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Abstract— Measuring the status of achievement of the SDGs is the task and concern of many countries in the world, including Indonesia. 

Indicators for achieving the SDGs enclose three main pillars, namely environmental, economic, and social. The updated land use/land 

cover information is needed for environmental pillars. One imperative land cover information is built-up land, which acts as a detector 

for expanding urban areas and measuring SDGs' target indicators. Indonesia's cultural diversity affects the distribution pattern of 

built-up land, especially settlements. This is a challenge in the up-to-date and rapid mapping of built-up land. This research aims to 

analyze the ability and transferability of the Random Forest model for built-up areas and settlements using Google Earth Engine (GEE) 

in Banyumas, Cilacap, and Tegal. Around 19 predictors from multi-sources satellites are integrated to identify four land cover classes. 

Discussion on predictor composition to improve model accuracy also carried on. The results showed that the algorithm separated four 

land cover classes, with the highest accuracy for separating water bodies and other classes (vegetation and open land), OA above 90%. 

Machine confusion regarding the separation between housing classes and other buildings was still found (F1 score 0.67 - 0.69). Applying 

the model to the other two areas resulted in a similar statistical trend to the trained model. However, the classification method developed 

in this paper can assist in the rapid description of land cover if up-to-date data from official sources are not available.  
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I. INTRODUCTION 

Indonesia has ratified the Sustainable Development Goals 

(SDGs) that have been set by the United Nations (UN) and the 

World Bank. The SDGs aim for countries to achieve the 

essential quality of life by 2030. One of the essential elements 

of sustainable development is conserving and managing 

natural resources. Thus, all aspects related to resources in an 

area are essential to be translated spatially so that the 

achievement of the SDGs can be monitored, and the status of 

sustainable development achievements can be reported 
regularly [1]. Several indicators highly depend on land cover 

data availability, focusing on the environmental pillar of 

SDGs Indonesia. For mention, indicator 11.1.1. (a) The 

percentage of households with access to adequate and 

affordable housing, indicator 11.2.1. (a) The proportion of the 

population with convenient access to public transportation, 

indicator 11.3.1. (a) The ratio of the expansion rate of 

developed land to the population growth rate, indicator 11.6.1. 

(a) The percentage of households in urban areas whose waste 
management is served, indicator 11.7.1. (a) The proportion of 

urban open space for all, and Indicator 15.1.1* proportion 

forest area to the total land area. 

Some even require data on the distribution of 

population/households and built-up land, which are 

projections of the center of human distribution. Thus, the 

urgency of providing and updating maps of built-up land, 

especially settlements, cannot be avoided. Land use (LU) and 

land cover (LC) are two types of cartographic information that 

are used in conjunction with one another for urban planning 

and environmental monitoring [2]. 

Various methods have been attempted to provide LULC 
maps using remote sensing data, especially on the built-up 

area mapping. Starting from the visual interpretation 

technique [3]–[7], pixel-based [8]–[10] and object-based 

classification [11]–[13], to artificial intelligence [14], [15]. 

However, no standard method has been established for 
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compiling the map. In a decade, the development of artificial 

intelligence (AI) computing technology, machine learning 

(ML), has been in great demand, especially for land cover 

mapping [16]–[20]. Artificial intelligence opens opportunities 

for its use in accelerating land cover mapping. Machine 

Learning (ML) techniques are widely used in spatial data and 

have the characteristics of big data, which often involves the 

process of earth feature extraction algorithms in the analysis 

process. 

ML techniques have been used for a long time in the 

geospatial field. ML illustrates how we can detect object 
detection [21], such as cars, trains, and others. It is not an old 

technique, but its content is not far from conventional 

statistics like binary. There is some data that we take 

advantage of with high-resolution satellite imagery. Rousset 

et al. [2] successfully enhanced the overall accuracy when 

adding the LC classification output of the dedicated deep 

learning architecture to the raw channels input of the deep 

learning LU classification task (from 51% to 63% of overall 

accuracy). Meanwhile, Fagua and Ramsey [22] successfully 

developed annual LULC maps in the Chocó-Darien Global 

Ecoregion from 2002 to 2015 (kappa index 0.87) from a 
combination of the Random Forest ensemble learning 

classification tree system on cloud-free MODIS vegetation 

index products. Tsai et al. [19] stated that using a cloud-based 

Google Earth Engine platform to act as an advanced machine 

learning image classification should implement tuning 

techniques to find optimal classifier parameters (for example, 

the number of trees and the number of features for Random 

Forest classifier). 

In addition to answering the SDGs targets, the availability 

of rapid land cover mapping, especially for built-up land and 

settlements, is practically beneficial for activities in the social 
sector. Among others are household poverty [23] and disaster 

management [24]–[26]. 

Indonesia's cultural diversity influences the distribution 

pattern of built-up land, especially settlements. This condition 

creates a challenge in itself in built-up mapping land that is up 

to date and can be done quickly. Beforehand, Rudiastuti et al. 

[27] carried out a brief study comparing various supervised 

learning algorithms in Google Earth Engine based on its 

accuracy for land use mapping in Purwokerto within an area 

of 81km2. In this research, by modifying the test sample and 

expanding the area to accommodate more diversity, we 

strived to create a land cover model comprised of four land 
cover types: vegetation, built-up land (divided into non-

residential and residential building classes), and water body. 

Banyumas Regency was chosen as the initial location for 

model development because Banyumas has both urban and 

rural areas. Subsequently is the possibility of the 

transferability model that has been built in Banyumas to map 

buildings and settlements in other areas, in this case, the 

Cilacap Regency and Tegal Regency. 

The idea of separating buildings and settlements comes 

from two points. The first is the need for detailed settlement 

data as a challenge to answer the SDGs targets. The second is 
to implement Ji et al. method [28], which has succeeded in 

detecting settlements in rural areas using sentinel. The 

implementation of this method also looks at the performance 

of the supervised learning algorithm at GEE in carrying out 

research objectives. Several assumptions were applied in this 

study, namely (1) sample selection considering the function 

of the building and the appearance of the building (between 

non-residential and residential buildings) (2) building size 

100 m2, so it is assumed that one-pixel Sentinel-2 represents 

one house. This paper also discusses the predictor 

composition that may increase model accuracy. 

II. MATERIAL AND METHOD. 

A. Study Area 

The research took place at three locations in the Central 

Java province, namely Cilacap, Banyumas, and Tegal district. 

Those districts are sequentially located in Central Java 

Province's region's south, middle, and north (Figure 1). They 

differ in terms of geographic condition, where Cilacap and 

Tegal have coastal areas while Banyumas does not. We 

choose areas in the same province to avoid the predominant 

cultural diversity in building settlements. 

 

 
Fig. 1 Three study areas in Central Java. The bold white line is the borderline 

of Central Java Province. The blue, green, and red areas are Tegal, Banyumas, 

and Cilacap districts. 

B. Data 

This study uses six data types to define the model 

predictors: pure spectral information from the visual and NIR 

channel, the image transformation through several indexes, 

surface texture, night-time light, slope, and land surface 
temperature (LST). They were acquired from several data 

sources that are publicly open. Table 1 describes the required 

dataset in detail, including sources and specifications. Some 

were collected or computed using remote sensing data, from 

both active and passive sensors, with various spatial and 

temporal resolutions. Images from Sentinel-1 (SAR), 

Sentinel-2, Landsat-8, and Suomi NPP VIIRS within the time 

range from 1 June 2020 to 31 May 2021 became data sources 

for most model predictors. 

Surface reflectance characteristics were captured using 

Sentinel-2 Level 2A, whereas synthetic aperture radar (SAR) 
images provide information on surface materials' structure 

and dielectric properties using radar imagery. Furthermore, 

night-time light (NTL) imagery identifies the level of human 

activity and, as a result, can significantly provide antecedent 
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probabilities of impervious surfaces occurrence in a given 

area [29]. 

According to Kafy et al. [30], the changes in urban areas 

and raising LST have a strong correlation. Thus, we add the 

LST predictor assuming it will affect the machine's ability to 

differentiate between each land cover class, especially built-

up land. Besides the model predictors data, we collect the 

administrative boundary from the National Base Map to 

distinguish each study area. In addition, the National Digital 

Elevation Model of Indonesia (DEMNAS) is used to generate 

slope.

TABLE I 
DATA 

Data Source Resolution/Specification 

Spectral reflectance: 
1. Red band 

2. Green band 
3. Blue band 
4. NIR band 

Sentinel-2 (Multi-Spectral 
Instrument/MSI) Level 2a 

● resolution varies from 10, 20, 

60 meters (depend on bands) 
● Surface Reflectance 
● B2  = Blue  

● B3  = Green 

● B4  = Red 

● B8  = NIR 

● B11 = SWIR 

Spectral indices: 
5. Normalized Difference Built-Up Index [21], [32]–[36] 

���� =  
��� − �	

��� + �	
 

6. New Built-Up Index [36], [37] 

��� =  
�� ∗ ���

�	
 

7. Built-up or Bareness Index [28] 

�
�� =  
�	 − ��

�	 + ��
 

8. Ratio Resident-area Index [28], [34], [35] 

��� =  
��

�	
 

9. Modified Normalized Difference Water Index [32], 
[33], [37] 

����� =  
�� − ���

�� + ���
 

10. Normalized Difference Vegetation Index [21], [32], 
[38], [39]]  

���� =  
�	 − ��

�	 + ��
 

11. Soil salinity index (SI) [1], [11] 

�� =  ��� ∗  �� 
12. Texture features: VV polarization 
13. Texture features: VH polarization 
14. Texture features: GLCM_VH 
15. Texture features: GLCM_VV 

Sentinel 1 (Synthetic Aperture 
Radar/SAR) 

● 10m 

● Wide swath (IW) acquisition 

mode 
● VV+VH polarization 

 
16. Land surface temperature (LST) Landsat 8 Tier 2 30m 
17. Nighttime light (NTL) information Suomi NPP VIIRS 463.83m 
18. VANUI [28], [40] 

����� =  (1 − ����) ∗ ��� 
  

19. Slope Seamless National Digital Elevation 
Model (DEM) 

0.27-arcsecond ≈ 8.25m 
 

Administration boundary & Land Cover information National Base Map (RBI) of 
Banyumas, Cilacap, and Tegal 

regency 

1:25000 

C. Method 

In general, the workflow of this research consists of four 

main steps: data acquisition, data preparation for training, 

accuracy assessment of the model, and transfer learning 

analysis. Each process is executed using a cloud-based 

geospatial processing platform, namely Google Earth Engine 

(GEE), except for the collection of labeled points. GEE 
comprehends a group of publicly available datasets that 

employ Google computer power, easily accessible since it is 

open to the public [31]. Figure 2 shows the flowchart of this 

study. 
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Fig. 2 Research workflow. 

 

We manually label different objects into four classes using 

the Google Earth Pro platform [8]. Those classes are others, 

built-up, the settlements, and water bodies. The built-up class 

includes all non-residential structures such as office buildings, 

schools, roads, bridges, and industry and manufacturing, 

while the settlement class comprises multifunctional houses 

or residential buildings. All water objects, such as rivers and 

lakes, belong to the class of water bodies. Meanwhile, the 

unclassified category, or others, consists of the other three 
classes, such as bare soil, vegetation, and agricultural land. 

We only consider four classes since this research focuses on 

the capability of the model to detect and distinguish 

settlements from other built-up lands. These labeled points are 

collected in each area of interest (Table 2). There are 992 

points in Banyumas, 416 in Cilacap, and 120 in Tegal. The 

composition of the number of points for independent testing 

and modeling adjusts the total area of the study area. 

TABLE II 
CLASS CODE OF THE STUDY AREA 

Area Class Code 

1 
(others) 

2 (Built-
up) 

3 
(Settlement) 

4 
(Waterbody) 

Banyumas 414 253 262 56 
Cilacap 123 112 125 52 
Tegal 34 34 39 13 

 

The land cover classification is carried out using Random 

Forest (RF) algorithm, considering that this approach has 

better performance for detecting land cover types between 

built-up land and other classes in an area of 81 km2 compared 

to other methods, such as Support Vector Machine and 
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Minimum Distance [27]. We used default parameters for the 

RF classifier, but we changed the numberOfTrees from 100 

to 125 and set the variablesPerSplit to four. The training 

model computation is performed using the Banyumas dataset 

in this research. Therefore, labeled points of Banyumas are 

separated into training and testing sets using a 70:30 ratio of 

random sampling method, where 70% of points are used for 

training, and the rest is for testing. The sampling point is 

determined by the seed (pseudorandom number generator) 

[41]. 

A minimum of 10 iterations is applied using different 
seeds. The model with the highest overall accuracy will be 

recorded in this paper. The trained model is then reused in 

new locations, Cilacap and Tegal, to assess the model 

transferability. We try two combinations of predictors for the 

experiment. First, we used without LST (C1), and the other 

one is using LST (C2) to determine how machine learning 

detects four land cover classes and separates building types 

only by recognizing impervious surfaces (residential and non-

residential). 

Subsequently, the RF variable importance is computed 

after the training process to examine the contribution of each 
predictor during training. The variable of importance 

determines whether our predictors have equal contribution or 

are less important than others. 

Finally, the pixel resolution of the classification output is 

determined to be 10m based on following the highest 

resolution of the predictor variable used (the Sentinel-2 

resolution). Table 1 lists the different pixel resolutions of each 

image source used in research for the record. This follows the 

best available open-source image required in this research. 

D. Accuracy Assessment 

The predicted class generated using the RF algorithm was 

compared with the labeled points in the testing dataset 

employing a confusion matrix to evaluate the classification 

results. Here we use standard approaches to measure the 

performance of our model by calculating the overall accuracy 

(OA), prediction, recall, and F1 score. Mathematically, those 

metrics are written as follows: 

 
� =  �� � � 

�� � �  � !� � ! 
 (1) 

 "#$%&'&() = ��

�� � !�
  (2) 

 �$%*++ =  ��

�� � ! 
 (3) 

 ,1 '%(#$ =  2 ∗  �./012134 ∗ 5/0677

�./012134 � 5/0677
 (4) 

Where TP is the total number of true positives (e.g., 

settlement point is predicted as settlement point), TN is the 

total number of true negatives (e.g., the non-settlement point 

is predicted as a non-settlement point). FP is the total number 

of false positives (e.g., the non-settlement point is predicted 

as a settlement point). Meanwhile, FN is the number of false 

negatives (e.g., the settlement point is predicted as a non-

settlement point).  
The OA is a ratio that describes the number of correctly 

predicted points divided by the total number of points. The 

precision value represents a positive prediction: how many 

predicted settlement points are true settlement points. The 

recall value indicates the sensitivity or true positive value, the 

number of true settlement points correctly predicted as 

settlement points. When there is no misclassification, a good 

prediction result should have a perfect precision and recall 

value of one or 100%. The F1 score showed the harmonic 

mean of precision and recall number of the model. It is 

calculated as the weighted average of precision and recall. As 

a result, this score considers both false positives and false 

negatives. It is not as intuitive as accuracy, but the F1 score is 

frequently more advantageous than accuracy, especially if the 

class distribution is unequal. Accuracy works best when the 

cost of false positives and false negatives is comparable. If the 
cost of false positives and false negatives is considerably 

different, it is best to consider precision and recall. 

We compute OA for all classes in this study. Meanwhile, 

because this work focuses on settlement point classification, 

we calculate precision, recall, and F1 Scores like binary 

classification using settlement and non-settlement classes. We 

also compute the kappa coefficient using the confusion matrix 

to eliminate the evaluation bias due to correct classification 

by chance. 

III. RESULT AND DISCUSSION 

The statistics of the two predictor combinations are shown 

in Table 3. The overall accuracy for the classification model 

without accommodating information from the Thermal 

Infrared Sensor (C1) reaches 0.806, with a kappa coefficient 

of 0.717. The addition of LST variables (C2) gives different 

results to the classification model. By including all the 

predictors (19 variables in Table 1), the statistical information 

on the model in the results of C2 improves with the overall 

accuracy and kappa coefficient of 0.843 and 0.772, 
respectively. 

TABLE III 

THE ACCURACY OF THE CLASSIFICATION MODEL AT BANYUMAS REGENCY 

Classification 

number 

Validation 

OA Kappa 

coefficient 

Precision Recall F1 

score 

C1 0.806 0.717 0.785 0.705 0.743 

C2 0.843 0.772 0.721 0.805 0.761 

 

Despite the improvement, the model can still not predict 

settlement points accurately. Based on the confusion matrix 

of the C2 result, classification results of water bodies and 

others are significantly more accurate than built-up and 

settlement classes with precision and recall values around 

0.90. The low precision and recall values of settlement and 

built-up were caused by misclassification, where some 

settlement points were predicted as built-up and vice versa. 
After running the random forest classifier in Google Earth 

Engine, the question of which variable has the most 

significant predictive power was raised. The variables of high 

importance are the drivers of the result, and their values 

greatly influence the value of the result. This can be seen 

through the information on the RF variable importance, as 

shown in Figure 3. At the same time, the classification result 

has been drawn spatially in Figure 4.  

Figure 3 illustrates the significance of all 19 training 

features for Banyumas as the first region in building the model 

by highlighting the importance of each feature individually. 
All features give various contributions to the classification 

result. We found dominant variables from every group of 
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features (spectral reflectance, spectral indices, and texture). 

The NIR band made the highest contribution from the spectral 

reflectance group in these findings. If we omit the NIR band 

in our experiment, OA and Kappa Coefficient values decrease 

from 0.843 and 0.772 to 0.817 and 0.733. These results 

support our findings. 

The Sentinel-1 SAR features (VV) and NDVI spectral 

index became the two most significant contributors to the 

final classification. SAR images can provide information 

about the structure and dielectric properties of the surface 

materials in most cases and the corresponding NDVI as the 
most applied spectral index to detect vegetation features from 

other features [42]. Integrating multi-source training features 

could guarantee classification accuracy across many 

impervious landscapes. Gong [43] also showed that using 

optical and SAR imagery in conjunction could significantly 

improve land cover classification and estimate impervious 

surfaces. In line with the results of Osgouei's research [32], 

which concludes that from the characteristic TOA reflectance 

values of each Sentinel-2A image channel, there is an increase 

in reflectance in the NIR channel (B8, B8a), so it can be used 

to detect vegetated areas. In this research, NIR separates class 

1 (others or unclassified category, mostly of vegetation) from 

other classes (built up, settlement, and water body). Also, the 
NIR band considers several spectral indices that made a 

higher contribution. 

 

 

Fig. 3 The importance of the input features derived from the random forest model using the Banyumas classification model. 

 

The classification model of four land cover classes in 

Banyumas was applied to other areas. Two neighboring areas, 
namely Tegal and Cilacap, became the destination for the 

pilot transfer model. By including 19 predictors, the 

classification model in Banyumas was able to produce slightly 

over the expected number, 0.843 OA (Table 3, line C2), 

although the separation between settlements and other built-

up lands was still below 0.800. Henceforth, the transfer model 

results for Cilacap and Tegal regions are shown in Table 4. 

TABLE IV 

ACCURACY OF CLASSIFICATION MODEL AT CILACAP AND TEGAL REGENCY 

USING BANYUMAS TRAIN MODEL 

Classification 

number 

Validation 

OA Kappa 

coefficient 

Precision Recall F1 

score 

Cilacap 0.789 0.710 0.796 0.592 0.679 

Tegal 0.800 0.725 0.852 0.590 0.697 

 

Table 4 presents the statistics for the classification model 

in two areas by applying the Banyumas train model. We used 

19 predictor combinations. The overall accuracy of the 

Cilacap classification model is 0.789, with a kappa coefficient 

of 0.710. Meanwhile, Tegal classification results in a slightly 
higher overall accuracy of 0.800 with a kappa coefficient of 

0.725. In line with the trained model used, the statistical 

results from the model transfer process have the same results 

as the Banyumas train model. The classification of classes 
outside of built-up land (water body and other) gives precision 

and recall values in the range of 0.788 – 1000. The case of 

classification between settlements and other built-up lands 

has not obtained the desired accuracy result (<0.800). 

Through the values of precision and recall for the 

settlement class as stated in Table 3. It is known that the 

Banyumas train model can predict well the distribution of 

settlements in Cilacap and Tegal (precision 0.710), but the 

model results are sensitive in displaying according to reality. 

The recall value (value 0.590) indicates that the prediction 

results from the model are not all by the reality in the field. 

The F1 score test depicted how well our model was 
performing. The F1 score showed the harmonic mean of the 

precision and recall number of the model. For both Cilacap 

and Tegal classification models, the F1 score falls between 

0.679 – 0.697. The F-score is extensively used for examining 

information retrieval systems like browsers and many types 

of machine learning models, notably in natural language 

processing. 

This study shows the method's ability to compile the 

classification model to update land cover conditions on a 
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massive scale. Figure 4 shows the comparison between 

natural features, classification results, and data on the 

distribution of four land cover classes from the National Base 

Map scale 1:25,000 (https://tanahair.indonesia.go.id/portal-

web). The results of the model classification show that the 

distribution of settlements and built-up land is in line with the 

natural image (RGB) and is more updated than using the 

information on the National Base Map available. Urban areas 

are detected with a lighter appearance, and the main 

composition is built-up land and settlements. Note that 

settlement class in the National Base Map is defined as 

settlement and activity center, while built-up class is defined 

as building. 
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Fig. 4 Comparison between RGB image from Sentinel-2 Level 2A, classification results using RF, and land use class from the National Base Map in three study 

areas. Classification results of Cilacap and Tegal used the RF trained model of Banyumas. 

 

Machine learning in separating non-residential buildings 

from settlements because of the similarity of the type of roof 

used, according to the recall and precision values obtained in 

the classification model in the three study areas. In line with 

statistical results, the trained model can generally separate 

other classes (which generally contain bare soil/bare land, 
vegetation, forestry), water classes (lakes, reservoirs, 

aquaculture ponds), and well-developed land. The separation 

between buildings and settlements is more apparent and more 

up-to-date (this can be seen from the RGB visual appearance, 

where non-residential buildings appear lighter and whiter in 

color, and roads have been classified as built-up land. 

However, there is still confusion in some locations that are 

accepted). 

To see the separation of the two classes of built-up land, 

namely non-residential buildings and residential areas, we 
enlarged the area on the Banyumas train model and compared 

it with the natural image (Figure 5). Four different points were 

taken to show the classifier's sensitivity in separating land 

cover classes. The black arrows indicate well-defined spots 
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between non-residential and residential buildings. Buildings 

and roads with a size equal to or more than the pixel size of 

the Sentinel-2 image can be classified well. In the natural 

image, buildings are generally characterized by light colors 

(bright white), while brick colors characterize settlements. 

 

  
Natural image of Banyumas (Google Earth 2020) Banyumas Train RF Classification Model 

Fig. 5 Comparison between Sentinel-2 surface reflectance image using natural color composite and the classification result. Black arrows indicate well-defined 

spots between non-residential and residential buildings. The yellow arrow pinpoints the misclassification result. 

 

In line with the results of Zheng's research [36], which 
combines 39 parameters from spectral features, texture 

features, and indices, it can identify built-up land with an 

accuracy above 90%. However, according to the findings in 

this paper, the classification is confused in buildings that have 

the same type of impervious surface as houses and vice versa. 

Furthermore, the yellow arrow indicates a classification error 

still experienced in the open area that should be classified as 

class 1 (others) instead, classified into class 4 (water body). 

The misclassification occurs because the rice field is still amid 

irrigation inundation when the image is captured.  

IV. CONCLUSION 

Integrating 19 predictors with the RF classifier can produce 

a classification model of 4 land cover classes with an overall 

accuracy of 0.800 in the Banyumas case. The algorithm has 

separated waterbody features and other classes (vegetation 

and open land) with up to 0.900 accuracies. Machines still 

experience confusion in separating settlements and other 

buildings due to the similarity of the impervious surface types. 

Transferring the Banyumas model to two neighboring areas, 
in a statistical test similar to the trained model, OA's accuracy 

value was slightly lower, 0.789 – 0.800. However, the 

classification method developed in this paper can assist in the 

rapid description of land cover when the official data sources 

have not provided up-to-date information yet. Too, for modest 

landcover mapping at the massive area in separated islands. 

Still, there are future challenges to developing methods that 

consider culture in detecting human settlements.  
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