Optimizing Hand Gesture Recognition Using CNN Model Supported by Raspberry pi for Self-Service Technology
DOI: http://dx.doi.org/10.30630/joiv.7.1.1032
Abstract
Keywords
Full Text:
PDFReferences
H. El-Aawar, “INCREASING THE TRANSISTOR COUNT BY CONSTRUCTING A TWO-LAYER CRYSTAL SQUARE ON A SINGLE CHIP,†Int. J. Comput. Sci. Inf. Technol., vol. 7, no. 3, 2015, doi: 10.5121/ijcsit.2015.7308.
R. Singh, “An approach to enhance performance of Computer-Literature Review,†Int. J. Sci. Dev. Res., vol. 1, no. 5, 2016, Accessed: Jun. 30, 2022. [Online]. Available: www.ijsdr.org.
Z. Jiang, L. Zhao, S. Li, Y. Jia, and Z. Liquan, “Real-time object detection method based on improved YOLOv4-tiny,†Nov. 2020, doi: 10.48550/arxiv.2011.04244.
A. H. Rangkuti, V. H. Athala, N. F. Luthfi, S. V. Aditama, and J. M. Kerta, “Reliable of traditional cloth pattern Classification Using Convolutional Neural Network,†2021 2nd Int. Conf. Artif. Intell. Data Sci. AiDAS 2021, 2021, doi: 10.1109/AiDAS53897.2021.9574402.
E. Considine and K. Cormican, “Self-service Technology Adoption: An Analysis of Customer to Technology Interactions,†Procedia Comput. Sci., vol. 100, pp. 103–109, Jan. 2016, doi: 10.1016/J.PROCS.2016.09.129.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,†Apr. 2020, doi: 10.48550/arxiv.2004.10934.
N. F. Thejowahyono, M. V. Setiawan, S. B. Handoyo, and A. H. Rangkuti, “Hand Gesture Recognition as Signal for Help using Deep Neural Network,†Int. J. Emerg. Technol. Adv. Eng., vol. 12, no. 2, pp. 37–47, 2022, doi: 10.46338/ijetae0222_05.
C. Nyaga and R. Wario, “A Review of Sign Language Hand Gesture Recognition Algorithms,†Adv. Intell. Syst. Comput., vol. 1213 AISC, pp. 207–216, 2021, doi: 10.1007/978-3-030-51328-3_30.
V. Moysiadis et al., “An Integrated Real-Time Hand Gesture Recognition Framework for Human–Robot Interaction in Agriculture,†Appl. Sci., vol. 12, no. 16, 2022, doi: 10.3390/app12168160.
M. Peral, A. Sanfeliu, and A. Garrell, “Efficient Hand Gesture Recognition for Human-Robot Interaction,†IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 10272–10279, Oct. 2022, doi: 10.1109/LRA.2022.3193251.
Q. Gao, J. Liu, and Z. Ju, “Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human–robot interaction,†Expert Syst., vol. 38, no. 5, Aug. 2021, doi: 10.1111/EXSY.12490.
N. M. Mahmoud, H. Fouad, and A. M. Soliman, “Smart healthcare solutions using the internet of medical things for hand gesture recognition system,†Complex Intell. Syst., vol. 7, no. 3, pp. 1253–1264, Jun. 2021, doi: 10.1007/S40747-020-00194-9.
E. Spandana, M. Rajasekar, and N. Sandhya, “Care-giver alerting for bedridden patients using hand gesture recognition system,†J. Phys. Conf. Ser., vol. 1921, no. 1, 2021, doi: 10.1088/1742-6596/1921/1/012077.
S. Ameur, A. Ben Khalifa, and M. S. Bouhlel, “Hand-Gesture-Based Touchless Exploration of Medical Images with Leap Motion Controller,†Proc. 17th Int. Multi-Conference Syst. Signals Devices, SSD 2020, pp. 1116–1121, Jul. 2020, doi: 10.1109/SSD49366.2020.9364244.
N. Zengeler, T. Kopinski, and U. Handmann, “Hand gesture recognition in automotive human–machine interaction using depth cameras,†Sensors (Switzerland), vol. 19, no. 1, Jan. 2019, doi: 10.3390/S19010059.
H. Feng, G. Mu, S. Zhong, P. Zhang, and T. Yuan, “Benchmark Analysis of YOLO Performance on Edge Intelligence Devices,†Cryptography, vol. 6, no. 2, pp. 1–16, 2022, doi: 10.3390/cryptography6020016.
K. Ntzelepi, M. Ε. Filippakis, M. E. Poulou, and A. Angelakis, “PERFORMANCE EVALUATION OF YOLOV4 AND YOLOV4-TINY FOR REAL-TIME FACE-MASK DETECTION ON MOBILE DEVICES,†Int. J. Artif. Intell. Appl., vol. 13, no. 3, 2022, doi: 10.5121/ijaia.2022.13303.
C. Sager, C. Janiesch, and P. Zschech, “A survey of image labelling for computer vision applications,†J. Bus. Anal., vol. 4, no. 2, pp. 91–110, 2021, doi: 10.1080/2573234X.2021.1908861/SUPPL_FILE/TJBA_A_1908861_SM4490.DOTX.
L. Budagyan and R. Abagyan, “Weighted quality estimates in machine learning,†Bioinformatics, vol. 22, no. 21, pp. 2597–2603, 2006, doi: 10.1093/bioinformatics/btl458.
A. Anton, N. F. Nissa, A. Janiati, N. Cahya, and P. Astuti, “Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification,†Sci. J. Informatics, vol. 8, no. 1, pp. 144–153, 2021, doi: 10.15294/sji.v8i1.26888.
J. Redmon, “Darknet: Open Source Neural Networks in C.†2013, Accessed: Jun. 21, 2022. [Online]. Available: https://pjreddie.com/darknet/.
dog-qiuqiu, “dog-qiuqiu/Yolo-Fastest: yolo-fastest-v1.1.0,†Zenodo, Jul. 2021, doi: 10.5281/ZENODO.5131532.
A. H. RANGKUTI, V. H. ATHALA, E. TANUAR, and J. M. KERTA, “ENHANCING A RELIABLE TRADITIONAL CLOTHES PATTERN RETRIEVAL : CNN MODEL AND DISTANCE METRICS,†vol. 100, no. 10, pp. 3183–3193, 2022, [Online]. Available: https://scholar.google.co.id/citations?view_op=view_citation&hl=en&user=gCBD3a4AAAAJ&sortby=pubdate&citation_for_view=gCBD3a4AAAAJ:ZeXyd9-uunAC.
A. H. Rangkuti, V. H. Atthala, E. Tanuar, and J. M. Kerta, “Performance Evaluation of traditional Clothes pattern retrieval with CNN Model and Distance Matrices,†pp. 1–9, 2020.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,†Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
S. Makahaube, A. M. Sambul, and S. R. U. A. Sompie, “Implementation of Gesture Recognition Technology for Self-Education Service Platform,†J. Tek. Inform., vol. 16, no. 4, pp. 465–472, Oct. 2021, doi: 10.35793/JTI.16.4.2021.34210.
Esri, “How the Compute Accuracy For Object Detection tool works,†ArcGIS Pro, Esri. 2020, [Online]. Available: https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/how-compute-accuracy-for-object-detection-works.htm.
A. F. Gad, “Accuracy, Precision, and Recall in Deep Learning.†2020, [Online]. Available: https://blog.paperspace.com/deep-learning-metrics-precision-recall-accuracy/.
M. Naveenkumar and V. Ayyasamy, “OpenCV for Computer Vision Applications,†Proc. Natl. Conf. Big Data Cloud Comput., no. March 2015, pp. 52–56, 2016, [Online]. Available: https://www.researchgate.net/publication/301590571_OpenCV_for_Computer_Vision_Applications.
I. Martinez-Alpiste, G. Golcarenarenji, Q. Wang, · Jose, and M. Alcaraz-Calero, “Smartphone-based real-time object recognition architecture for portable and constrained systems,†J. Real-Time Image Process., vol. 19, pp. 103–115, 2022, doi: 10.1007/s11554-021-01164-1.