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Abstract—Blindness is a global health problem that affects billions of lives. Recent advancements in Artificial Intelligence (AI), (Deep 

Learning (DL)) has the intervention potential to address the blindness issue, particularly as an accurate and non-invasive technique for 

early detection and treatment of Diabetic Retinopathy (DR). DL-based techniques rely on extensive examples to be robust and accurate 

in capturing the features responsible for representing the data. However, the number of samples required is tremendous for the DL 

classifier to learn properly. This presents an issue in collecting and categorizing many samples. Therefore, in this paper, we present a 

lightweight Generative Neural Network (GAN) to synthesize fundus samples to train AI-based systems. The GAN was trained using 

samples collected from publicly available datasets. The GAN follows the structure of the recent Lightweight GAN (LGAN) architecture. 

The implementation and results of the LGAN training and image generation are described. Results indicate that the trained network 

was able to generate realistic high-resolution samples of normal and diseased fundus images accurately as the generated results 

managed to realistically represent key structures and their placements inside the generated samples, such as the optic disc, blood vessels, 

exudates, and others. Successful and unsuccessful generation samples were sorted manually, yielding 56.66% realistic results relative 

to the total generated samples. Rejected generated samples appear to be due to inconsistencies in shape, key structures, placements, 

and color. 
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I. INTRODUCTION 

Globally, there are an estimated 2.2 billion blind people, of 
which at least 1 billion have vision problems that could have 
been avoided or are still unresolved [1]. Among the major 
causes of blindness is Diabetic Retinopathy (DR), a 
complication of diabetes mellitus [2]. It can cause complete 
blindness if left untreated [3]. Therefore, early detection and 
intervention are paramount. DR is caused by hyperglycemia, 
which leads to blood vessel clots in the retina. Left untreated, 
the blockages cause vascular disorder, blurred vision, and 
blindness [3]. DR is of particular concern since it is estimated 
that more than 600 million individuals will have diabetes by 
2040, with 200 million expected to have DR as a consequence 
of the condition [4]–[6]. Furthermore, DR is currently the 
leading cause of blindness in the global working-age 
population [2]. Early intervention (screening and treatment) 
can prevent blindness [7]. Fundus images provide an 

interesting non-invasive diagnostic opportunity as the retina’s 
intricate structure provides a non-invasive wealth of 
information for ophthalmic diagnosis [8]–[13].   

As a fundamental pillar of Industrial Revolution 4.0, DL 
has received tremendous attention in research, especially in 
medical image analysis [4]. Relative to conventional AI, DL 
has been proven to excel in many domains. DL models allow 
the construction of multi-layered computational models that 
represent the data with increased levels of abstraction [14]. 
DL has shown potential as a method for quick automated 
diagnosis [7], particularly in areas with a low 
ophthalmologist-to-patient ratio [15].  

Many works have been done on AI computer-based disease 
diagnosis. They typically require much data to sufficiently 
understand the data distribution to adapt to previously unseen 
data variabilities robustly. In certain cases, the number of data 
required to train is insufficient or imbalanced, leading to 
issues with classifier robustness [14], [15]. Data augmentation 
(a set of techniques to enhance the quality and diversity of 
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datasets) can be used to mitigate this issue. Data augmentation 
techniques are particularly important for AI-based diagnostic 
systems [2]. 

Recent advancements in the field of Generative 
Adversarial Networks (GAN) have elevated them to a 
fascinating tool for creating realistic data [2], [16]. GANs are 
composed of two neural networks that compete with each 
another. The first network, dubbed the generator, learns to 
build images from the statistical distribution of training data. 
On the other hand, the discriminator learns to differentiate 
between real images and those made by the generator. The 
antagonistic interplay between the generator and 
discriminator gradually improves both networks until the 
generator produces impersonations of such high quality that 
the discriminator accepts them as originals [17], [18]. 

This paper proposes a GAN to synthesize normal and 
diseased fundus images. The structure of the GAN was based 
on the works of Liu et al. [19]. We introduce two datasets as 
training inputs for the GAN with no pre-processing to help 
preserve data variability. We demonstrate the effectiveness of 
the GAN by analyzing the outputs produced by the GAN post-
training. The discoveries in this paper may be used to train 
robust AI-based classifiers. Additionally, the synthesized 
images can be used as a diagnostic teaching aid for students 
in medical schools. The rest of this paper is organized as 
follows: Section I-B presents the literature review, followed 
by the methodology in Section II. Results and discussions are 
presented in Section III. Finally, concluding remarks are 
presented in Section IV. 

A. Applications of DL on Fundus Images 

This section presents recent literature related to 
applications of DL on Fundus Images. DL appears to be 
primarily used for image quality enhancement (Section I-B-
1), data synthesis (Section I-B-2), detection of structures in 
the fundus image (Section I-B-3), and diagnosis of disease 
severity (Section I-B-4). Each application is described in the 
following sections. 

1)  Image Quality Enhancement: Given the importance of 
fundus images for medical diagnosis, the quality of the image 
is paramount for accuracy, especially in automated computer-
based applications [13], [20]. This section details some 
applications of AI (primarily GAN) in fundus image quality 
enhancement. 

A modified version of the Pix2Pix GAN (Pix2Pix Fundus 
Oculi Quality Enhancer (P2P-FOQE)) was presented in [10] 
to enhance the quality of fundus images. The P2P-FOQE 
network removed artifacts and normalized the brightness and 
contrast to improve fundus image quality. To test the network, 
the authors collected a set of fundus images from Kaggle and 
classified them into three categories depending on the quality 
of the images – bad, usable, and good. The proposed network 
significantly improved the quality of the images across all 
categories by 29.49% to 72.33% while passing evaluations 
from specialist ophthalmologists. 

A similar work by Cheng et al. [9] used Least-Squared 
GAN (LS-GAN) to enhance the quality of fundus images. 
Tested using Peaky Signal to Noise Ratio (PSNR) and 
Structural Similarity Index Measure (SSIM). Aims to 
preserve structural details (such as blood vessels) in the image 

and enhance any degradations present in the image. 
Comparing the proposed method and other established GAN 
structures demonstrates its effectiveness in enhancing the 
fundus images. 

In Priya and Sathiaseelan [11], a Super Resolution GAN 
(SRGAN) U-Net structure enhanced fundus images for blood 
vessel recognition. The SRGAN intelligently supersizes the 
image by filling out absent features from the original low-
resolution image. Managed to improve overall precision of 
blood vessel segmentation by 0.736%. Similarly, in Cheng et 
al. [13], GAN was used to enhance degraded fundus images. 
The GAN structure was modified to incorporate a contrastive 
loss function in the encoder (generator) network. Additionally, 
a priori loss function retains localized semantic information 
in the fundus image. The contrastive approach managed to 
obtain highly accurate enhancement while preserving local 
details. 

CNNs have also been used to improve the quality of fundus 
images [3]. Bhatkalkar et al. [20] used CNN to automatically 
assess the quality of fundus images based on the optic disc's 
visibility. Transfer learning training was performed on the 
Inception v3 CNN architecture, and the authors obtained 
excellent classification accuracy on several publicly available 
databases. 

Xu et al. [8] proposed a fundus and angiography image 
fusion method in Non-Subsampled Contourlet Transform 
(NSCT) to localize Central Serous Chorioretinopathy (CSCR). 
Original images were decomposed into high and low-
frequency components. A pulse-coupled neural network was 
then used to fuse the components, adding important details to 
the original images. The method has been superior to the 
baseline Multi-Scale Transform (MST) method. 

2)  Data Synthesis: Mirabedini et al. [14] utilized GAN to 
synthesize fundus samples for training other types of 
classifiers. Data scientists face a common problem because 
DR classifiers are trained on imbalanced datasets (for 
example, there are different numbers of normal vs. diseased 
samples). This is because the diseased fundus images are 
relatively difficult to encounter compared to normal ones. 
Using the balanced dataset (combination of real and 
synthesized fundus images), the classification accuracy was 
89%, a 7% improvement over the unbalanced dataset from 
Kaggle.  

3)  Detection of Important Structures in Fundus Images: 

Substantial works have also focused on detecting important 
structures in the fundus image, e.g., blood vessels, optic disc, 
exudates, etc. Rammy et al. [12] proposed a deep learning-
based strategy for retinal vascular segmentation. The 
proposed Conditional Patch-based Generative Adversarial 
Network (CPGAN) purpose was to acquire improved 
discriminative features for thick and thin vessels in the fundus 
image. A loss term was combined with the primary objective 
function to learn low-frequency edges, and a patch-based 
discriminator was used to learn minor fluctuations and sharp 
edges of high-resolution blood vessels. The model 
demonstrated vastly efficient performance in segmenting 
thick and thin vascular pixels from non-vascular pixels by 
incorporating the additional loss function and patch-based 
discriminator. 
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In AlGhamdi [21], a CNN called RetinaNet was used to 
detect and segment optic disc in fundus images. The OD is 
important to detect neovascularization indicative of glaucoma. 
The network consists of one backbone network and two 
subnetworks. The backbone network was modeled after the 
established DenseNet architecture, while the two subnetworks 
were responsible for object recognition and localization of the 
OD. Tests on several publicly available datasets demonstrate 
the effectiveness of the proposed method. Optic disc detection 
and removal in fundus images is an important step for 
diagnosing glaucoma. As optic disc exhibits similar 
characteristics to glaucoma, they can be misinterpreted as a 
false positive in the detection of glaucoma. Realizing the 
importance, Liu et al. [22] suggested a GAN-based approach 
to localize and segment the optic disc. The GAN was trained 
to construct a probability map indicating the probability that 
the pixel is an optic disc. Experiments on the DRISHTI-GS 
dataset demonstrate the method's robustness in localizing the 
optic disc in normal, low contrast, and additional artifacts. 

He et al. [23]automatically used CNN to localize hard 
exudates in a fundus image. The researchers opted for the Hue, 
Saturation, Value (HSV) color space to compensate for the 
low brightness and contrast in the images. The green channel 
from the color space was extracted for classification because 
of its highest contrastive properties. The CNN was then used 
to classify the pixels into either exudate or non-exudate. The 
proposed method obtained approximately 70% - 96% 
accuracy on the IDRiD dataset. 

4)  Diagnosis of DR Severity: CNN is typically used to 
grade the severity of DR based on the fundus image. 
Researchers working in this area repurpose an established 
CNN structure using transfer learning to retrain and repurpose 
classifier networks [24]. Transfer learning was used in Wang 
and Schaefer [15], [24] to repurpose a CNN to discriminate 
between normal and neovascularized fundus images. Several 
established CNN network structures were examined: the 
AlexNet, GoogleNet, VGG16, and others. In Wang and 
Schaefer  [15], the authors used transfer learning to repurpose 
the MobileNet v2 network to assess the severity of DR on an 
imbalanced dataset.  

Wang et al. [25] used the DeepMT-DR CNN to grade low-
quality fundus images. The DeepMT-DR combines the task 
of Image Super-Resolution (ISR) (to boost details in the 
image) and grading the DR severity based on the ISR output. 
When tested on two publicly available datasets, the proposed 
method significantly outperforms other state-of-the-art 
methods. 

II. MATERIAL AND METHOD 

A. Hardware and Software Specifications 

The specifications of the hardware used in the experiments 
are shown in Table 1. 

TABLE I 
SPECIFICATIONS OF HARDWARE USED 

Item Specification 

Central Processing Unit (CPU) AMD Threadripper 3990x 
Graphics Processing Unit (GPU) 4 × GTX 1080 Ti 
Random Access Memory (RAM) 64 GB 
Operating System Linux Ubuntu 20.04.3 LTS 

B. Flowchart of Experiments 

The flowchart for the experiment is shown in Fig. 1. The 
experiment consists of four main steps, as described in 
Section II-B-1 to Section II-B-4. 
 

 
Fig. 1  Experiment flowchart 

1)  Data collection: The dataset used in the experiment 
were sourced from the Kaggle website: 

Dataset 1 - Ocular Disease Recognition (ODIR) dataset by 
Larxel (https://www.kaggle.com/ andrewmvd/ ocular-
disease-recognition-odir5k): This dataset consists of left and 
right fundus colour images of 5,000 patients diagnosed by 
medical professionals as suffering from eight medical 
conditions. It was collected from Shanggong Medical 
Technology Co., Ltd. The company has different medical 
facilities throughout China. The images were acquired using 
various devices (such as Canon, Zeiss and Kowa) resulting in 
various image resolutions and qualities. The images are 
categorized as Normal, Diabetes, Glaucoma, Cataract, Age-
related Macular Degeneration, Hypertension, Pathological 
Myopia, and others. The ODIR dataset consists of 8,000 
fundus images stored in the Joint Pictures Expert Group 
(JPEG) format. 

Dataset 2 - Retinal Disease Classification (RDC) dataset by 
Larxel (https://www.kaggle.com/ andrewmvd/ retinal-
disease-classification): The RDC dataset consists of 3,200 
fundus images classified into 46 different diseases through 
consensus of two medical professionals. The RDC dataset are 
stored in the Portable Network Graphics format. 

Both datasets were combined, producing the final 11,200 
images. No pre-processing was applied to the images to 
preserve their variability and ensure the GAN’s robustness to 
learn their features to synthesize new samples. Several 
samples from both datasets are shown in Fig. 2 and Fig. 3. 

2)  GAN structure and parameter selection: The GAN 
structure is based on the Lightweight GAN (LGAN) 
implementation [19], which is available at Liu et al. [26]. The 
network structure incorporates skip-layer excitation in the 
generator and self-supervised autoencoder layer in the 
discriminator. These adjustments significantly enhance the 
speed of high-resolution training with modest computational 
requirements [17], [18]. The reader is referred to Patil et al. 
[17] for information on the LGAN generator and 
discriminator architecture. The LGAN training parameters are 
listed in Table 2. 
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Fig. 2  Several samples from the ODIR dataset (Dataset 1)  

Fig. 3  Several samples from the RDC dataset (Dataset 2) 
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GAN training necessitates interaction and competition 
between two networks, the discriminator and the generator 
[27]. Both are simultaneously trained using the Adaptive 
Moment Estimation (ADAM) algorithm [28]. The ADAM 
algorithm was chosen due to its high computational efficiency 
(particularly for networks with many parameters) and low 
memory requirements [29]. Additionally, ADAM parameters 
require extremely less adjustment in comparison to standard 
backpropagation algorithms. The maximum number of 
epochs was set to 200,000. This value was found to be 
sufficient based on our preliminary experiments. Automatic 
Mixed Precision (AMP) is a technology by Nvidia [30]. It 
reduces the numerical precision of the weights to boost the 
computational speed while reducing the amount of GPU 
memory used with minimal effect on accuracy. 

TABLE II 
TRAINING PARAMETER VALUES 

Parameter Value 

Training Algorithm Adaptive Moment Estimation 
(ADAM) 

Epochs 200,000 
Automatic Mixed Precision 

(AMP) 
Enabled 

Output Size 1,024 × 1,024 pixels 

3)  GAN training: During training, an image preview was 
generated per 1,000 iterations. The preview was used to 
monitor the training progress of the LGAN. 

4)  Validation of results: The results were validated using 
two methods. The first method visually monitors the training 
performance of the network based on the quality of images 
generated to pre-emptively detect mode collapse. Mode 
collapse is a common problem in GAN training caused by the 
performance progress imbalance either from the generator or 
discriminator. Ideally, the generator and discriminator should 
gradually improve in tandem. However, if either the generator 
or discriminator improves drastically over the other, mode 
collapse will occur, affecting the quality of the synthesized 
images will be poor. 

The second validation was performed post-training. This 
was done by synthesizing samples from the GAN and 
evaluating whether they were qualitatively realistic compared 
to the original data. The GAN-synthesized images were 
visually inspected for structural defects, e.g., no optic disc and 
unnaturally shaped structures in the fundus image. Fig. 4 
shows common structures and anomalies in a fundus image. 
The presence and appearance of the structures and anomalies 
were examined closely when evaluating the synthesized 
LGAN samples.  
 

 
Fig. 4  Components in fundus images and DR anomaly structures [3] 

III. RESULT AND DISCUSSION 

Training time took approximately 67 hours. The training 
progression of the LGAN model is shown in Fig. 5 to Fig. 13. 
Initially, the samples appear to consist of irregular blobs on a 
black background. This observation is attributed to the 
unoptimized weights in the generator and discriminator. As 
training progressed, the structure and anomalies appeared to 
be more refined and consistently resembled the real training 
images, especially the position of the optic disc and blood 
vessels (Fig. 6 to Fig. 13). The color of the fundus also 
generally appears to be varied from yellow to shades of 
orange, red, and grey. These colors were also consistent with 
the training images. However, occasionally, there were 
irregularly formed shapes, as shown in the fourth sample in 
Fig. 9 and the seventh image in Fig. 10. There were also cases 
where the fundus colors were inconsistent, such as in the 
second and third images in Fig. 14. 
 

 
Fig. 5  Training progression (0 Epochs) 

 

 
Fig. 6  Training progression (25,000 Epochs) 
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Fig. 7  Training progression (50,000 Epochs) 

 

 
Fig. 8  Training progression (75,000 Epochs) 

 
Fig. 9  Training progression (100,000 Epochs) 

 
Fig. 10  Training progression (125,000 Epochs) 

 

 
Fig. 11  Training progression (150,000 Epochs) 

 
Fig. 12  Training progression (175,000 Epochs) 
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Fig. 13  Training progression (200,000 Epochs) 

 
After training, the LGAN was then used to generate 1,210 

fresh samples. These samples were examined based on color, 
structure, shape, anomalies, and appearance. Next, a decision 
was made whether to accept or reject the image depending on 
how realistic it appeared. The distribution of the images is 
shown in Table 3. Samples of accepted and rejected images 
are shown in Fig. 14 and Fig. 15. The generated results appear 
to skew towards normal types, and this is likely attributed to 
the number of samples used for training. As more normal 
samples were used for training data, the LGAN learned more 
features from them and generated more of those types of 
samples. The quality of the synthesized images appears 
acceptable at a resolution of 1,024 × 1,024 pixels, with fine 
details present and visible. 

TABLE III 
DISTRIBUTION OF 1,210 LGAN-SYNTHESIZED SAMPLES (POST-TRAINING) 

Acceptable 685 
Not Acceptable 525 

 

 
Fig. 14  Samples of rejected images due to shape, inconsistent features, and 
color 

 

 
Fig. 15  Samples of accepted images (accurate placement of optic disc, visible 
blood vessels, consistent shape and color). 

IV. CONCLUSION 

A LGAN was repurposed to generate synthetic fundus 
images. The LGAN was trained on two publicly available 
datasets from Kaggle without any form of pre-processing. 
Experiments indicate that the generator and discriminator 
were able to generate realistic images by learning the 
distribution on the training images. 
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