Comparison of K-Medoids Method and Analytical Hierarchy Clustering on Students' Data Grouping

Lisna Zahrotun - Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Utaminingsih Linarti - Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Banu Suandi As - Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Herri Kurnia - Universitas Ahmad Dahlan, Yogyakarta, Indonesia
Liya Sabila - Universitas Ahmad Dahlan, Yogyakarta, Indonesia


Citation Format:



DOI: http://dx.doi.org/10.30630/joiv.7.2.1204

Abstract


One sign of how successfully the educational process is carried out on campus in a university is the timely graduation of students. This study compares the Analytic Hierarchy Clustering (AHC) approach with the K-Medoids method, a data mining technique for categorizing student data based on school origin, region of origin, average math score, TOEFL, GPA, and length study. This study was carried out at University X, which contains a variety of architectural styles. The R department, the S department, the T department, and the U department make up one of them. K-Medoids and AHC techniques Utilize the number of clusters 2, 3, and 4 and the silhouette coefficient approach. The evaluation's findings indicate a value. Although there is a linear silhouette between the AHC and K-Medoids methods, the AHC approach (departments R: 0.88, S: 0.87, T: 0.88, and U: 0.88) has a more excellent Silhouette value than K-Medoids (department R: 0.35, department S: 0.65 number of cluster 2, department T: 0.67 number of cluster 2 and program Study U: 0,52). The results of the second approach, which includes the K-Medoids and AHC procedures, are determined by the data distribution to be clustered rather than by the quantity of data or clusters. Based on this methodology, University X can refer to the grouping outcomes for the four departments with two achievements to receive results on schedule.

Keywords


Grouping; K-Medoids; Silhouette Coefficient; Analytical Horarcy Clustering

Full Text:

PDF

References


B. Hodge, B. Wright, and P. Bennett, “The Role of Grit in Determining Engagement and Academic Outcomes for University Students,†Res. High. Educ., vol. 59, no. 4, pp. 448–460, 2018.

M. F. Parnes, C. Suárez-Orozco, O. Osei-Twumasi, and S. E. O. Schwartz, “Academic Outcomes Among Diverse Community College Students: What Is the Role of Instructor Relationships?,†Community Coll. Rev., vol. 48, no. 3, pp. 277–302, 2020, doi: 10.1177/0091552120909908.

A. Alhadabi and A. C. Karpinski, “Grit, self-efficacy, achievement orientation goals, and academic performance in University students,†Int. J. Adolesc. Youth, vol. 25, no. 1, pp. 519–535, 2020, doi: 10.1080/02673843.2019.1679202.

M. J. Gormley, G. J. DuPaul, L. L. Weyandt, and A. D. Anastopoulos, “First-Year GPA and Academic Service Use Among College Students With and Without ADHD,†Physiol. Behav., pp. 1766–1779, 2019, doi: 10.1177/1087054715623046.First-Year.

S. Chaturapruek, T. S. Dee, R. Johari, R. F. Kizilcec, and M. L. Stevens, “How a data-driven course planning tool affects college students’ GPA: Evidence from two field experiments,†Proc. 5th Annu. ACM Conf. Learn. Scale, L S 2018, 2018, doi: 10.1145/3231644.3231668.

D. Aggarwal and D. Sharma, “Application of clustering for student result analysis,†Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 50–53, 2019.

A. Almasri, R. S. Alkhawaldeh, and E. Çelebi, “Clustering-Based EMT Model for Predicting Student Performance,†Arab. J. Sci. Eng., vol. 45, no. 12, pp. 10067–10078, 2020, doi: 10.1007/s13369-020-04578-4.

D. S. Lamb, J. Downs, and S. Reader, “Space-time hierarchical clustering for identifying clusters in spatiotemporal point data,†ISPRS Int. J. Geo-Information, vol. 9, no. 2, 2020, doi: 10.3390/ijgi9020085.

L. Zappia and A. Oshlack, “Clustering trees: a visualization for evaluating clusterings at multiple resolutions,†Gigascience, vol. 7, no. 7, pp. 1–9, 2018, doi: 10.1093/gigascience/giy083.

C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,†J, vol. 2, no. 2, pp. 226–235, 2019, doi: 10.3390/j2020016.

Mardonov, “Structure and Mechanisms of Action of The Educational Cluster,†Int. J. Psychol. Rehabil., vol. 24, no. 07, pp. 1475–7192, 2020, [Online]. Available: https://hozir.org/pars_docs/refs/541/540182/540182.pdf.

L. Zahrotun, N. hutami Putri, and A. N. Khusna, “The Implementation of K-Means Clustering Method in Classifying Undergraduate Thesisi Titles,†in 12th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 2018.

A. Hadifar, L. Sterckx, T. Demeester, and C. Develder, “A self-training approach for short text clustering,†ACL 2019 - 4th Work. Represent. Learn. NLP, RepL4NLP 2019 - Proc. Work., no. 2017, pp. 194–199, 2019, doi: 10.18653/v1/w19-4322.

E. A. Anaam, S.-C. Haw, and P. Naveen, “Applied Fuzzy and Analytic Hierarchy Process Techniques in Hybrid Recommendation Approaches For E-CRM,†Int. J. Informatics Vis., vol. 6, no. 2, p. 2, 2022.

H.-S. Park and C.-H. Jun, “Expert Systems with Applications An International Journal,†Expert Syst. Appl., vol. 145, no. 2, p. 3341, 2020.

D. Sun, H. Fei, and Q. Li, “A Bisecting K-Medoids clustering Algorithm Based on Cloud Model,†vol. 51, no. 11, pp. 308–315, 2018, doi: 10.1016/j.ifacol.2018.08.301.

Martanto, S. Anwar, C. L. Rohmat, F. M. Basysyar, and Y. A. Wijaya, “Clustering of internet network usage using the K-Medoid method,†IOP Conf. Ser. Mater. Sci. Eng., vol. 1088, no. 1, p. 012036, 2021, doi: 10.1088/1757-899x/1088/1/012036.

A. Moubayed, M. Injadat, A. Shami, and H. Lutfiyya, “Student Engagement Level in an e-Learning Environment: Clustering Using K-means,†Am. J. Distance Educ., vol. 34, no. 2, pp. 137–156, 2020, doi: 10.1080/08923647.2020.1696140.

S. Sinche et al., “Analysis of Student Academic Performance Using Human-in-the-Loop Cyber-Physical Systems,†Telecom, vol. 1, no. 1, pp. 18–31, 2020, doi: 10.3390/telecom1010003.

O. Tinuke Omolewa, A. Taye Oladele, A. Adekanmi Adeyinka, and O. Roseline Oluwaseun, “Prediction of Student’s Academic Performance using k-Means Clustering and Multiple Linear Regressions,†J. Eng. Appl. Sci., vol. 14, no. 22, pp. 8254–8260, 2019, doi: 10.36478/jeasci.2019.8254.8260.

J. Oyelade et al., “Data Clustering: Algorithms and Its Applications,†Proc. - 2019 19th Int. Conf. Comput. Sci. Its Appl. ICCSA 2019, no. July, pp. 71–81, 2019, doi: 10.1109/ICCSA.2019.000-1.

A. Naeem, M. Rehman, M. Anjum, and M. Asif, “Development of an efficient hierarchical clustering analysis using an agglomerative clustering algorithm,†Curr. Sci., vol. 117, no. 6, pp. 1045–1053, 2019, doi: 10.18520/cs/v117/i6/1045-1053.

S. Bipasha Biswas and M. Tariq Iqbal, “Solar Water Pumping System Control Using a Low Cost ESP32 Microcontroller,†Can. Conf. Electr. Comput. Eng., vol. 2018-May, pp. 1–5, 2018, doi: 10.1109/CCECE.2018.8447749.

M. T. Lwin and M. M. Aye, “A Modified Hierarchical Agglomerative Approach for Efficient Document Clustering System,†Am. Sci. Res. J. Eng., vol. 29, no. 1, pp. 228–238, 2017, [Online]. Available: http://asrjetsjournal.org/.

W. Xiaochun and W. Xia Li, “ A Fast K -medoids Clustering Algorithm for Image Segmentation based Object Recognition ,†J. Robot. Autom., vol. 4, no. 1, pp. 202–211, 2020, doi: 10.36959/673/371.

F. Gullo, G. Ponti, A. Tagarelli, and S. Greco, “An information-theoretic approach to hierarchical clustering of uncertain data,†Inf. Sci. (Ny)., vol. 402, pp. 199–215, 2017, doi: 10.1016/j.ins.2017.03.030.

A. Triayudi and I. Fitri, “Comparison of parameter-free agglomerative hierarchical clustering methods,†ICIC Express Lett., vol. 12, no. 10, pp. 973–980, 2018, doi: 10.24507/icicel.12.10.973.

A. R. Mamat, F. S. Mohamed, M. A. Mohamed, N. M. Rawi, and M. I. Awang, “Silhouette index for determining optimal k-means clustering on images in different color models,†Int. J. Eng. Technol., vol. 7, no. April, pp. 105–109, 2018, doi: 10.14419/ijet.v7i2.14.11464.

M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,†Entropy, vol. 23, no. 6, pp. 1–17, 2021, doi: 10.3390/e23060759.

R. J. Roiger, Data Mining A Tutorial-Based Primer. Boca Raton, London, New York, 2017.

N. Nidheesh, K. A. A. Nazeer, and P. M. Ameer, “A Hierarchical Clustering algorithm based on Silhouette Index for cancer subtype discovery from genomic data,†Neural Comput. Appl., vol. 32, no. 15, pp. 11459–11476, 2020, doi: 10.1007/s00521-019-04636-5.

X. Wang and Y. Xu, “An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index,†IOP Conf. Ser. Mater. Sci. Eng., vol. 569, no. 5, 2019, doi: 10.1088/1757-899X/569/5/052024.

J. Han, J. Pei, and H. Tong, Data Mining Concepts and Techniques. Cambridge, MA 02139, United States: Elsevier Inc., 2023.