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Abstract—Automatic Dependent Surveillance-Broadcast (ADS-B) is an aircraft backup radar device that transmits aircraft sensor 

information via radio frequency. This data can be used to detect aircraft changes that occur significantly or abnormally (anomaly). 

Anomaly detection in this study aims to reduce and prevent flight accidents by analyzing abnormal data on aircraft flights using the 

Deep Learning (DL) model. Bidirectional LSTM (Bi-LSTM) and Bidirectional GRU (Bi-GRU) models are proposed as DL models 

which are implemented on ADS-B data using data mining methods. The data is generated from the ADS-B device that records the plane 

crash incident and is stored on the Flightradar24 community server. Data containing sensor changes from anomalous aircraft 

movements are studied for predictability on other flight data. The class breakdown is divided into two, anomaly and normal, based on 

information on the time span of anomaly occurrences in the accident investigation report of each aircraft using the sliding window 

technique in the data mining methodology. In evaluation, the confusion matrix measurement method is used to predict predictive 

analysis of the tested data. The results of the model evaluation performance show that the Bi-LSTM proposed in this study has the best 

accuracy of 99.44% and the f1-score of 99.51% is slightly superior to the Bi-GRU model. The model in this study can be applied in the 

ADS-B device to detect aircraft movement anomalies and as material for reviewing technicians in periodic maintenance and measuring 

the accuracy of the ADS-B device used as a backup radar.  
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I. INTRODUCTION 

The absence of a decrease in aviation accidents shows that 

flight supervision in Indonesia is still less than optimal since 

article 91 of the safety regulations on general operations and 

flight rules was made in 2017 [1]. For this reason, applying a 

technique to reduce and prevent aviation accidents is 

necessary for analyzing abnormal data on aircraft flight 

movements. Anomalies often form outliers, abnormalities, 
rare occurrences, or deviations of data points or styles that do 

not conform to expected behavior [2]. Some anomalies were 

found in ADS-B by transmitting manipulated data [3] which 

forms the pattern of his attack behavior [4] through ADS-B 

protocol security [5] and categorized as cyber-attacks [6]. 

Another anomaly occurs due to a mismatch of the aircraft's 

distance with a predetermined trajectory [7], [8]. So that, 

cauterization is widely used to predict the farthest distance, 

which is considered an anomaly [9], [10]. Significant changes 

in ADS-B data information that occur frequently and can 

affect aircraft eligibility are known as sensor anomalies [11]. 

Usually, sensor anomaly detection is used to determine the 
feasibility of an aircraft by testing it on an aircraft prototype 

[12], [13]. Other research on detecting aircraft flight 

movement anomaly sensors has been carried out on the ADS-

B X-plane game data simulation [14]. 

This study focuses on aircraft movement anomalies based 

on the analysis of significant changes in the ADS-B sensor 

data using DL. The limitations of previous research are only 

detecting movement anomalies based on ADS-B sensor data 

in prototypes and simulation games. This study implemented 

anomaly detection on real ADS-B data using a community 

server from Flightradar24. Flightradar24 is a global aviation 
digital map service that provides real-time aircraft sensor data 

worldwide [15]. In addition, in understanding the sequence of 

anomaly data that occurs in airplane accidents and 

minimizing bias, labeling is carried out using the sliding 

windows technique from the sequence of data on accident 

investigation reports for each aircraft. The model used is the 

[14] model, namely LSTM and GRU, which is compared with 

the proposed model, namely Bi-LSTM and Bi-GRU. All 

models are evaluated with a confusion matrix to determine the 
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best and most optimal model. Thus, this research can 

contribute to the aviation sector's feasibility of ADS-B 

devices monitoring air traffic. In addition, the detected 

anomaly data can be used as a review recommendation for 

flight technicians and officers in making decisions to reduce 

and prevent aviation accidents. 

II. MATERIALS AND METHOD 

Based on the type of anomaly detection performed using 

ADS-B data, the literature review in this study is divided into 

three parts: cyber-attack anomaly detection, aircraft trajectory 

anomaly detection, and sensor anomaly detection. 

In the detection of cyber-attack anomalies, research [3] 

used the LSTM encoder to predict the number of anomalies 

manipulated by injecting ADS-B data which resulted in a 

false alarm warning error of about 4.5%. Anomaly detection 

is carried out based on the Generative Adversarial Networks 

(DAD-GAN) model to classify attack behavior and 

distinguish standard data from anomalous data [4]. Constant 
deviation injection attacks were detected with 98.2% 

accuracy, 99.3% random deviation injection attacks were 

detected, and deviation injection attacks increased by 90.6%. 

Abnormal classifications that have the potential to 

compromise the security of the ADS-B protocol have been 

detected, such as interference, modification, and injection [5] 

using the LSTM model with an accuracy of f1-score random 

noise detection at 0.9548, fixed offset+ at 0.9830, fixed offset 

- at 0.9834, route offset at 0.9885, altitude offset+ at 0.8928, 

altitude offset- at 0.9200, speed offset+ at 0.8853, speed 

offset- at 0.6470 at 0.5052, and climb rate at 0.2969. 

Cyberattacks can be adapted in [6] to create a fake message 
anomaly detection system on the injected ADS-B data. The 

superior LSTM model has a constant deviation attack 

percentage of 93.96%, flight replacement attacks of 99.71%, 

data replay attacks of 96.52%, and DoS attacks of 99.0%. 

In detecting aircraft trajectory anomalies, Pusadan et al. [7] 

used the Agglomerative Hierarchical Clustering (AHC) 

model to detect anomalies in the plane trajectory where the 

farthest distance from the prediction is referred to as an 

anomaly. Their study showed a cophenetic correlation 

coefficient (c) of 0.691 c 0.974. Pusadan et al. [8] continued 

previous research to detect anomalies based on cluster 
segment predictions using the DBSCAN and K-Means 

models with a Dunn index value of 0.645 and a Silhouette 

index value of 0.89. Based on previous research, Pusadan et 

al. [9] carried out deeper anomaly detection based on segment 

formation and testing process from cluster distance, resulting 

in 96% K-NN and K-Means accuracy and 93% SVM. The 

detection of large and scattered aircraft trajectories in the 

ADS-B flight data is presented in the study [10] with the 

DBSCAN model to check for odd outliers resulting in 95% 

detection accuracy. 

Furthermore, the anomaly detection sensor classifies the 
data sent by the ADS-B transponder using phase signal 

patterns and Neural Networks with a message detection 

accuracy of 64% and a secret field of 69% [11]. ADS-B is also 

used in testing the COMAC C919 aircraft on 19 sensor 

attributes using the LSTM model, which predicts a Root Mean 

Square Error (RMSE) value of 0.003 [12]. Then, research [13] 

used an optimized LSTM model to detect anomalies that 

occurred in the COMAC airplane test flight, which increased 

the accuracy of the prediction model up to 38% of the RMSE 

calculation analysis. Nanduri & Sherry [14] used 478 training 

data and 22 test data obtained from X-plane simulation data. 

22 test data is divided into 11 normal data and 11 anomalous 

data. Eleven anomalous data consists of 11 different 

anomalies, so there is only one data for a certain type of 

anomaly. Next, they tried several LSTM, GRU, MKAD, and 

Autoencoder models to test for 11 anomalies. Although the 

LSTM and GRU models are relatively acceptable, they 

experiment with minimal anomalous data from the simulation 

data.  
 

 
Fig. 1  Data mining research method process 

 

This study proposes several LSTM and GRU models 

compared to the Bi-LSTM and Bi-GRU models to detect 

aircraft movement anomalies. Previous research has 

limitations, namely only detecting movement anomalies 

based on ADS-B sensor data on prototypes and simulation 

games. This study implemented anomaly detection on real 

ADS-B data using a community server from Flightradar24 

from real plane crash data. Fig. 1 shows the main stages in the 

process of data mining research methodology.  
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Fig. 1 indicates 5-stages Cross-Industry Standard Process 

for Data Mining cycle (CRISP-DM) [16], starting from 

business understanding to reporting the performance 

evaluation test of the DL model used. This study aims to 

analyze and validate the method that has provided the best 

accurate results to be applied and carried out predictive testing 

on real ADS-B data with the following stages. 

A. Business Understanding 

The flight accident of the Sriwijaya Air SJ 182 aircraft, 

which occurred in early 2021 on January 9, was a sign of an 

emergency for aircraft maintenance. The US Federal Aviation 

Administration (FAA), on July 24, 2020, issued an emergency 

statement to airlines that own Boeing 737 aircraft to inspect 

their planes that have been parked for more than seven days. 

The reason is that it has not been used during the COVID-19 

pandemic, which can cause corrosion. It is understood that the 

SJ 182 had been parked for nine months and was already 

operating before the crash. Therefore, we need a model that 

can analyze and predict the presence of anomalies in the ADS-
B device as information to be validated. 

B. Data Acquisition and Understanding 

The data was collected from aircraft accident investigation 

reports from 2016 to 2021. The data is captured by various 

ADS-B who are scattered and joined in the Flightradar24 

community, where the information is stored on the 

community server. In this study, 14 aircraft crash data which 

can be seen in Table I were analyzed based on aircraft 

accident investigation reports determining anomalies and 
regular classes as ground truth using the sliding window 

technique. 

TABLE I 

FLIGHTRADAR24 DATASETS 

No Accident Date Aircraft Name 

1 January 9, 2021 Sriwijaya Air SJ182 

2 May 22, 2020 Pakistan International Airlines 

PK8303 

3 January 26, 2020 S-76 Kobe Bryant Helicopter 

4 May 5, 2019 Aeroflot 1492 

5 March 10, 2019 Ethiopian Airlines 302 

6 February 23, 2019 Atlas Air 5Y3591 

7 October 29, 2018 Lion Air JT610 

8 April 17, 2018 Southwest Airlines 1380 

9 February 18, 2018 Iran Aseman Airlines 3704 

10 February 11, 2018 Saratov Airlines 703 

11 September 30, 2017 Air France AF66 

12 January 15, 2017 MyCargo ACT Airlines TK6491 

13 August 3, 2016 Emirates 521 

14 March 19, 2016 FlyDubai 981 

 

There are seven features or attributes used: latitude, 

longitude, altitude, ground speed (speed), heading, vertical 
speed (vspeed), and milliseconds. The millisecond attribute is 

obtained from the conversion of the timestamp data. While 

one feature, namely ICAO/hex is not included because the 

feature is only an aircraft identification code. The description 

and explanation of the attributes of the research dataset can be 

seen in Table II. 

 

 

 

TABLE II 

FLIGHTRADAR24 DATASETS ATTRIBUTES 

No Attribute 

Name 

Attribute 

Type 

Description 

1 latitude Numeric Position of aircraft latitude in 

decimal degrees with a range of -90 

to 90. 

2 longitude Numeric Position of aircraft longitude in 

decimal degrees with a range of -180 

to 180. 

3 altitude Numeric The aircraft's altitude is in feet, with 

a range of 0 to 43100 feet for 

commercial aircraft. 

4 speed Numeric Aircraft ground speed in knots 

ranges from 0 to 400 knots for 

commercial aircraft. 

5 heading Numeric The direction of the plane's 

longitudinal motion is seen from the 

nose of the aircraft in degrees from 

the north. 

6 vspeed Numeric The speed of an airplane moving 

vertically uphill or downhill in feet 

per minute. 

7 millisecond Ordinal Time/duration of the aircraft made 

the flight converted to milliseconds. 

C. Data Preparation 

Five subprocesses are carried out at the data preparation 

stage with the following explanation. 

 Data cleaning is the stage of removing attributes that 

have empty values and NaN. 

 Due to a large amount of missing data and having no 

value, an imputation technique is needed. The linear 

interpolation imputation technique is used to fill in 
missing data values between rows or data series [17]. 

 Remove duplicate data with the same value on each 

attribute. 

 As seen in Table III, data are labeled as an anomaly or 

normal according to the time series of each aircraft's 

crash investigation report. 

TABLE III 

DATASETS LABELING BASED ON AIRCRAFT ACCIDENT INVESTIGATION 

REPORT 

No Aircraft Name Callsign 
Label Data 

Normal Anomaly 

1 Sriwijaya Air SJ182 SJ182 1,125 68 

2 
Pakistan International 

Airlines PK8303 
PK8303 0 1,097 

3 
S-76 Kobe Bryant 

Helicopter 
N72EX 4,632 136 

4 Aeroflot 1492 SU1492 1,355 3,529 

5 Ethiopian Airlines 302 ET302 0 101 

6 Atlas Air 5Y3591 5Y3591 13,435 189 

7 Lion Air JT610 JT610 0 680 

8 Southwest Airlines 1380 WN1380 267 217 

9 
Iran Aseman Airlines 

3704 
EP3704 0 3,328 

10 Saratov Airlines 703 SOV703 0 1,520 

11 Air France AF66 AFR066 261 176 

12 
MyCargo ACT Airlines 

TK6491 
TK6491 0 232 

13 Emirates 521 UAE521 626 3,421 

14 FlyDubai 981 FDB981 3,822 20,382 

  
Total 

Data 
25,523 35,076 

 
 The sliding window in this process, as shown in Fig. 2, 

is described as an algorithm that controls data based on 

a sequence to fit various data into a single standard to 

avoid duplication and data loss [18]. 
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Fig. 2  Sliding window process 
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The meaning of the sliding window process in Fig. 2 is the 

sliding window parameter set to 20,000 ms (20 sec) with a 

step size of 5,000 ms (5 sec). Next, threshold parameters are 

installed in each segment. Ten data is minimum to be one 

segment. If there are less than 10 data in a segment, the data 

and segment are deleted. After that, the data from each stored 

segment will be carried out, and the sample is taken by 

random sampling (taken at random and adjusted in one 

segment with ten sample data). The last five sample data are 

taken in each segment, and a vote is taken to label all the 

segment data. Finally, data on all segments are combined. For 
each duplicated sample, data adjustments are made by 

selecting the label that appears most often and will be the 

primary data. From this algorithm sliding window process, it 

is expected that every two seconds (2,000 ms), there is at least 

one sample of data.  

So that from the total anomaly data as much as 35,076 and 

normal data as much as 25,523 in Table III there was a change 

in the decrease in data after using the sliding window as 

shown in Table IV. Data with a dash symbol (-) is defined as 

insufficient data during the sliding window algorithm process 

so that the three datasets on the callsign aircraft ET302, 
WN1380, and AFR066 are not used in the next process. 

 

 

TABLE IV 

DATASETS LABELING BASED ON AIRCRAFT ACCIDENT INVESTIGATION 

REPORT AND IMPLEMENTATION SLIDING WINDOW 

No Aircraft Name Callsign 
Label Data 

Normal Anomaly 

1 Sriwijaya Air SJ182 SJ182 1,049 74 

2 
Pakistan International 

Airlines PK8303 
PK8303 0 761 

3 
S-76 Kobe Bryant 

Helicopter 
N72EX 4,702 55 

4 Aeroflot 1492 SU1492 1,236 3,558 

5 Ethiopian Airlines 302 ET302 - - 

6 Atlas Air 5Y3591 5Y3591 13,239 80 

7 Lion Air JT610 JT610 0 679 

8 Southwest Airlines 1380 WN1380 - - 

9 Iran Aseman Airlines 3704 EP3704 0 3,281 

10 Saratov Airlines 703 SOV703 0 1,310 

11 Air France AF66 AFR066 - - 

12 
MyCargo ACT Airlines 

TK6491 
TK6491 0 213 

13 Emirates 521 UAE521 590 3,305 

14 FlyDubai 981 FDB981 3,821 20,355 

  
Total 

Data 
24,637 33,671 

D. Modeling 

All the best models in previous studies, namely LSTM and 

GRU [12], [14] as well as the proposed model Bi-LSTM and 

Bi-GRU were used with the architectural design as follows. 

 
Fig. 3  Proposed deep learning model architecture 

 

The DL architecture model proposed in this study, as 

shown in Figure 3 uses seven attributes at the input layer in 

vector order. First, the length of the vector is adjusted to the 
size of the attribute per row. The features used are altitude, 

heading, latitude, longitude, vertical speed, duration, and 

movement speed. Then it is determined that the sequence 

length or timestep is four neurons/units that are part of the 

hyperparameter in the number of rows. After the attributes are 
entered into the input layer, the data will be forwarded to a 

hidden layer (recurrent layer) using several models as 

825



experiments. The Bidirectional model has a different layer 

from the LSTM and GRU models because the recurrent layer 

in Bidirectional works in both forward and backward 

directions [19]. Every model determines seven neurons/unit 

dimensions as the number of hidden units. The hidden layer 

contains data that is processed using a fully connected layer 

with several hyperparameters, four neurons/unit. After that, 

the classification output in the output layer (y) is adjusted to 

the results with one neuron/unit or class, namely anomaly and 

normal. 

E. Evaluation 

At the evaluation stage, there are 58,308 data lines with 

24,637 normal data and 33,671 anomaly data from 11 aircraft 

datasets used. Then, the dataset is broken down into training, 

validation, and test data. The training data uses a percentage 

of 60%, the percentage of validation data is 20%, and the test 

data is 20%. Next, the training data is used to train the model. 

Data validation is then used for hyperparameter adjustment 

according to Table V. Finally, test data is used to measure 
performance. The results of the training and validation phases 

are reported graphically as training loss, validation loss, 

training accuracy, and validation accuracy. 

TABLE V 

HYPERPARAMETER SUMMARY 

No Hyperparameter Alternative Value 

1 Input layer Seven attributes in the 
form of a sequence vector 

2 Recurrent layer Hidden unit with seven 
dimensions 

3 Fully connected layer Neuron/unit (4) 

4 Output layer Neuron/unit (1) 

5 Sequence/timesteps 4 

6 Epochs 300 with EarlyStops 
function 

7 Batch size 32 and 64 

8 Loss function binary_crossentropy 

9 Optimizer Adam and SGD 

10 Learning rate 0.001 and 0.0001 

 

After the data is trained, the new data is entered into the 

validation data for the evaluation process using the 

hyperparameters set in Table V. For example, in the early stop 

or early stop function, validation accuracy training is 

monitored using patience, set to a value of 10 (patience = 10). 
The patience parameter will stop training when there is no 

increase in the validation accuracy value in the iteration epoch. 

Finally, the data is tested to evaluate the performance of the 

model from the output layer. In determining its performance, 

it is necessary to compare the classification of test data with 

its basic truth. Therefore, the comparison of the results of the 

classification and testing of ground truth data is tabulated into 

a confusion matrix, illustrated in Fig. 4 [20]. 

 

 
Fig. 4  Confusion matrix 

 

The results are analyzed between certain numbers and 

basic truth numbers using a confusion matrix [21]. The 

confusion matrix calculation is divided into four stages: 
accuracy, precision, recall, and f1-score, which can be 

explained as the following equation. 

 �������� �
��	�


��	��	�
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 (1) 

Equation 1 is used to consider the classification accuracy 

in measuring the prediction performance of the data. 

 ��
������ �
��

��	��
 (2) 

In addition to accuracy, the results need to be analyzed 
further to strengthen the performance measure of data using 

equation 2. Precision is a technique to measure the level of the 

positive observation ratio that is predicted correctly. 

 �
���� �
��

��	�

 (3) 

The next step is to measure the recall value using equation 

3, where the ratio of positive observations is correctly 

predicted to all statements in the actual class. 

 �1 � ����
 � 2 
���������  ��� !!

���������	��� !!
 (4) 

From all the equation techniques in the confusion matrix, 

measurements using the f1-score in equation 4 will produce a 

balanced value performance between calculating the average 

precision and recall. 

III. RESULTS AND DISCUSSION 

The four models namely LSTM, GRU, Bi-LSTM, and Bi-

GRU were evaluated for train and validation using the 

hyperparameters tuning shown in Table V. Each model was 

carried out several experiments to find the best model from 

the results of the training performance evaluation and 

validation as well as a comparison of the results obtained to 

be carried out in the evaluation of the test. The total data for 

the 11 ADSB datasets is 58,308 rows of data divided into 

training, validation, and test data. The percentages used are 

60% for training data of 34,981 data, 20% for validation data 

of 11,661 data, and 20% for test data of 11,661 data. Training 
data is used to train the model. Then the validation data is used 

to optimize the hyperparameters. Finally, test data are used to 

measure performance. The training and validation phases are 

reported in the form of graphs of training loss, validation loss, 

training accuracy, and validation accuracy.  
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Fig. 5  The best evaluation model train (a) and validation (b) comparison 

 

The training and validation performance results in a 

comparison visualization can be seen in Fig. 5, describing 

each model's uses early stopping, which looks at changes in 

validation performance. This function will stop the training of 
each model when there is no performance improvement and 

loss reduction [22]. The best results of the train and validation 

of the complete model visualization evaluation are presented 

in Table VI. 

TABLE VI 
THE BEST TRAIN AND VALIDATION RESULT 

Model Train Validation 

Loss Accuracy Val Loss Val 

accuracy 

LSTM 2.85% 99.06% 2.48% 99.20% 
GRU 2.97% 98.95% 2.81% 98.93% 

Bi-

LSTM 

1.76% 99.38% 1.50% 99.49% 

Bi-
GRU 

2.64% 99.15% 2.41% 99.31% 

 

The best training and validation place the Bi-LSTM model 

in the first position, followed by Bi-GRU in the second 
position, LSTM in the third position, and the GRU in the last 

position. Then performed a performance evaluation with the 

confusion matrix presented in Table VII. 

TABLE VII 
THE BEST TESTING RESULT 

Model Testing (Confusion Matrix) 

Accuracy Precision Recall F1-score 

LSTM 99.29% 99.68% 99.09% 99.38% 
GRU 98.79% 98.41% 99.5% 98.95% 

Bi-

LSTM 

99.44% 99.48% 99.55% 99.51% 

Bi-
GRU 

99.23% 99.39% 99.28% 99.33% 

Table VII describes the best performance evaluation 

obtained by the proposed model: Bi-LSTM, with an overall 

accuracy of 99.44% and an f1-score of 99.51%. Second place 

was acquired by LSTM model, which rises to second place 
with an overall accuracy of 99.29% and an f1-score of 99.38%. 

The difference between the Bi-GRU model and the LSTM has 

slight difference, where the overall accuracy obtained is 

99.23%, and the f1-score is 99.33% placing the Bi-GRU 

model in third place. GRU occupies the fourth position with 

an overall accuracy of 98.79% and an f1-score of 98.95%.  
 

 

Fig. 6  Predicted class result Bi-LSTM model 

 

In Figure 6, the Bi-LSTM model can predict optimally, 

where 11,661 test data evaluated resulted in a 

misclassification of 35 data from normal data to anomaly data 
and 30 from anomaly data to normal data. 

IV. CONCLUSION 

This study proposed the DL models to detect aircraft flight 

movement anomalies using ADS-B data. Various models 

have been trained, evaluated, and tested using ADS-B data. 
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The Bi-LSTM model has the best performance evaluation 

results, with an overall accuracy of 99.44% and an f1-score of 

99.51%. Which of these models performs better than the 

results of each of the previous models, where the dataset used 

is simpler than the data used in this study. The results of this 

study are promising to be applied to the aviation industry 

because the ADS-B device can be used as a backup radar in 

monitoring and detecting aircraft movement anomalies. In 

addition, for future research, the model can be implemented 

on ADS-B monitoring server to generate reports as material 

for aircraft technician studies to make decisions about the 
feasibility of the aircraft on the next flight in preventing and 

reducing the rate of aircraft accidents. The dataset in this 

study can be accessed for future comparison studies on the 

Flightradar24 community server. 
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