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Abstract—Welfare robots, as a category of robotics, seeks to improve the quality of life of the elderly and patients by availing a control 

mechanism to enable the participants to be self-dependent. This is achieved by using man-machine interfaces that manipulate certain 

external processes like feeding or communicating. This research aims to realize a man-machine interface using brainwave combined 

with object recognition applicable to patients with locked-in syndrome. The system utilizes a camera with pretrained object-detection 

system that recognizes the environment and displays the contents in an interface to solicit a choice using P300 signals. Being a camera-

based system, field of view and luminance level were identified as possible influences. We designed six experiments by adapting the 

arrangement of stimuli (triangular or horizontal) and brightness/colour levels. The results showed that the horizontal arrangement had 

better accuracy than the triangular method. Further, colour was identified as a key parameter for the successful discrimination of 

target stimuli. From the paper, the precision of discrimination can be improved by adopting a harmonized arrangement and selecting 

the appropriate saturation/brightness of the interface. 
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I. INTRODUCTION 

In the recent past, population aging has become a global 
phenomenon as fertility reduces and life expectancy increases 
[1], [2]. According to a report by the United Nations, the old-
age dependency ratio (the number of people aged 65 years and 
above relative to persons aged 20 to 64 years) will double 
globally in the next decade [3]. The aging population 
inevitably requires more medical attention and support for 
daily living through caregivers. It is clear that the demand for 
long-term care will increase further and that the lack of 
caregivers will become a significant problem in society. Thus, 
to reduce the burden of not only long-term care recipients but 
also caregivers, support for the independence of long-term 
care recipients is required. The development of welfare robots 
to support individuals who have difficulty in daily living is 
attracting attention, especially among those needing long-
term care [4]–[6]. Welfare robots are a prospective solution 
that seeks to restore the individualism and self-reliance of the 

care-receivers through mobility, feeding, and environment 
control, among others. Control mechanisms paired with 
support equipment and or communication schemes, i.e., 
human-machine interface (HMI), can handle or lessen the 
severity of the challenges experienced by the elderly and 
disabled [7]–[12]. 

In the recent past, research in the human-machine interface 
using biopotential signals targeting people with disabilities 
has gained traction for enhancing the users' quality of life and 
self-reliance and reducing the burden on the caregiver. Bio-
signals are present in any human being in varying forms. The 
commonly used biosignals as user input signals in HMI are 
electromyography (EMG) [13], electroencephalography 
(EEG) [14], [15], and electrooculography (EOG) [16]. EOG 
results from the potential difference resulting from the 
movement of the eyes, EEG from the brain's electrical activity, 
and EMG results from the contraction of muscles. EOG 
signals have been implemented in various research areas. 
EOG was applied to control mouse functions [17]. Further, 
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the EOG signal was used in wheelchair control to help 
disabled people in [18] and [19]. On the other hand, EMG has 
been used in various areas of welfare and wellness studies 
[20]–[22].  

In this study, we focus on EEG so that even people with 
severe mobility and, to an extent, are locked in the state can 
operate assistive devices. EEG is generated when two 
electrodes are attached to the human head, generating a slight 
potential between them. Background EEG has different 
characteristics depending on the frequency range and can be 
classified into four major categories: delta, theta, alpha, and 
beta waves [23]. The delta wave with a frequency of 1-3 Hz, 
Theta waves with a frequency of 4-7 Hz, Alpha waves with a 
frequency of 8-13 Hz, and Beta waves which generally refer 
to all waves with a frequency above 13 Hz.  

Naturally, electrical activity in the brain occurs in response 
to stimuli such as light and sound and movements such as 
bending and stretching of the fingers. These are called event-
related potentials (ERPs) [23]. The amplitude of ERPs is 
smaller than that of the background EEG, and to confirm the 
waveform, it is necessary to additively average the EEG data 
obtained from many trials, aligning them to the event's 
occurrence time. As the number of additive averages 
increases, the background EEG flattens, and the ERPs 
become apparent.  

ERPs have different components. Waves that are negative-
going evoked potential are called "N (negative)" e.g., in N100, 
N170, etc., and waves in the positive-going potential are 
denoted with "P (positive).", e.g., P100 and P300. They are 
distinguished by numbering them in the order of appearance 
or by attaching a standard vertex latency (in milliseconds). In 
this article, we will particularly focus on P300 ERP, which 
was first discovered by Sutton et al. [23]. P300 is often 
observed in the Oddball task, i.e., tasks requiring mental 
judgment, such as selection and understanding. P300 is 
maximal in the centre of the parietal region, and the latency 
may be extended from 300 - 900 ms. In general, the latency is 
shorter if the task is simple and longer as it is difficult and 
takes time to make a decision [24], [25]. 

Research utilizing EEG and P300 has targeted many use 
cases. The P300 has shown a promising future as an 
alternative way to build communication between humans and 
machines. Although the P300 is difficult to learn compared to 
the Thought Translation Device (TTD) [26], it has better 
accuracy than Language Support Systems (LSP) [27]. The 
usability has high effectiveness and satisfaction [28][29]. For 
quadriplegia, the interface that uses brain waves for operation 
input is a few means to convey one's intention. A keyboard 
input system, "P300 Speller," that uses the brain wave/event-
related potential, P300 has been put into practical use [30]. 
This system blinks the characters displayed on the display 
sequence and determines the character the user is paying 
attention to from the P300 appearance timing. In addition, as 
an advanced form of the P300 Speller, research is underway 
to present life-related conceptual diagrams instead of letters 
and control the robot environment according to the results 
selected by the user [31], [32].  

However, the P300 interface for environment control that 
can be customized and used for different living environments 
for each user has not yet been realized. Therefore, in this 
research, we aim to realize a P300 interface that corresponds 

to the living environment of each user by combining camera 
image analysis with deep learning. It is a system that 
recognizes a plurality of objects in the live environment, 
presents the images on display, and discriminates the object 
to be watched based on the P300 generation timing. Since the 
image presentation method greatly influences P300 induction, 
we will compare and verify the image presentation method as 
a performance verification. 

Deep learning is a general term for machine learning (ML) 
that uses a neural network model with many layers. Machine 
learning refers to technology that has evolved as a field of 
artificial intelligence since the late 1950s [33]. This study 
investigates a man-machine interface using brainwaves 
combined with object recognition. A pre-trained 
convolutional neural network (CNN), AlexNet, is used to 
recognize surrounding objects and present them to a visual 
interface in MATLAB. From the pretrained network trained 
with over 1000 objects, it is possible to customize the network 
to accurate object discrimination with a small amount of data 
and in a short time. 

II. MATERIAL AND METHOD 

Figure 1 shows the outline of the proposed system. The 
system comprises the brain-machine interface that entails an 
EEG recording device and wireless connectivity to a Personal 
computer interface. 

 

Fig. 1  Experimental setup showing brain-computer interface visualization 
system  
 

 

Fig. 2  EEG signal recording and electrode placement (a) International 10-20 
systems [18] and (b) Polymate mini AP108mB.  

A. EEG Recording 

We created a visual stimulus presentation system to induce 
EEG P300 by flashing the three recognized objects in 
different positions and representations. For EEG 
measurement, we used a wireless biometric device, Polymate 
Mini AP108mB as shown in Fig. 2(b), which has eight 
electrodes and two channels of external input operated at a 
sampling frequency of 500 Hz and a bandpass filter of 0.15-
30 Hz. The target location for electrode placement were Cz 
and Pz according to the international 10-20 method, and the 
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reference electrodes were A1 and A2 in both earlobes. The 
electrode placement and setup of the sensors are shown in Fig. 
2(a). 

B. Brain-Computer Interface 

The user is presented with the desired object to choose 
from three and the EEG signal elicited for each object is 
recorded. The visual interface comprises of a camera 
(HYUNDAI-DIGITAL-V33) connected to a PC 
(NEXTGEAR-NOTE i7941PA1, Core i7, NVIDIA GeForce 
RTX) with MATLAB software (R2020a) installed. The 
camera passes the experiment target objects to a trained ML  
model for classification in MATLAB. In the experiment, 
three types of objects were used for testing: a mouse, glasses, 
and a key chain as shown in Fig. 3. The ML model detected 
the objects and drew a bounding box and classification 
accuracy. 

 

 
Fig. 3  Target objects with ML labels utilized in the experiment. 

 

 
Fig. 4  Data recording and blinking routine 

C. Experimental Protocol 

In total, on experiment takes 150 seconds with 10 seconds 
of waiting time. Data is recorded from 300 ms before the 
stimulus presentation to 500 ms after, thus generating a total 
of 800 ms worth of data per frame, as shown in Fig. 4. The 
300 ms baseline is subtracted from target data to formulate 
artifact and baseline free data. The resulting data is average 
within the 50 repetitions of the same object. 

As shown in Fig.5, we conducted six variations of 
experiments (Expt. A to F) with three stimuli (Stimuli I to 
Stimuli III). The experiment details are described below. 

 

 
Fig. 5  Visual presentation of stimuli for Experiment A to F 

1) Experiment A: In the first experiment, the visual stimuli 
shown in Fig. 5 is displayed. In this case, the coloured dot 
blinks at a rate of 1 Hz and a duty cycle of 100 ms against a 
plain background in random order for 50 repetitions in each 
location. The brain waves of the subject watching the visual 
stimulus are recorded for further analysis. 

2) Experiment B: In this case, the camera input is fed to the 
ML model for classification. The model detects the objects in 
the scene, places a bounding box over each detection, and 
places a corresponding blinking pink cursor (dot) at the 
object's center point. The blinking stimuli are thereby overlaid 
on the detected object, as shown in Fig. 5. Similarly, the 
blinking order is random, and the subject’s EEG data is 
recorded for further analysis. The setup is hereby selected to 
identify any effects on the detection of P300 with multiple 
target objects in view. 

C 

E 

A 

D 

F 

B 
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3) Experiment C: In this case, a plain background and a 
single coloured cursor (dot) is utilized. The cursor appears in 
a random order in the middle of the screen, as shown in Fig. 
5. 

4) Experiment D: In this case, the program displays the 
images of target objects with the same blink rate and duty 
cycle as indicated in Fig. 4. The Images appear in random 
order 50 times each in the middle of the screen, as shown in 
Fig. 5. 

5) Experiment E: In experiment E, we displayed all three 
target objects as an array with a blinking bounding box for 
each object, as shown in Fig. 5. The orientation is supposed 
to investigate if there are any differences derived from how 
objects are ordered and contrasted to Expt. B. 

6) Experiment F: In this case, we altered the camera 
lighting to explore if there would be any effects on the image 
quality. The results are contrasted with those of Expt. D. 

Five participants (4 males and 1 female) took part in the 
experiment as described. In every session, a target stimulus 
(the object to be selected) was indicated. The recorded data 
were analyzed to determine how well the stimuli is discernible 
from the three stimuli presented. The analysis tabulates the 
results as either failed, uncertain, or successful discrimination. 

III. RESULT AND DISCUSSION 

A. P300 Component 

As an analysis method, the P300 component is confirmed 
from the EEG data by additive averaging processing to 
remove background EEG and other noises from the measured 
signal. From this, averaging processing for each of the 50 
visual stimuli is displayed as a 3D plot shown in Fig. 6. The 
plot shows the averaged data from the baseline of -300 ms to 
0 ms for each stimulus, which enables us to confirm the 
voltage peak independent of the baseline position. Positive 
discrimination is visually confirmed based on the amplitude 
strength of the resultant EEG signal around 300 ms, i.e., P300. 

We further confirmed the presence of P300 from the 
stimuli as shown from EEG derived from Pz and Cz electrode 
locations. In this case, the subject was instructed to select 
stimuli 2 in experiment 1. From the figures, two electrode 
locations, Cz and Pz, gave similar results. In cases with 
differences, Pz had higher resolution than Cz in the generated 
scatter plot shown in Fig. 7 (a & b). As such, the reported 
results maintain the use of Pz electrode. 

 
Fig. 6  3D plot of amplitude vs. baseline of target data 

 

 
(a) 

 
(b) 

Fig. 7  P300 signal for Expt A (Stimuli 2) on (a) Cz and (b) Pz 

B. Signal Discrimination 

Discrimination was confirmed visually from the resultant 
plots. Fig. 8 (a) to (c) shows the discrimination of different 
stimuli of subject 1. From the figure, discernible amplitudes 
are produced in target stimuli compared to the remaining 
stimuli. The visual inspection of results was grouped as either 
successful or failed discrimination. In case of a failed 
discrimination, the amplitudes of the elicited signal were 
indistinguishable as shown in Figures 9 (a) and (b). 

In this case, the subject was presented with stimuli and 
requested to select stimuli 1. In Fig 9(a), there was no 
discernible difference between stimuli 1, the target stimuli, 
and stimuli 3, non-target stimuli. In Fig 9(b), the signal is 
completely missing with mild traces of stimuli 1 & 2. The 
overall discrimination is described in Table 1. 

From this, we confirmed the detection of P300 with 
varying setups, with and without background images. Thus, 
the discrimination of single vs. multiple objects per scene did 
not affect the detection of P300. Colour, on the other hand, 
was found to affect successful discrimination, and this is as 
captured as failed discrimination. In the case of failed 
discrimination, this happened in the usage of background 
target objects. The failure was attributed to a failure in 
recognizing the blinking cursor due to colour mismatch. As 
seen, the colours of stimuli 2 and 3 are closely related to the 
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blinking cursor (red dot), thereby introducing some difficulty 
in subject 2. This is easily remedied by using objects that have 
sufficient colour contrasts and shapes. 

 
(a) 

 
(b) 
 

 
(c) 

Fig. 8  Successful discrimination of different stimuli from Subject A. (a) 
Stimuli 1, (b) Stimuli 2 and (c) Stimuli 3 

 
 

 
(a) 

 
(b) 

Fig. 9  Subject 2’s failed discrimination results of Experiment A (Stimuli 2) 
(a) Cz and (b) Pz 

TABLE I 
DISCRIMINATION OF EXPERIMENTS A TO D FOR THREE SUBJECTS  

Subject Experiment Target Cz Pz 

1 A Stim2 〇 〇 

 B Stim1 〇 〇 

 C Stim1 〇 〇 

 D Stim1 〇 〇 

2 A Stim2 〇 〇 

 B Stim1 ×(Stim2) ×(Stim2) 

 C Stim1 〇 〇 

 D Stim1 ×(Stim3) ×(Stim3) 

3 A Stim2 〇 〇 

 B Stim1 〇 〇 

 C Stim1 〇 〇 

 D Stim1 〇 〇 

〇= success  ×=failure 
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(a) 

 
(b) 

 

Fig. 10  Subject 5 comparison of discrimination stimuli 3 (a) Experiment B 
and (b) Experiment E. 

 
TABLE II 

DISCRIMINATION OF EXPERIMENTS E AND F FOR FIVE SUBJECTS  

Subject Experimen

t 

Target Cz Pz 

1 A Stim2 〇 〇 

 B Stim1 〇 〇 

 C Stim1 〇 〇 

 D Stim1 〇 〇 

2 A Stim2 〇 〇 

 B Stim1 ×(Stim2) ×(Stim2) 

 C Stim1 〇 〇 

 D Stim1 ×(Stim3) ×(Stim3) 

3 A Stim2 〇 〇 

 B Stim1 〇 〇 

 C Stim1 〇 〇 

 D Stim1 〇 〇 

 
If the position is set, it can be said that P300 discrimination 

is possible using the camera image with high probability. The 
problem is that depending on the arrangement of the object, 
there are individual differences in the occurrence of P300 due 
to the human visual field, and in the case of visual stimuli to 
the same location, it may be confused with non-target stimuli. 
We conducted experiments E and F to investigate the effects 

of object positioning and colour variation. In E, we placed 
three objects in a horizontal row and contrasted this to 
experiment A with triangularly placed objects. In F, we 
investigate variation in color by suppressing the brightness of 
the colors of conspicuous objects. From the figure, the 
presentation of stimuli in the second instance Fig 10(b) was 
more discernible than the first experiment in Fig 10(a). 

Table 2 concludes the experiments E and F from five 
subjects. Each subject had two random stimuli in each 
experiment. The results show that the Pz is sensitive to the 
layout of stimuli and detection on Cz has no effect with the 
light contrast. 

IV. CONCLUSIONS 

This research recognizes the surrounding environment 
using a USB camera and object recognition by deep learning. 
We create a visual stimulus presentation system for P300 
induction from the camera image to customize it according to 
each user's life to realize a possible P300 interface. In 
Experiment A, P300 was generated by presenting visual 
stimuli using camera images of objects existing in the living 
environment and the method of presenting visual stimuli to 
the same place for an interface that can be used even by people 
who cannot even move their eyes. It was verified whether it 
was possible to confirm. As a result, both are possible, but it 
is difficult to distinguish the objects above and below due to 
the influence of the range of the human field of view, 
especially when presenting to the same place when there is a 
remarkably bright object. It was confirmed that attention was 
directed, and discrimination was affected. Therefore, in 
Experiment B, a presentation method in which objects are 
rearranged in a horizontal row to solve the visual field 
problem and a presentation method in which the saturation 
and brightness of all objects are reduced to solve the influence 
of the presence of bright objects. The experiment was 
conducted in. As a result, we succeeded in improving the 
object discrimination accuracy by P300 compared with the 
discrimination result of Experiment A. In other words, as a 
customizable interface that combines object recognition with 
deep learning, if it is a method of presenting an object in a 
horizontal row or presenting an image of an object with 
uniform saturation and brightness, P300 discrimination with 
high accuracy has been shown to be possible. In the future, 
robot control will be considered as the interface's output. If a 
robot that can select the necessary object from multiple 
objects and grasp and move the identified object is realized, it 
will help the quadriplegic person to lead an independent life.  
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