Hemp-Alumina Composite Radar Absorption Reflection Loss Classification
DOI: http://dx.doi.org/10.30630/joiv.7.2.1169
Abstract
Keywords
Full Text:
PDFReferences
Verma, Geetika, and Kamla Prasan Ray. "Design, fabrication and characteristics of eco-friendly microwave absorbing materials: A review." IETE Technical Review 39.4 (2022): 756-774.
Murali, B., B. Vijaya Ramnath, and D. J. M. T. P. Chandramohan. "Mechanical properties of boehmeria nivea reinforced polymer composite." Materials Today: Proceedings 16 (2019): 883-888.
Zhang, Zhe, et al. "Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm." ISA transactions (2022).
Singh, Harbinder. "Radar cross section minimization analysis for different target shapes." Materials Today: Proceedings (2022).
Folgueras, Luiza de Castro, et al. "Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline." Materials Research 10 (2007): 95-99.
Wang, Peng, et al. "Excellent microwave absorbing performance of the sandwich structure absorber Fe@ B2O3/MoS2/Fe@ B2O3 in the Ku-band and X-band." Chemical Engineering Journal 382 (2020): 122804.
Ahmed, ATM Faiz, et al. "Hemp as a potential raw material toward a sustainable world: A review." Heliyon (2022): e08753.
Shackelford, James F. Introduction to materials science for engineers. Upper Saddle River: Pearson, 2016.
Putri, G. P., Triyono E., Budi Basuki S., Hasan, A., Widodo, S., & Suhendro, S. "Pengaruh Penggunaan Komposit–Rami Sebagai Penyerap Gelombang Radar Pada Stealth Technology." Prosiding Seminar Nasional Sains Teknologi dan Inovasi Indonesia (SENASTINDO). Vol. 1. 2019
Sagar, Md Samiul Islam, et al. "Application of machine learning in electromagnetics: Mini-review." Electronics 10.22 (2021): 2752.
Rekkas, Vasileios P., et al. "Machine learning in beyond 5G/6G networks—State-of-the-art and future trends." Electronics 10.22 (2021): 2786.
Fawcett, Timothy J., et al. "Universal automated classification of the acoustic startle reflex using machine learning." Hearing research 428 (2023): 108667.
Dutta, Sagar, Banani Basu, and Fazal Ahmed Talukdar. "Classification of motor faults based on transmission coefficient and reflection coefficient of omni-directional antenna using DCNN." Expert Systems with Applications 198 (2022): 116832.
Jijo, Bahzad Taha, and Adnan Mohsin Abdulazeez. "Classification based on decision tree algorithm for machine learning." evaluation 6 (2021): 7.
Breiman, Leo. "Random forests." Machine learning 45 (2001): 5-32.
Raschka, Sebastian. "Naive bayes and text classification i-introduction and theory." arXiv preprint arXiv:1410.5329 (2014).
Ali, Najat, Daniel Neagu, and Paul Trundle. "Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets." SN Applied Sciences 1 (2019): 1-15.
Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan Kaufmann.
Guerrero, Maria Camila, Juan Sebastián Parada, and Helbert Eduardo Espitia. "EEG signal analysis using classification techniques: Logistic regression, artificial neural networks, support vector machines, and convolutional neural networks." Heliyon 7.6 (2021): e07258.
Sildir, Hasan, Sahin Sarrafi, and Erdal Aydin. "Optimal artificial neural network architecture design for modeling an industrial ethylene oxide plant." Computers & Chemical Engineering 163 (2022): 107850.
Kleinbaum, David G., et al. Logistic regression. New York: Springer-Verlag, 2002.
Pujianto, Utomo, et al. "Comparison of naïve bayes algorithm and decision tree C4. 5 for hospital readmission diabetes patients using hba1c measurement." Knowledge Engineering and Data Science 2.2 (2019): 58-71.
Xhemali, Daniela, Chris J. Hinde, and Roger Stone. "Naïve bayes vs. decision trees vs. neural networks in the classification of training web pages." (2009).
Khoirunissa, Husna Afanyn, Amanda Rizky Widyaningrum, and Annisa Priliya Ayu Maharani. "Comparison of Random Forest, Logistic Regression, and MultilayerPerceptron Methods on Classification of Bank Customer Account Closure." Indonesian Journal of Applied Statistics 4.1 (2021): 14-20.
Lemons, Kendall. "A comparison between Naïve bayes and random forest to predict breast cancer." International Journal of Undergraduate Research and Creative Activities 12.1 (2020).
Mayilvaganan, M., and D. Kalpanadevi. "Comparison of classification techniques for predicting the performance of students academic environment." 2014 International Conference on Communication and Network Technologies. IEEE, 2014.
Palaniappan, Shamala, et al. "Customer profiling using classification approach for bank telemarketing." JOIV: International Journal on Informatics Visualization 1.4-2 (2017): 214-217.
Carrera, Berny, et al. "A machine learning based classification models for plastic recycling using different wavelength range spectrums." Journal of Cleaner Production 374 (2022): 133883.
Wang, Jingluan, et al. "Risk assessment for musculoskeletal disorders based on the characteristics of work posture." Automation in Construction 131 (2021): 103921.
Alkaissy, Maryam, et al. "Enhancing construction safety: Machine learning-based classification of injury types." Safety Science 162 (2023): 106102.