 2017, doi: 10.1002/widm.1209.

T. Chauhan and H. Palivela, “Optimization and improvement of fake news detection using deep learning approaches for societal benefit,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100051, 2021, doi: 10.1016/j.jjimei.2021.100051.

J. L. Ruiz-Real, J. Uribe-Toril, J. A. Torres, and J. D. E. Pablo, “Artificial intelligence in business and economics research: Trends and future,” J. Bus. Econ. Manag., vol. 22, no. 1, pp. 98–117, 2021, doi: 10.3846/jbem.2020.13641.

A. Geisel, “The Current And Future Impact Of Artificial Intelligence On Business,” Int. J. Sci. & Technol. Res., vol. 7, pp. 116–122, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:115754758.

F. Bezzazi, “The impact of artificial intelligence on business: benefits and ethical challenges on customer level,” J. Mark. Consum. Res., 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:250610075.

C. Chan and D. Petrikat, “Impact of Artificial Intelligence on Business and Society,” J. Bus. Manag. Stud., 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:252375047.

Z. Bastick, “Would you notice if fake news changed your behavior? An experiment on the unconscious effects of disinformation,” Comput. Human Behav., vol. 116, no. November 2020, p. 106633, 2021, doi: 10.1016/j.chb.2020.106633.

Y. Wang, M. McKee, A. Torbica, and D. Stuckler, “Systematic Literature Review on the Spread of Health-related Misinformation on Social Media,” Soc. Sci. Med., vol. 240, no. August, p. 112552, 2019, doi: 10.1016/j.socscimed.2019.112552.

V. Pérez-Rosas, B. Kleinberg, A. Lefevre, and R. Mihalcea, “Automatic detection of fake news,” COLING 2018 - 27th Int. Conf. Comput. Linguist. Proc., pp. 3391–3401, 2018.

M. Aldwairi and A. Alwahedi, “Detecting Fake News in Social Media Networks,” Procedia Comput. Sci., vol. 141, pp. 215–222, 2018, doi: https://doi.org/10.1016/j.procs.2018.10.171.

T. Murayama, S. Hisada, M. Uehara, S. Wakamiya, and E. Aramaki, “Annotation-Scheme Reconstruction for ‘Fake News’ and Japanese Fake News Dataset.” 2022.

S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news online,” vol. 1151, no. March, pp. 1146–1151, 2018, [Online]. Available: https://sci-hub.se/10.1126/science.aap9559.

K. Sharma, F. Qian, H. Jiang, N. Ruchansky, M. Zhang, and Y. Liu, “Combating Fake News: A Survey on Identification and Mitigation Techniques.” 2019.

W. Shahid et al., “Detecting and Mitigating the Dissemination of Fake News: Challenges and Future Research Opportunities,” IEEE Trans. Comput. Soc. Syst., 2022, [Online]. Available: https://api.semanticscholar.org/CorpusID:247062169.

Z. Shae, C. Shyu, and M. W. Kearney, “Automatic Fake News detection in News Article with Opinion Classifier using XGBoost Algorithm.”

Y. Yang, L. Zheng, J. Zhang, Q. Cui, Z. Li, and P. S. Yu, “TI-CNN: Convolutional Neural Networks for Fake News Detection,” 2018, [Online]. Available: http://arxiv.org/abs/1806.00749.

I. Y. R. Pratiwi, R. A. Asmara, and F. Rahutomo, “Study of hoax news detection using naïve bayes classifier in Indonesian language,” Proc. 11th Int. Conf. Inf. Commun. Technol. Syst. ICTS 2017, vol. 2018-Janua, no. February 2018, pp. 73–78, 2018, doi: 10.1109/ICTS.2017.8265649.

F. Rahutomo, I. Y. R. Pratiwi, and D. M. Ramadhani, “Eksperimen Naïve Bayes Pada Deteksi Berita Hoax Berbahasa Indonesia,” J. Penelit. Komun. Dan Opini Publik, vol. 23, no. 1, 2019, doi: 10.33299/jpkop.23.1.1805.

N. Hassan et al., “Claim buster: The firstever endtoend factchecking system,” Proc. VLDB Endow., vol. 10, no. 12, pp. 1945–1948, 2017, doi: 10.14778/3137765.3137815.

B. P. Nayoga, R. Adipradana, R. Suryadi, and D. Suhartono, “Hoax Analyzer for Indonesian News Using Deep Learning Models,” Procedia Comput. Sci., vol. 179, no. 2020, pp. 704–712, 2021, doi: 10.1016/j.procs.2021.01.059.

M. S. S. Nur Hayatin, Suraya Alias, Lai Po Hung, “Sentiment Analysis Based On Probabilistic Classifier Techniques In Various Indonesian Review Data,” Jordanian J. Comput. Inf. Technol., vol. 8, no. 3, pp. 171–175, 2022.

T. H. J. Hidayat, Y. Ruldeviyani, A. R. Aditama, G. R. Madya, A. W. Nugraha, and M. W. Adisaputra, “Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as classifier,” Procedia Comput. Sci., vol. 197, no. 2021, pp. 660–667, 2021, doi: 10.1016/j.procs.2021.12.187.

A. G, B. Ganesh, A. Ganesh, C. Srinivas, Dhanraj, and K. Mensinkal, “Logistic regression technique for prediction of cardiovascular disease,” Glob. Transitions Proc., vol. 3, no. 1, pp. 127–130, 2022, doi: 10.1016/j.gltp.2022.04.008.

A. Mulahuwaish, K. Gyorick, K. Z. Ghafoor, H. S. Maghdid, and D. B. Rawat, “Efficient classification model of web news documents using machine learning algorithms for accurate information,” Comput. Secur., vol. 98, 2020, doi: 10.1016/j.cose.2020.102006.

M. M. Hasan, G. J. Young, M. R. Patel, A. S. Modestino, L. D. Sanchez, and M. Noor-E-Alam, “A machine learning framework to predict the risk of opioid use disorder,” Mach. Learn. with Appl., vol. 6, no. August, p. 100144, 2021, doi: 10.1016/j.mlwa.2021.100144.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W : http://joiv.org
E : joiv@pnp.ac.id, hidra@pnp.ac.id, rahmat@pnp.ac.id

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.