Detection of Soil Water Content Using Continuous Wave Ground Penetrating Radar
DOI: http://dx.doi.org/10.30630/joiv.2.1.104
Abstract
Keywords
Full Text:
PDFReferences
Annan, A.P. 1973. Radio interferometry depth sounding: I. Theoretical discussion. Geophysics 38:557–580. doi:10.1190/1.1440360.
Cassiani, G., C. Strabbia, and L. Gallotti. 2004. Vertical radar profiles for the characterization of deep vadose zones. Vadose Zone J. 3:1093– 1105. doi:10.2113/3.4.1093.
Comite, D., A. Galli, S.E. Lauro, E. Mattei, and E. Pettinelli. 2016. Analysis of GPR early-time signal features for the evaluation of soil permittivity through numerical and experimental surveys. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(1):178–187. doi:10.1109/JSTARS.2015.2466174.
Davis, J.L., and A.P. Annan. 1989. Ground-penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys. Prospect.37:531–551. doi:10.1111/j.1365-2478.1989.tb02221.x.
Attributes to estimate soil dielectric permittivity: A theoretical study. IEEE Trans. Geosci. Remote Sens. 51:1643–1654. doi:10.1109/TGRS.2012.2206817.
Ferrara, C., P.M. Barone, C.M. Steelman, E. Pettinelli, and A.I. Endres. 2013.Monitoring shallow soil water content under natural field conditions using the early-time GPR signal technique. Vadose Zone J. 12(4). doi:10.2136/vzj2012.0202.
Franz, T.E., M. Zreda, R. Rosolem, and T.P.A. Ferre. 2013. A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol. Earth Syst. Sci. 17:453–460. doi:10.5194/hess-17-453-2013.
Galagedara, L.W., G.W. Parkin, and J.D. Redman. 2003. An analysis of the ground-penetrating radar direct ground wave method for soil water content measurement. Hydrol. Processes 17:3615–3628. doi:10.1002/hyp.1351.
Gerhards, H., U. Wollschläger, Q. Yu, P. Schiwek, X. Pan, and K. Roth. 2008. Continuous and simultaneous measurement of reflector depth and average soil-water content with multichannel ground-penetrating radar. Geophysics 73:J15–J23. doi:10.1190/1.2943669.
Grote, K., S. Hubbard, and Y. Rubin. 2003. Field-scale estimation of volumetric water content using ground-penetrating radar ground wave techniques. Water Resour. Res. 39:1321. doi:10.1029/2003WR002045.
Hislop, G. 2015. Permittivity estimation using coupling of commercial ground penetrating radars. IEEE Trans. Geosci. Remote Sens. 53:4157– 4164. doi:10.1109/TGRS.2015.2392110.
Huisman, J.A., S.S. Hubbard, J.D. Redman, and A.P. Annan. 2003. Measuring soil water content with ground penetrating radar. Vadose Zone J. 2:476–491. doi:10.2136/vzj2003.4760.
Huisman, J.A., C. Sperl, W. Bouten, J.M., Verstraten. 2001. Soil water content measurements at different scales: Accuracy of time domain reflectometry and ground-penetrating radar. J. Hydrol. 245:48–58. doi:10.1016/S0022-1694(01)00336-5.
Karan, M., M. Liddell, S.M. Prober, S. Arndt, J. Beringer, M. Boer, et al. 2016. The Australia SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Sci. Total Environ. 568:1263–1274. doi:10.1016/j.scitotenv.2016.05.170.
Kerr, Y.H., P. Waldteufel, J.P. Wigneron, S. Delwart, F. Cabot, J. Boutin,et al. 2010. The SMOS Mission: New tool for monitoring key elements of the global water cycle. Proc. IEEE 98:666–687.doi:10.1109/JPROC.2010.2043032.
Klute, A. 1965. Laboratory measurement of hydraulic conductivity of saturated soil. In: C.A. Black et al., editor, Methods of soil analysis. Part 1. Physical and mineralogical properties, including statistics of measurement and sampling. Agron. Monogr. 9. ASA, Madison,WI.p.210–221.doi:10.2134/agronmonogr9.1.c13.
Lunt, I.A., S.S. Hubbard, and Y. Rubin. 2005. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol.307:254–269. doi:10.1016/j.jhydrol.2004.10.014.
Pettinelli, E., A. Di Matteo, S.E. Beaubien, E. Mattei, S.E. Lauro, A. Galli,and G. Vannaroni. 2014. A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties. J. Appl. Geophys. 101:68–76.doi:10.1016/j.jappgeo.2013.11.012.
Pettinelli, E., G. Vannaroni, B. Di Pasquo, E. Mattei, A. Di Matteo, A. De Santis, and A.P. Annan. 2007. Correlation between near-surface electromagnetic soil parameters and early-time GPR signals: An experimental study. Geophysics 72:A25–A28. doi:10.1190/1.2435171.
Robinson, D.A., C.S. Campbell, J.W. Hopmans, B.K. Hornbuckle, S.B. Jones,R. Knight, et al. 2008. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 7:358–389. doi:10.2136/vzj2007.0143.
Rucker, D.F. 2011. Inverse upscaling of hydraulic parameters during constant flux infiltration using borehole radar. Adv. Water Resour. 34:215–226. doi:10.1016/j.advwatres.2010.11.001.
Taner, M.T., F. Koehler, and R.E. Sheriff. 1979. Complex seismic trace analysis. Geophysics 44:1041–1063. doi:10.1190/1.1440994.
Van Dam, R.L. 2014. Calibration functions for estimating soil moisture from GPR dielectric constant measurements. Commun. Soil Sci. Plant Anal.45:392–413. doi:10.1080/00103624.2013.854805.
Van Dam, R.L., and W. Schlager. 2000. Identifying causes of groundpenetrating radar reflections using time-domain reflectometry and sedimentological analyses. Sedimentology 47:435–449.doi:10.1046/j.1365-3091.2000.00304.x.
van Overmeeren, R.A., S.V. Sariowan, and J.C. Gehrels. 1997. Ground penetrating radar for determining volumetric soil water content: Results of comparative measurements at two test sites. J. Hydrology 197:316–338. doi:10.1016/S0022-1694(96)03244-1.
Vereecken, H., J.A. Huisman, H. Bogena, J. Vanderborght, J.A. Vrugt, and J.W. Hopmans. 2008. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 44:W00D06. doi:10.1029/2008WR006829.