The Relevance of Bibliometric Analysis to Discover the Area’s Research Efforts: Root Exploit Evolution

Che Akmal Che Yahaya - Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
Ahmad Firdaus - Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
Ferda Ernawan - Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
Wan Isni Sofiah Wan Din - Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

Citation Format:



Malware steals, encrypts, and damages data of the targeted machines for private, money, or fame purposes. The types of malware are root exploit, cryptojacking, Trojan, worms, viruses, spyware, ransomware, and adware. Among these types, root exploit is one of the most destructive malware types since it disguises and obscures all types of malware and provides a mechanism for other malware to carry out malicious acts invisibly. In the interest to review the progress of root exploit efforts globally, there is a need to inspect all publications that involve root exploit. Among all malware reviews previously, to date, there is still no trace of any bibliometric analysis that demonstrates the research impacts of root exploit and trends in bibliometric analysis. Hence, this paper adopts bibliometric analysis specifically on root exploit studies which evaluate: (1) Wordcloud; (2) WordTreeMap; (3) Three fields plot; (4) Thematic evolution; (5) Thematic maps; (6) Correspondence analysis (CA); (7) Dendrogram; and (8) Multiple correspondence analysis (MCA). To conclude, our bibliometric discovers that; 1) Linux and Android become main interest in root exploit studies. 2) Types of root exploit in virtualization layer and studies to detect on this area are increasing. 3) USA and China have become the leaders in root exploit research. 4) Research studies are more towards memory forensics to detect root exploit, which is more promising. 5) Instead of researching new methods of root exploit in compromising victims, root exploit researchers were more focused on detecting root exploits.


Root exploit; rootkit; bibliometric; security; detection; review.

Full Text:



W. Kong, “Research on Technology of Process Hiding based on VMM,” 2015 International Conference on Computer Science and Applications (CSA), pp. 339–344, 2015, doi: 10.1109/CSA.2015.26.

P. Nimbalkar and D. Kshirsagar, “Feature selection for intrusion detection system in Internet-of-Things (IoT),” ICT Express, vol. 7, no. 2, pp. 177–181, 2021, doi: 10.1016/j.icte.2021.04.012.

M. Lechtik and G. Dedola, “Operation TunnelSnake,” 2021. (accessed May 06, 2021).

A. Sharma, “Microsoft admits to signing rootkit malware in supply-chain fiasco,” 2021. (accessed Sep. 09, 2021).

S. R. T. Mat, M. F. Ab Razak, M. N. M. Kahar, J. M. Arif, S. Mohamad, and A. Firdaus, “Towards a systematic description of the field using bibliometric analysis: malware evolution,” Scientometrics, vol. 126, no. 3, pp. 2013–2055, 2021, doi: 10.1007/s11192-020-03834-6.

S. K. Jalal, “Co-authorship and co-occurrences analysis using bibliometrix r-package: A case study of india and bangladesh,” Annals of Library and Information Studies, vol. 66, no. 2, pp. 57–64, 2019.

D. Agapito, “The senses in tourism design: A bibliometric review,” Annals of Tourism Research, vol. 83, no. December 2019, 2020, doi: 10.1016/j.annals.2020.102934.

I. Firmansyah and A. S. Rusydiana, “Bibliometric Analysis of Articles on Accounting and Covid-19 during the Pandemic,” Library Philosophy and Practice, vol. 2021, pp. 1–15, 2021.

R. Orastean, S. C. Marginean, and R. Sava, “Bitcoin in the scientific literature - A bibliometric study,” Studies in Business and Economics, vol. 14, no. 3, pp. 160–174, 2019, doi: 10.2478/sbe-2019-0051.

D. Yu, D. F. Li, J. M. Merigó, and L. Fang, “Mapping development of linguistic decision making studies,” Journal of Intelligent and Fuzzy Systems, vol. 30, no. 5, pp. 2727–2736, 2016, doi: 10.3233/IFS-152026.

F. Afifi, N. B. Anuar, S. Shamshirband, and K.-K. R. Choo, “DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware,” Plos One, vol. 11, no. 9, pp. 1–21, 2016, doi: 10.1371/journal.pone.0162627.

J. Koskinen et al., “How to use bibliometric methods in evaluation of scientific research? An example from Finnish schizophrenia research,” Nordic Journal of Psychiatry, vol. 62, no. 2, pp. 136–143, 2008, doi: 10.1080/08039480801961667.

A. Abrizah, A. N. Zainab, K. Kiran, and R. G. Raj, “LIS journals scientific impact and subject categorization: A comparison between Web of Science and Scopus,” Scientometrics, vol. 94, no. 2, pp. 721–740, 2013, doi: 10.1007/s11192-012-0813-7.

J. Mingers and L. Leydesdorff, “A review of theory and practice in scientometrics,” European Journal of Operational Research, vol. 246, no. 1, pp. 1–19, 2015, doi: 10.1016/j.ejor.2015.04.002.

P. Mongeon and A. Paul-Hus, “The journal coverage of Web of Science and Scopus: a comparative analysis,” Scientometrics, vol. 106, no. 1, pp. 213–228, 2016, doi: 10.1007/s11192-015-1765-5.

M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, “The rise of ‘“malware”’: Bibliometric analysis of malware study,” Journal of Network and Computer Applications, vol. 75, pp. 58–76, 2016, doi: 10.1016/j.jnca.2016.08.022.

C. López-Illescas, F. de Moya-Anegón, and H. F. Moed, “Coverage and citation impact of oncological journals in the Web of Science and Scopus,” Journal of Informetrics, vol. 2, no. 4, pp. 304–316, 2008, doi: 10.1016/j.joi.2008.08.001.

J. Grimm, “Users, narcissism and control – tracking the impact of scholarly publications in the 21st century,” World Statistics on Mining and Utilities 2018, p. 50, 2012, doi: 10.4337/9781788974585.00003.

M. Clermont and H. Dyckhoff, “Coverage of Business Administration Literature in Google Scholar: Analysis and Comparison with Econbiz, Scopus and Web of Science,” SSRN Electronic Journal, pp. 1–54, 2012, doi: 10.2139/ssrn.2016850.

P. H. C. Chabot, “What is Tableau?,” 2021. .

M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for comprehensive science mapping analysis,” Journal of Informetrics, vol. 11, no. 4, pp. 959–975, 2017, doi: 10.1016/j.joi.2017.08.007.

H. A. Parhusip, B. Susanto, L. Linawati, S. Trihandaru, Y. Sardjono, and A. S. Mugirahayu, “Classification Breast Cancer Revisited with Machine Learning,” International Journal on Data Science (IJODS), vol. 1, no. 1, pp. 42–50, 2020, doi: 10.18517/ijods.1.1.42-50.2020.

N. Mohd Hatta, Z. Ali Shah, and S. Kasim, “Evaluate the Performance of SVM Kernel Functions for Multiclass Cancer Classification,” International Journal on Data Science (IJODS), vol. 1, no. 1, pp. 37–41, 2020, doi: 10.18517/ijods.1.1.37-41.2020.

M. Sajjad, M. Pasha, and U. Pasha, “Parametric Evaluation of E-Health Systems,” International Journal of Information Systems and Computer Technologies (IJISCT), vol. 1, no. January, pp. 31–37, 2022.

H. Ghous, M. H. Malik, M. Abbas, and M. Ismail, “Early Detection of Breast Cancer Tumors using Linear Discriminant Analysis Feature Selection with Different Machine Learning Classification Methods,” International Journal of Information Systems and Computer Technologies (IJISCT), vol. 1, no. 1, pp. 1–12, 2022, doi: 10.5121/cseij.2022.12117.

M. Sulistiyono, L. A. Wirasakti, and Y. Pristyanto, “The Effect of Adaptive Synthetic and Information Gain on C4. 5 and Naive Bayes in Imbalance Class Dataset,” International Journal of Advanced Science Computing and Engineering (IJASCE), vol. 4, no. 1, pp. 1–11, 2022.

S. K. Mohamed, N. A. Sakr, and N. A. Hikal, “A Review of Breast Cancer Classification and Detection Techniques,” International Journal of Advanced Science Computing and Engineering (IJASCE), vol. 3, no. 3, pp. 128–139, 2021.

E. Juma Adwan and B. Ali Alsaeed, “Cloud Computing adoption in the financial banking sector-A systematic litreture review (2011-2021),” International Journal of Advanced Science Computing and Engineering (IJASCE), vol. 4, no. 1, pp. 48–55, 2022.

N. Qadir and R. Ahmad, “Secrs Template To Aid Novice Developers in Security Requirements Identification and Documentation,” International Journal of Software Engineering and Computer Systems (IJSECS), vol. 8, no. 1, pp. 45–52, 2022, doi: 10.15282/ijsecs.8.1.2022.5.0095.

H. Chaudhary, H. Chaudhary, and A. Kumar Sharma, “Optimized Genetic Algorithm and Extended Diffie Hellman as an Effectual Approach for DOS-Attack Detection in Cloud,” International Journal of Software Engineering and Computer Systems (IJSECS), vol. 8, no. 1, pp. 69–78, 2022, doi: 10.15282/ijsecs.8.1.2022.7.0097.

M. F. A. Razak, N. B. Anuar, F. Othman, A. Firdaus, F. Afifi, and R. Salleh, “Bio-inspired for Features Optimization and Malware Detection,” Arabian Journal for Science and Engineering, vol. 43, no. 12, pp. 6963–6979, 2017, doi: 10.1007/s13369-017-2951-y.

S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A New Android Malware Detection Approach Using Bayesian Classification,” in IEEE 27th International Conference on Advanced Information Networking and Applications (AINA), Barcelona, Spain, Mar. 2013, pp. 121–128, doi: 10.1109/AINA.2013.88.

S. Y. Yerima, S. Sezer, and I. Muttik, “Android malware detection: An eigenspace analysis approach,” 2015 Science and Information Conference (SAI), pp. 1236–1242, 2015, doi: 10.1109/SAI.2015.7237302.

R. Jusoh, A. Firdaus, S. Anwar, M. Z. Osman, M. F. Darmawan, and M. F. Ab Razak, “Malware detection using static analysis in Android: a review of FeCO (features, classification, and obfuscation),” PeerJ Computer Science, vol. 7, no. e522, pp. 1–54, 2021, doi: 10.7717/peerj-cs.522.

C. A. Che Yahaya, A. Firdaus, S. Mohamad, F. Ernawan, and M. F. A. Razak, “Automated Feature Selection using Boruta Algorithm to Detect Mobile Malware,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, no. 5, pp. 9029–9036, 2020, doi: 10.30534/ijatcse/2020/307952020.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

JOIV : International Journal on Informatics Visualization
ISSN 2549-9610  (print) | 2549-9904 (online)
Organized by Department of Information Technology - Politeknik Negeri Padang, and Institute of Visual Informatics - UKM and Soft Computing and Data Mining Centre - UTHM
W :
E :,,

View JOIV Stats

Creative Commons License is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.