
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Development of Programming Log Collection System Requirements
Using Interface Requirement Analysis Techniques

Huijae Park a, Wongyu Lee b, Jamee Kim c,*
a Department of Computer Science and Engineering, Graduate School, Korea University, Seoul, Republic of Korea

b Department of Computer Science and Engineering, College of Informatics, Korea University, Seoul, Republic of Korea
c Major of Computer Science Education, Graduate School of Education, Korea University, Seoul, Republic of Korea

Corresponding author: *celine@korea.ac.kr

Abstract—As software affects each industry, companies are increasingly trying to recruit talent. Despite the interest and investment of

companies, it is difficult to find talents with technical expertise and specialization in a specific field at the same time. As a result,

companies have begun to discover talents who can overcome their lack of expertise through talents with high problem-solving skills.

Countries worldwide that felt the need to discover competitive talents began to show changes in education for nurturing talents. In

particular, the results of the expansion and increase of programming education that cultivate problem-solving ability have begun to be

seen. However, programming education is different from existing education, and many learners have difficulties with the introductory

process due to the difficult debugging process. In order to analyze the difficulties of introductory learners and support their learning,

a system that can collect data from the programming process and analyze behavior types is required. There are several methods for

deriving the system requirements, but the interface requirements analysis method was selected in this study. We approached how to

process data in the system by deriving the type of data that the system administrator wants to collect. This study laid the foundation

for a system that can analyze the programming process of introductory learners by deriving the functional and non-functional

requirements required by the data collection system through interface requirements analysis.

Keywords— Computer education; log collection; requirements; scratch.

Manuscript received 25 Oct. 2021; revised 29 Dec. 2021; accepted 11 Jan. 2022. Date of publication 31 May 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION
After the 4th Industrial Revolution, as the importance of

artificial intelligence and software emerged and the impact of
technology on society became stronger, various fields of the
modern industry began to enter the direct and indirect
influence of software [1]–[3]. Nevertheless, the complexity or
importance of the software in areas where software was
developed and used, the application software began to be
produced, reflecting the knowledge and programming skills
of the field [2]. The recent workforce market has led more
companies to invest more in the workforce market than in the
past, with more companies demanding professional skills in
the industry that require software and those who have the
skills to develop software simultaneously [1], [4]. In this trend
in society, it became difficult to find talented people who
knew various fields of knowledge, and companies began to
demand talented people with high problem-solving skills [1],
[5].

The phenomenon of a society that seeks talent with
problem-solving skills can be understood as a phenomenon of
a generation that needs people skilled in algorithms and
computer programming [1]. The subject to develop problem-
solving skills is the information computing subject, which is
consistent with the core competencies of the information
computing subject [6]. In order to get high scores in
information computing subjects, students sometimes go
through the process of developing better algorithms and
programming them at high speed. As a result, it can be a good
achievement for students, but it does not correspond to the
competence of information computing subjects. The
information computing subject aims at fostering computing
thinking and problem-solving skills through programming
education and cultivating a cooperative attitude [7], [8]

The evaluation method of education is shifting from
outcome evaluation to process-oriented evaluation [9].
However, current programming evaluation tools only
evaluate the level of requesting students' programming results
and compare learning results to correct answer results. Due to

162

JOIV : Int. J. Inform. Visualization, 6(1-2): Data Visualization, Modeling, and Representation - May 2022 162-167

changes in society's perception, the target age group of
programming education is getting lower, and education that
makes programming results the same as correct answer results
causes rejection of programming education.[10], [11] This
educational direction means a different trend from the trend
of developing problem-solving skills through programming
education, and rather, learners feel a great burden in the
process of learning programming. This is because the
environment for programming is different from the existing
method of studying literature or mathematics. Programming
education in terms of opening a book, reading a book, holding
a pencil, and debugging while holding a keyboard and looking
at a monitor feels unfamiliar. Introductory programming
learners who have encountered learning in an unfamiliar
environment feel various difficulties in the trial-and-error
process of solving problems [12].

Various tools to solve the visual monotony and difficult
debugging process, which are one of the difficulties of
introductory programming learners, began to appear. A block
programming language called Scratch was created by MIT
based on Google's Blockly library [13], [14], or a
programming web editor that micro: bit puts on its website
[16]. These programming tools shorten the debugging process
by quickly showing the results of the programming process.
The reduction in debugging time offsets the boring or
complicated process caused by trial and error in programming
[12], [15], [16].

This paper conducted a study to derive the requirements of
the programming log collection system. Based on the block
programming environment, lowering the entry barrier to
programming and lowering the rejection of learning itself will
enable collecting data from learners' pure programming
processes without rejection. In order to proceed with this
study, it is necessary to examine the existing research on how
the existing log collection systems constructed the
programming system. Programming log collection means the
collection of learning processes in a broad sense. Therefore,
we comprehensively investigated the development of tools for
collecting logs and the research for collecting programming
learning processes.

Bennedsen and Caspersen [17] videotaped the
programming process to solve the difficulties learners face.
Although the method conducted by this study is fundamental,
it has been shown that the programming process enables
learners to support learning difficulties. This study
demonstrated the need to develop a flexible system that can

solve this problem rather than recording and analyzing daily
learners. This method may seem inefficient, but it has been
maintained for a relatively long time because it is easy to
access. This phenomenon is also a counterexample of the
difficulty of developing a programming log collection tool
[18], [19].

Boisvert [20] introduced an interface in the programming
process, such as the existing screen recording tool Viewlets,
to solve the analysis of the programming process through
video analysis methods or learners' interviews. Boisvert
performed process visualization by enhancing the ability to
annotate during the screen recording of Viewlets as an
interactive function. This study set the stage for establishing
an interface for programming visualization, but there was a
limitation in that it was difficult to use it as a tool for
programming beginners due to the restriction of a text-based
programming environment [21].

D. Filva and four others tracked mouse trajectories and
events that occurred while learners programmed in the scratch
editor. The learner's programming process was tracked by
applying the motion algorithm of the UX tool, which tracks
the user's mouse trajectory and represents it as a heatmap.
This resulted in visualization of the programming process and
representation but failed to track results such as what the
learner did [22].

This study derives requirements for introductory
programming learners to collect the process of programming.
It is necessary to define the learner's behavior type to visualize
the programming process. We also derive the functional
requirements of the interface for collecting and storing
programming log data.

II. MATERIALS AND METHOD

A. Raw Data Analysis
The system that this study ultimately aims to develop is to

collect logs generated in the programming learning process to
understand what learners do not understand properly and to
feedback on this process to teachers. In the case of
introductory programming learners in this process, most of
them encounter the programming environment with scratches,
so it is necessary to check the data generated during the
programming process of scratches.

Scratch's programming data can be checked through a
simple process [23]. Download the scratch project file as
shown in the leftmost file in Fig. 1.

Fig. 1 The process of opening the files that make up the project

163

Changing the file extension to 7Z and then unzipping it
displays the list of files contained in the project. The sprite
and background image files used in the project could be
downloaded in SVG format, and the sound source could be
used in WAV format. In addition, there is one JSON-type file,
which can be seen as a file containing the relationship
between the code and the object.

Fig. 2 The block code of the project is an example.

It is assumed that a scratch project of Fig. 3 consists of one

block code, as shown in Fig. 2. When checking the JSON file
through Fig. 1, it can be confirmed that this project file
consists of the code as shown in Fig. 4.

Fig. 3 Sprite screen for example project

Fig. 4 JSON scripts for example projects

B. Data Structure and Definition of Action Type

The purpose of this study is to derive the system's
requirements to be used by introductory programming
learners. It is necessary to know which system interfaces
interact for the requirements to be derived in this study. The
system flow defined in this study was shown in Fig. 5 in the
form of learners manipulate the client, and the data is
processed in the server and stored in the database.

Fig. 5 System Configuration Interface

An interface requirement analysis method, one of the

methods for deriving requirements, is an analysis method for
classifying and specifying functional and non-functional
requirements in a requirement specification [24]. As shown in
Fig. 5, the system flow confirmed that the data generated
through the learner's input was as shown in Fig. 4. Through
this data, it is necessary to define what outcome the learner's
data will be represented as from the system administrator's

perspective [25].
First, the data structure was examined for parsing of Raw

Data. The system to derive the requirements in this study
compares the data generated when learners generate
programming events to extract what the changed code is. The
user can identify what behavior the learner has done through
this extracted code. For this process to be possible, it is
necessary to know the structure of the code in Fig.4. As a
result of the researchers' analysis, the code of Fig. 4 had the
same structure as Fig. 6 [26].

Fig. 6 JSON Script Configuration Diagram

If Fig. 6 is the code of Fig. 4, the center area highlighted

with a red border is the script area corresponding to sprite 1
(cat) in Fig. 3. Since the code of Sprite 1 is edited when the
Scratch editor is opened for the first time, the area
corresponding to the colored rectangle is the code in Fig. 2. If
there is a change in the code in this colored square area, the
JSON script will change, and the system will also be able to
recognize this change through parsing of the script.

Second, now that we understand the form of data, we need
to define how to use the data. The data generated by the

164

learner's behavior should be defined in which behavior type
to classify. In Scratch editing, there are many actions that
learners can take. Among them, the types of actions that can
occur in editing the block code are limited. Action 1, adding
a block; action 2, deleting a block; action 3, copying the block;
action 4, moving the block; action 5, changing the order of the
block; action 6, changing the value inside the block. It consists
of the action to do and action 7 to do nothing. In addition, if
unexpected cases that require exception handling are
considered, the number of possible cases is divided into a total
of 8 types.

According to the intention of the programming log
collection system, if expanding and checking the object
editing case as well as the programming log, the learner's
behavior type can be defined differently. As the Scratch
programming process can be seen from the Scratch website
community, many sprite users complete the project by the
object editing process. We spend more than just programming
time editing projects. Apart from code editing, 8 and 4 types
of actions can occur when editing sprites or sound source files,
respectively.

The types of actions that can occur in the sprite editing
function are: First, the action to change the image format;
second, the action to change the name of the sprite; third, the
action to change the direction of the sprite; fourth, the action
to change the size of the sprite, fifth, It consists of the action
of changing the rotation direction of the sprite, sixth, editing
the image file, seventh, adding the image file to an object, and
eighth, deleting the image in one object.

In the case of the sound file editing function, many cases
can be recognized on the system, but most are treated as
unused or overlapping functions, and the number is merged
into 4 cases. Editing behavior types of sound source files
consist of first, changing the name of the sound source file,
second, editing the sound source itself, third, adding the sound
source file, and fourth, deleting the sound source file.

Depending on the scale of the system and the purpose of
research or education, the data collected is sufficiently
editable. The requirements to be derived in this study suggest
all types of programming behaviors that learners can create.
Through 20 requirements, it is suggested that the system
should have, and its configuration and data type are defined.

III. RESULT AND DISCUSSION

Programming log analysis dependent on memory or
experience can distort the results of the subjectivity of the
researcher or learner. In order to collect objective
programming logs, a system for collecting data must be
developed. The system from which this study seeks to derive
the requirements has constructed three interfaces for data
collection. The requirements for displaying data generated by
learners in seven behavioral types were derived from three
interfaces: client, server, and database. Each requirement was

derived based on the behavioral type to check the learner-
generated data on the administrator page visually. The
functional requirements required actually to operate, and the
data types required to generate the data were derived together.

First, a scratch editor for the learner to perform scratch
programming must be located in the case of a client. And at
the same time, when multiple learners generate logs, an
identifier is required to distinguish the learner's logs.
Therefore, the client requires an "input" value, as shown in
Table 1.

TABLE I
WEB FUNCTION REQUIREMENTS (FUC)

Target Division Requirements data type interface

Input

Input
Name

The user can enter a
name.

varchar2
(100)

Input
Field

Input
Project
Name

The user can enter a
project name.

varchar2
(100)

Input
Field

Input
Question

There is a button the
user will press when
they have a
question.

 Button

There is space for
the user to enter any
questions they have.

varchar2
(400)

Input
Field

Input
Submit

There is a button the
user will press to
submit the project.

 Button

Alert

Check
Question

A message is
displayed to confirm
that the question has
been submitted.

 Msg

Check
Submit

A message is
displayed to confirm
the submission.

 Msg

Editor
Scratch
Editor

It comes with the
same editor as
Scratch.

The input value to be treated as an identifier is a minimum

line that does not interfere with learning, and a total of two
are included, the name of the learner and the name of the
project. In addition, if this system was developed and research
was conducted, two buttons that would serve as a sign in the
learner's programming process were required as a
convenience function. There may be a question button to
register the question content when the learner does not know
something during learning and a submission button to identify
the status of the final code after the learner has finished coding
until the end.

Second, the data transmitted by the client must be parsed
through the server's processing phrase, transmitted to the
database, and stored. The processing source code that must be
on the server should include algorithms that can analyze
behavior types and play a role in delivering them so that they
can be stored in a database. Table 2 is a data classification
table performed by a server.

165

TABLE II
DB FUNCTION REQUIREMENTS (FUC)

Target Division Requirements data type domain

Block
Code

Add Code

It can be identified when a new code is added. char(1) "T", "F"
You can see what type of code was added. varchar2(32) "OPCODE"

It can be identified when two or more codes are copied. char(1) "T", "F"

Delete Code It can be identified when one or more codes have been erased. char(1) "T", "F"

Move Code

It can be identified when the physical location (coordinate value) of the
code is changed.

char(1) "T", "F"

You can see where the changed code is located. {"x","y"}

It can be identified when the relative position of the code (the order in
which they are linked) has changed.

char(1) "T", "F"

It can be identified when chunks of code are combined. char(1) "T", "F"

Modify
Code

It can be identified when the value has changed. char(1) "T", "F"
You can see what the changed value is.

It can be identified when there is no change. char(1) "T", "F"

Copy the
Code

It can be identified when the code is duplicated as the sprite is duplicated. char(1) "T", "F"

Sprites

Edit Object
Properties

It can be identified when the image format is changed. char(1) "T", "F"

Edit Object
Information

It can be identified when the name is changed. char(1) "T", "F"

It is possible to identify when a sprite's direction has changed. char(1) "T", "F"

It can be identified when the size of the sprite is changed. (In Property) char(1) "T", "F"

It is possible to identify the direction in which the sprite rotates. (In Block
Code)

char(1) "T", "F"

Edit Object
Image

It is possible to identify whether an image file has been edited. char(1) "T", "F"

It is possible to identify whether an image object has been added.
(Costume)

char(1) "T", "F"

It is possible to identify whether an image object has been deleted. char(1) "T", "F"

Sounds

Edit Object
Information

It is possible to identify whether the name of the sound file has been
changed.

char(1) "T", "F"

Edit Object
Sound

It is possible to identify whether or not the sound file has been edited. char(1) "T", "F"

It is possible to identify whether a sound file was added or not. char(1) "T", "F"

It is possible to identify whether a sound file has been deleted or not. char(1) "T", "F"

It is difficult to define requirements while the type of data

stored in the database is not defined. This study prepared a
specification assuming an algorithm that must actually work
to summarize the functional requirements for implementation
as a result. Therefore, most of the required results consisted
of requirements to determine the form of truth and falsehood
and whether they worked. For example, results such as "true"
and "false" are given to the requirement that "new code can
be written."

There are cases where it should be treated as an exception
here. It is difficult for the system administrator to determine
whether the code has been copied or whether one code has
been added. If receiving data directly from the client, the
event can be checked, but considering the number of cases,
the volume of data increases if receiving mouse events.
Therefore, adding the number of cases to the algorithm is
recommended so that the case copied through the script result
can be confirmed. When there are two or more generated
codes, it may be recognized that the codes are copied, and
copying one or fewer codes was treated as adding codes. In
addition, we derive a total of 12 requirements, including the
combination of codes, the full copy of sprites, and the receipt
of what kind of code was actually copied, to derive a

requirement specification from obtaining all of the
programming logs.

IV. CONCLUSION
This study analyzed the programming log of scratches to

identify areas of data that can be extracted and derived the
number of cases in which learners’ output as intended.
Functional requirements were derived by analyzing the
structure of the data and the expected interface rather than the
developed system. The minimum convenience of
programming learners and managers or researchers analyzing
logs was considered, and all functions necessary for the
collection were included.

The system to be developed by satisfying this requirement
aims to analyze programming learners' programming
difficulties and assist teachers in education. In order to
achieve this purpose, the person analyzing the learning
process must understand the learner's programming process
well. However, if one teacher has more than ten students, it is
practically difficult to analyze the programming log of all
learners. A system should be accompanied to objectively
analyze the learner's log and give feedback to the learner
based on the log. A system that reflects the requirements
derived through this study will be able to generate important

166

clues for analyzing learners' behavior patterns. It is expected
that the output of this study can be a key clue to analyzing
learners' programming behavior.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (No. NRF-2021R1A2C2013735).

REFERENCES

[1] Lawan, Abdulmalik Ahmad, et al. "What is Difficult in Learning
Programming Language Based on Problem-Solving Skills?." 2019
International Conference on Advanced Science and Engineering
(ICOASE). IEEE, 2019.

[2] Thames, Lane, and Dirk Schaefer. "Software-defined cloud
manufacturing for industry 4.0." Procedia cirp 52 (2016): 12-17.

[3] Lasi, Heiner, et al. "Industry 4.0." Business & information systems
engineering 6.4 (2014): 239-242.

[4] Williamson, Ben. "Silicon startup schools: Technocracy, algorithmic
imaginaries and venture philanthropy in corporate education reform."
Critical studies in education 59.2 (2018): 218-236.

[5] Bosse, Yorah, and Marco Aurélio Gerosa. "Why is programming so
difficult to learn? Patterns of Difficulties Related to Programming
Learning Mid-Stage." ACM SIGSOFT Software Engineering Notes
41.6 (2017): 1-6.

[6] Pratiwi, Merina. "Student Tutoring, Facilitator and Explaining Models:
A Problem Solving Metacognition towards Learning Achievements of
Informatics Students." Journal of Educational Sciences 4.2 (2020):
368-379.

[7] Psycharis, Sarantos, and Maria Kallia. "The effects of computer
programming on high school students’ reasoning skills and
mathematical self-efficacy and problem solving." Instructional science
45.5 (2017): 583-602.

[8] Hsu, Ting-Chia, Shao-Chen Chang, and Yu-Ting Hung. "How to learn
and how to teach computational thinking: Suggestions based on a
review of the literature." Computers & Education 126 (2018): 296-310.

[9] Shute, Valerie J., Chen Sun, and Jodi Asbell-Clarke. "Demystifying
computational thinking." Educational Research Review 22 (2017):
142-158.

[10] Price, Thomas W., Yihuan Dong, and Dragan Lipovac. "iSnap:
towards intelligent tutoring in novice programming environments."
Proceedings of the 2017 ACM SIGCSE Technical Symposium on
computer science education. 2017.

[11] Bhaugeerutty, Vinod Sharma. "Difficulties in Learning and Teaching
Programming at Lower Secondary Level in Mauritius." Journal of
Contemporary Research in Social Sciences 3.3 (2021): 48-61.

[12] Bosse, Yorah, and Marco Aurelio Gerosa. "Difficulties of
programming learning from the point of view of students and
instructors." IEEE Latin America Transactions 15.11 (2017): 2191-
2199.

[13] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N.,
Eastmond, E., Brennan, K., ... & Kafai, Y. (2009). Scratch:
programming for all. Communications of the ACM, 52(11), 60-67.

[14] Weintrop, David, et al. "Starting from Scratch: Outcomes of early
computer science learning experiences and implications for what
comes next." Proceedings of the 2018 ACM conference on
international computing education research. 2018.

[15] Microsoft MakeCode for micro:bit", Microsoft MakeCode for
micro:bit, 2022. [Online]. Available: https://makecode.microbit.org/.
[Accessed: 03- Jan- 2022]

[16] Kalelioglu, Filiz, and Sue Sentance. "Teaching with physical
computing in school: the case of the micro: bit." Education and
Information Technologies 25.4 (2020): 2577-2603.

[17] Bennedsen, Jens, and Michael E. Caspersen. "Revealing the
programming process." Proceedings of the 36th SIGCSE technical
symposium on Computer science education. 2005.

[18] Lye, S. Y., & Koh, J. H. L. (2018). Case studies of elementary
children’s engagement in computational thinking through scratch
programming. In Computational thinking in the STEM disciplines (pp.
227-251). Springer, Cham.

[19] Lye, Sze Yee, and Joyce Hwee Ling Koh. "Case studies of elementary
children’s engagement in computational thinking through scratch
programming." Computational thinking in the STEM disciplines.
Springer, Cham, 2018. 227-251.

[20] Qarbon. Accessed 2009. Viewlet Builder. http://www.qarbon.com/
[21] Boisvert, Charles R. "A visualisation tool for the programming

process." Proceedings of the 14th annual ACM SIGCSE conference
on Innovation and technology in computer science education. 2009.

[22] Černý, Michal. "Measurement of selected aspects of student behavior
in online courses." E-Pedagogium 19.2 (2019).

[23] Chang, Zhong, et al. "Scratch analysis Tool (SAT): a modern scratch
project analysis tool based on ANTLR to assess computational
thinking skills." 2018 14th International Wireless Communications &
Mobile Computing Conference (IWCMC). IEEE, 2018.

[24] Lutz, Robyn R. "Targeting safety-related errors during software
requirements analysis." Journal of Systems and Software 34.3 (1996):
223-230.

[25] Fitzgerald, Alissa M., Carolyn D. White, and Charles C. Chung. "What
Is the Product? Requirements Analysis." MEMS Product
Development. Springer, Cham, 2021. 31-45.https://en.scratch-
wiki.info/wiki/JSON

167

