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Abstract— As the number of damage cases caused by malicious apps increases, accurate detection is required through various detection 

conditions, not just detection using simple techniques. This paper proposes a knowledge-based machine learning method using authority 

information and adding its usage counting features. This method classifies training apps and malicious apps through machine learning 

using permission features in manifest.xml of Android apps. As a result of the experiment, accuracy, recall, precision, F1 score are 

99.01%, 97.70%, 100.0%, 99.01%, respectively. Since recall is higher than other indicators, it accurately predicts malicious apps as 

malicious. In other words, the proposed system effectively prevents the distribution of malicious apps. As the number of harmful apps 

develops daily, it was determined in this study that it is critical to detect malicious apps using a machine learning model effectively. 

However, utilizing permission alone as a criterion for distinguishing between legitimate and malicious apps is insufficient to detect all 

harmful apps that emerge from new attack technologies. Combining feature information efficient in detecting malicious apps, such as 

APIs that access and control sensitive data from users or adding other detection criteria will likely improve the detection model's 

accuracy. According to the upcoming study, recent attackers have used obfuscation to disguise harmful code and hinder static analysis 

of rogue programs. It is important to consider how to detect harmful apps that are obfuscated in this way. 
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I. INTRODUCTION 

As the use of smartphones has increased recently, damage 
from malicious apps is also increasing. Malicious apps refer 
to malicious software (Malware) that performs malicious 
functions by disguising it as a normal app on a smartphone 
[1], [2]. According to the Korea Internet & Security Agency 
(KISA), malicious apps increased 5.5 times from 1,635 in 
2016 to 9,051 in 2019 and are being used for intelligent crimes 
[3]. Additionally, according to the EST-Security report, 
which analyzed the sources of apps installed on over 12 
million Android devices, 67% of malicious apps were 
installed on the Google Play Store [4]. Despite the tricky 
upload key acquisition and signature procedures when 
uploading apps to the Google Play Store, it has not been able 
to escape from the wrong explanation that it is a malicious app 
installation platform. The installed malicious apps are 
cleverly distributed to smartphone users, causing financial 
losses. For example, there were financial crimes such as 
stealing personal information from smartphones or 

transferring money from accounts to defraud 264 million won 
[5]. The representative research to prevent damage caused by 
malicious apps is a signature analysis method. This analysis 
consists of a code-based static analysis and a sandbox-based 
dynamic analysis [6]–[8]. The static analysis can detect the 
same type of malicious apps by analyzing the source code of 
malicious apps. However, it is difficult to detect manual 
analysis time problems and new types of malicious apps 
because their signatures change. The dynamic analysis 
analyzes suspected malicious output actions and packets to 
determine whether it is malicious. Thus, it can detect 
malicious apps that are difficult to perform static analysis, 
such as obfuscation. However, it is possible to avoid detection 
with the execution environment detection or the conditional 
operation function of malicious apps. In that case, it may be 
difficult to detect malicious apps. In addition, like static 
analysis, it is difficult to detect new types of malicious apps. 

In recent research, machine-learning (ML) based detection 
methods have been proposed to solve new mutation detection 
and false detection rates. These methods distinguish between 
a normal app and a malicious app using a feature that is a form 
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or change of an input value. If we reprocess information from 
thousands or millions of malicious apps in our dataset and 
apply it to training to create a model, it becomes a ML-based 
model with specific features and has a high detection rate [9], 
[10]. The ML-based researches performed detection by 
reading the information in the Android Application Package 
(APK) file and using permission feature or malicious 
behavior mainly used in malicious apps [11]–[15]. These 
research use the dataset, including the permission features of 
the android system. And to obtain high accuracy, their dataset 
adds features: API calls, Dex header, Broadcast Receiver, 
Service, etc. In addition, a study was conducted to increase 
the weight of the top 20 highly important inputs by organizing 
feature information on authority, API, etc., which are 
frequently used in malicious app detection. However, if there 
is a change in the input value due to obfuscation, the 
probability of incorrect detection increases significantly 
because it is difficult to determine with a trained model [8, 
16]. In addition, the use of permission information, which is 
an input value that is not obfuscated, can reduce the false 
detection rate, but this single feature extraction method has a 
limitation in that the detection rate is low.  

In this paper, we propose a method of lowering the false 
detection rate as a machine learning method that extracts and 
uses permission information that is resistant to obfuscation. In 
more detail, for improving the low detection rate of single 
feature extraction, the top 20 permissions analyzed as 
important in detecting malicious and normal apps, and the 
number of permissions used are additionally created through 
frequency analysis. The proposed method is not only tough on 
false detection by obfuscation but also has a higher detection 
rate than the existing single feature extraction method. 

A. APK Configuration 

APK is a package file used to distribute Android software 
and middleware. This file contains elements that are needed 
to run the app, such as AndroidManifest.xml, Class. dex, Res, 
and Lib. The description of the components is shown in Table 
1 [17].  

TABLE I 
COMPONENTS OF AN APK FILE 

Name Description 

Android-
Manifest.xml 

Xml file that manages the app. Application 
Permission, Intent, Service, Activity, SDK 
version information. 

Classes.dex Collected class-files and converted them into 
byte code to allow Android Dalvik virtual 
machines to recognize elements. 

resources.arsc A file containing resource file information. 
Save type and id information for various 
resource files. 

/res Uncompiled images. A folder containing xml 
resource files. 

/lib A folder containing the library. Composed 
of .so files compiled appropriately for each 
process created with NDK (Native 
Development Kit). 

/assets A folder containing app information that can 
be managed by Assets-Manager. 

/META-INF A folder related to the signature. Save SHA-1 
and Base-64 signature values. 

This paper extracts the app's permission information using 
Android static analysis. Among the Android app components, 

the AndroidManifest file has the permission information 
needed to operate the app. It is used to protect the user's 
personal information, and a system is automatically assigned 
according to the authority, and user approval is required [18]. 
In addition, malicious apps excessively require authorization 
information [12]. Therefore, a series of permission 
information that may be used in malicious behavior, such as 
accessing important information on a smartphone or 
exchanging data over the Internet, may be used as a malicious 
app detection feature. 

B. Malicious App Dataset 

This paper uses the Android Malicious App Dataset (CIC-
AndMal2017) provided by the Canadian Institute for 
Cybersecurity (CIC) [19]. The dataset is a collection of 429 
malicious apps and 5,065 normal apps from the Google Play 
Store on smartphones to collect traffic generated through 
various scenarios such as Internet searches, phone calls, and 
messages. Based on that information, it was classified into 42 
malicious software groups and four categories (Adware, 
Ransomware, Scareware, and SMS-malware). Categories of 
datasets and malicious software groups can be represented as 
shown in Table 2 [20], [21], [22], [23]. 

TABLE II 
CATEGORIES AND MALWARE FAMILIES IN ANDMAL2017 

Name 
Description 

Malware Group (Family) 

Adware 

Software that arbitrarily displays advertising to 

users. 

Dowgin, Ewind, Feiwo, Gooligan, Kemoge, 

koodous, Mobidash, Selfmite, Shuanet, Youmi 

family 

Ransomware 

Malware that infiltrates under the guise of e-

mail or updates, encrypts data on the user's 

device, and requires payment in return for 

decryption. 

Charger, Jisut, Koler, LockerPin, Simplocker, 

Pletor, PornDroid, RansomBO, Svpeng, 

annaLocker  family 

Scareware 

A copycat version of ransomware.  

Stressing that they have control of the computer 

and demand money. 

AndroidDefender, AndroidSpy.277, AV for 

Android, AVpass, FakeApp, FakeApp.AL, 

FakeAV, FakeJobOffer, FakeTaoBao, Penetho, 

VirusShield family 

SMS-malware 

SMS+ Phishing. 

It induces malicious app installation by 

impersonating normal apps that are generally 

installed on mobile phones. 

BeanBot, Biige, FakeInst, FakeMart, 

FakeNotify, Jifake, Mazarbot, Nandrobox, 

Plankton, SMSsniffer, Zsone family 

C. Machine-learning Algorithm 

Machine learning algorithms are largely divided into a 
supervised learning method of learning computers with 
correct labels on training data and an unsupervised learning 
method of learning computers without correct labels on 
training data. Supervised learning is a method of classifying 
new data by learning within a predetermined label using 
classification or regression, and unsupervised learning is used 
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to obtain meaningful knowledge through data, although there 
is no prior knowledge of specific results such as clustering or 
pattern recognition [24], [25].  

This paper uses a ML algorithm for classifying normal and 
malicious apps, using a supervised learning method. To select 
the right algorithm for the proposed system, Representative 
classification algorithms such as K-Nearest Neighbor (K-
NN), Support Vector Machine (SVM), Ada Boost, Extra 
Tree, and Random Forest were compared and analyzed in 
Table 3 [26]–[30]. 

TABLE III 
MACHINE LEARNING CLASSIFICATION USING THE SUPERVISED LEARNING 

Algorithm Description 

K-NN A method of classifying new input data into the 
proximity of the neighboring data category. 

SVM Define the classification baseline, the decision 
boundary, as a model. 
A method of categorizing which side of a 
boundary the new data belongs to. 

Ada-Boost As a type of ensemble learning, a method of 
classifying weak classifiers into strong 
classifiers by combining the results.  
The weight of the sample misclassified by the 
drug classifier is applied according to the 
situation. 

Extra-Tree Ensemble learning method that randomly 
generates N Weak Trees for existing datasets 
and selects classifiers with good performance by 
combining classification results. 

Random-
Forest 

Create N Weak Trees randomly while allowing 
duplication for the dataset. 
Ensemble learning method of selecting a 
classifier with good performance by combining 
classification results. 

D. Performance Evaluation Index 

In this paper, a confusion matrix and a receiver operating 
characteristic (ROC) curve are used as performance 
evaluation indicators for machine learning models [31], [32]. 
The confusion matrix consists of True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN). 
In order to minimize misdetection and misdetection, the 
smaller the number of FPs and FNs, the better the 
classification model. In addition, four evaluation indicators 
are added: Accuracy, Precision, Recall, and F1-score through 
TP, FN, FP, and TN of the confusion matrix shown in Table 
4 [33].  

TABLE IV 
CONFUSION MATRIX 

 Predicted 

Malicious App Benign App 

Actual 

Malicious 

App 
True Positive False Negative 

Benign App False Positive True Negative 

 
Accuracy represents the ratio of the number of normal 

detections in the total detected data. Precision is the 
percentage of the actual number of malicious apps predicted 
by malicious apps. On the other hand, Recall is the ratio of the 
number predicted by malicious apps among the actual 
malicious apps. Since Precision and Recall have a relationship 
that is difficult to balance at the same time, F1-score, which 

is a harmonious average of precision and recall, is required. 
In addition, an ROC curve and an Area under the ROC curve 
(AUC) were added as performance evaluation indicators, 
which show the performance of the classification model as a 
curve and indicate the area of the curve. The AUC-ROC curve 
represents the relationship between sensitivity and specificity 
on a two-dimensional plane. The criteria for how well you 
find malicious apps are expressed as sensitivity (Y-axis), and 
the criteria for how well you classify normal apps are 
expressed as specificity (X-axis) [34]. This curve represents a 
model with higher classification accuracy as it approaches the 
upper left (0, 1) of the coordinates. Finally, a K-Fold Cross 
Validation technique was applied to verify the reliability of 
the detection performance evaluation. For K-layer Cross-
Validation, as shown in Fig. 1, after arbitrarily dividing the 
dataset into the same size, one of them is used as a validation 
dataset and the other (K-1) as a learning dataset. If this process 
is repeated k times sequentially, it is possible to verify the 
entire given dataset [35].  

In this paper, for the performance evaluation of the 
proposed model, the k value was set to 8, divided into 8 
datasets and performance evaluation was performed. 
 

 
Fig. 1 An example of the K-fold Cross Validation. 

II. MATERIAL AND METHOD  

Fig. 2 shows the conceptual diagram of the Android 
malicious app detection system proposed in this paper. 
Various files exist inside packages of normal and malicious 
apps. The APK file consists of several files required to run the 
app, of which the AndroidManifest.xml file has the necessary 
permission information to run the app.  

 

 
Fig. 2 A Conceptual Diagram of a Proposed Android Malware Detection 

System. 
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In Android systems, permissions used in apps must be 
licensed to protect users' personal information. Depending on 
the type of permission, the user directly approves it, or the 
system is automatically granted. A typical feature of 
malicious apps is that they excessively require the use of 
permissions. Therefore, we propose a ML-based detection 
method that classifies normal and malicious apps using 
permission information. First, the privileged information of 
the app is extracted in a one-hot encoding format from the 
AndroidManifest.xml file. Input data for training the ML 
model is converted into a dataset in the form of a csv file. In 
order to increase detection performance, the frequency of data 
is analyzed, and the total number of permissions (TPC) and 
the number of frequently used permissions Main Permission 
Count (MPC) are learning algorithm is designed by 
comparing binary classification algorithms and selecting the 
one with good performance. Finally, a new app that requires 
a malicious or normal test is determined using the ML model 
previously created. 

A. Dataset Creation 

The preprocessing process must inevitably perform 
repetitive tasks. This is because it is the process of creating a 
dataset necessary for training with numerous related 
materials. Therefore, in this paper, an automation program 
described in Algorithm 1 was used to extract permission 
information from multiple apps automatically. First, an 
existing permission list file is read, and a label variable is 
created. Additionally, create the value variable to have the 
label size +3 as a column. When the column size of the 
generated value is n, 1 is classified into an order, 2 is an APK 
name, 3 to n-1 is a permission list, and n is classified 
according to the index. Next, it is repeated as many times as 
the number of APKs prepared to create a dataset. A new line 
of value is added, and the class value is stored as 1 malicious 
and 0 normal depending on whether the APK file is malicious. 
Then add the value item to 1 for all the permissions in the 
AndroidManifest.xml file. In this case, if an authority that is 
not in the permission list is found, a new column is added to 
column n-1 of value and set to 1. The label also inserts the 
permission name into the n-1 index as a value. After that, 
when the repetition ends by the number of APK files, a dataset 
is generated by combining label and value and stored as a 
CSV (Comma-Separated Values) file. Finally, save the 
updated label in this task to the permission list file. 

 
Algorithm 1 Auto Extract Algorithm 
Input: apk, APK files 
Input: permList, permission list file 
Output: dataset, dataset file in csv format 
Output: permList, permission list file 
Method: 
label ← permList 
n ← #permList + 3 
for j=1 to #apk do 
    if value is not exist then 
         create value to 1×n array 
    else then 
          attach new row of value 
    decompression apk[j] 
    value[j][1] ← j 
    value[j][2] ← name of apk 
     for k=3 to n-1 do 
         if perm does not exist in label then 
            insert new column at n-1 index of value 

            insert perm’s name at n-1 index of label 
            n ← n + 1 
         if label[k-2] exist among all perms in apk[k] then 
             value[j][k] ← 1 
      end for 
      value[j][n] ← (apk == malicious app) ? 1 : 0 
end for 
dataset ← (label, value) 
permList ← label 

B. Adding Frequency Features to Datasets 

Since the single feature extraction method has a low 
detection rate by detecting only authority information, the 
performance is further improved by using the frequency 
analysis results. The two features define features that mean 
the total number of permissions used in the app as TPC, and 
features that mean the top 20 permissions analyzed as 
important in using the app as MPC. Adding these features is 
also iterative, so an automation program described in 
Algorithm 2 was used. 

TABLE V 
TOP 20 PERMISSIONS  

No Permission (Description) 

1 android.permission.READ_PHONE_STATE 
(Read about phone status such as device phone number, network 
information, and call status in progress) 

2 android.permission.INSTALL_SHORTCUT 

(Install icons on the home screen) 
3 android.permission.SYSTEM_ALERT_WINDOW 

(Open windows using top TYPE_SYSTEM_ALERT of other 

applications) 
4 android.permission.GET_TASKS 

(Access current or recently executed task information) 

5 android.permission.ACCESS_WIFI_STATE 
(Access to information about Wi-Fi networks) 

6 android.permission.MOUNT_UNMOUNT_FILESYSTEMS 

(File system format for removable storage) 
7 com.google.android.c2dm.permission.RECEIVE 

(Receive messages from c2dm server) 

8 android.permission.WRITE_EXTERNAL_STORAGE 
(Write a file to an external repository) 

9 android.permission.ACCESS_COARSE_LOCATION 

(Access to a wide range of locations (Cell-ID, WiFi)) 
10 android.permission.CHANGE_WIFI_STATE 

(Change Wi-Fi connection status) 

11 android.permission.VIBRATE 
(Vibration control) 

12 com.android.vending.BILLING 

(Access to payment data) 
13 android.permission.ACCESS_FINE_LOCATION 

(Access to GPS) 

14 android.permission.WAKE_LOCK 
(Keep the process when the screen is dark or on standby) 

15 android.permission.READ_EXTERNAL_STORAGE 

(Read a file to an external repository) 
16 android.permission.RECEIVE_BOOT_COMPLETED 

(Boot complete execution) 

17 android.permission.GET_ACCOUNTS 
(Access the account list from within the account service) 

18 android.permission.CAMERA 

(Access to camera equipment) 
19 android.permission.ACCESS_NETWORK_STATE 

(Access to information about network access) 

20 com.google.android.gsf.permission.READ_GSERVICES 
(Read data about map) 

 
First, the dataset file is read and stored in label and value 

variables, respectively. And the top 20 authority names of 
high importance are defined as permList. Insert two additional 
columns in column n-1 of value and insert TPC and MPC into 
the n-1 index as values in the label. In order to, obtain the 
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frequency, TPC and MPC variables are created and initialized 
to zero. Next, since one line of the dataset extracts features of 
one APK file, the number of lines of value repeats it. TPC 
checks all the characteristics of each APK and accumulates 
the permission's true (1)/false (0) values.  

 
Algorithm 2 Auto Add Feature Algorithm 
Input: dataset, dataset file in csv format 
Input: permList, top 20 permission list to detect malware 
Output: dataset, dataset file in csv format 
Method: 
(label, value) ← dataset 
insert new 2-column at n-1 index of value 
insert (tpc’s name, mpc’s name) at n-1 index of label 
tpc ← 0, mpc ← 0 
for j=1 to #value’s row do 
    for k=3 to n-3 do 

tcp ← tcp + value[j][k] 
        if label[k] exist among all permList then 
           mpc ← mpc + value[j][k] 
    end for 
    value[j][n-2] ← tpc, value[j][n-1] ← mpc 
    tpc ← 0, mpc ← 0 
end for 
dataset ← (label, value) 

 
The MCP verifies all the privileged names of each APK. 

After checking whether the value is in the permList, the 
authority's true (1)/false (0) values are accumulated and 
summed, if applicable. Then, TPC and MPC values are stored 
in the n-2 and n-1 indexes of the value and are initialized to 
zero again. After that, if the number of lines of value is 
repeated, combine the label and value to create a dataset and 
save it as a CSV file. A total of 1013 APK files and 1031 
Permission Lists were sorted. If the corresponding permission 
exists in each APK file, it is output as 1 and if not, it is output 
as 0. In addition, it is possible to check the frequency of the 
total permission present in each APK file in the last cell. The 
top 20 Permission frequencies based on the importance of 
feature information were added to the existing csv file. If there 
are the top 20 permissions based on the importance of feature 
information among the permissions present in each APK file, 
it is vectorized to check the frequency by accumulating them 

C. Creation of Classification Algorithm Models 

Six hundred downloaded datasets were collected in Benign 
folders, 413 malicious apps in Malicious folders, and 1031 
Permission features used in normal and malicious apps were 
extracted. The Permission frequency contained in one APK 
file was converted into a csv file. For higher accuracy of 
normal and malicious apps classification, the top 20 
Permission frequencies based on the importance of feature 
information in one APK file were converted to csv files. A 
classification algorithm selection process was performed 
based on the previously extracted authority information to 
determine normal and malicious apps. K-NN, SVM, Ada 
Boost, Extra Tree, and Random Forest were considered as 
classification algorithms as shown in Table VI. 

TABLE VI 
MACHINE LEARNING MODELS ACCURACY COMPARE 

Model Accuracy Precision Recall F1 score 
K-NN*1 90.79 87.18 88.70 90.79 
SVM*2 90.79 90.65 84.35 90.79 
AdaBoost*3 93.75 92.86 90.43 93.75 
Extra Tree*4 94.74 93.04 93.04 94.74 
RF*5 95.07 93.10 93.91 95.07 

*1 K-NN options: n_neighbors =10  
*2 SVM options:  C= 0.1  
*3 Ada-Boost options: n_estimators=100  
*4 Extra-Tree: n_estimators=100  
*5 Random Forest options: n_estimators= 50 

 
As a result, Random Forest was selected as an algorithm 

suitable for this study. Random Forest can prevent overfitting 
by the law of large numbers made of randomness. It is also 
robust to noise and reduces predicted volatility. The binary 
classification ML model was trained through the previously 
generated dataset, and the performance of the five 
classification algorithms was compared. Hyper-Parameter of 
each classification model showed optimal performance even 
with default values, so only the n_estimators’ values of three 
models, Random Forest, Extra Tree, and Ada Boost, were set 
differently. In the case of K-NN, the n_neighbors value was 
set to the optimal 10 in the experiment, and the SVM gave the 
gamma C value to 0.1. Ada Boost set it to 100 optimal for the 
experiment, and Random Forest and Extra Tree set it to 50 
optimal for the experiment. As a result, comparing the 
accuracy with the training rate of 80% and the verification rate 
of 20% for the experimental data confirmed that the Random 
Forest model showed the highest performance with 95.07% 
accuracy in determining normal and malicious apps. 

III. RESULT AND DISCUSSION 

In this experiment, 600 normal apps and 413 malicious 
apps were used. Among the permission information extracted 
from a total of 1031 APK files, a total of 1013 feature data 
were used for model training by deleting duplicated or 
meaningless data. The division ratio of the training and 
verification datasets was 8:2, and the training datasets were 
used as 810 and 203 testing datasets. The experiment was 
conducted by adding frequency to the previously created 
dataset using the Random Forest algorithm. 

A. Frequency Feature for Permission (EXP #1) 

This study considers whether it is possible to distinguish 
between normal and malicious apps with higher accuracy by 
adding features on the frequency of permissions in APK files. 
This experiment identifies the frequency of permission in one 
APK file and uses the information as a feature of the ML 
model to increase classification accuracy. The experiment 
was conducted with a total of 1032 features by adding a field 
for the frequency of the permission of the corresponding APK 
to the pre-treated experimental data.  
 

 
Fig. 3 Compare of Permission Frequency Performance Indicator 
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Earlier, as it was confirmed that the performance of the 
Random Forest model was the best through the algorithm 
selection process, the experiment was conducted using only 
the Random Forest model. The experimental data was divided 
by a verification ratio of 20%, and the value of Hyper-
Parameter optimal for the experiment was set. The max_depth 
value was set to 50, the min_samples_split value was set to 5, 
and the n_estimators value was set to 50. 

The algorithm selection process confirmed that the result of 
the normal/malicious app determination of the ML model 
training without adding the Permission frequency was 
95.07%. As a result of training the machine learning model 
by adding features on the frequency of permission of each 
APK file, the accuracy was 97.04%. Compared with previous 
results that did not add the frequency of permission as a 
feature, it can be seen that the accuracy was improved by 
1.97%. 

A total of four types of model performance evaluation 
indicators were used: accuracy, accuracy, reproduction rate, 
and F1-score. In EXP #1, the accuracy of the ML model was 
97.04%, the precision was 97.65%, and the reproduction rate 
was 95.40%. The F1-score, which calculated the harmonic 
mean of precision and reproduction rate, also showed a result 
of 97.04%. Earlier, as a result of calculating the accuracy with 
8-layer cross-validation for reliable evaluation, the 
verification result was 93.48%. 

B. frequency feature for the top 20 permissions (EXP #2) 

Through EXP #1, it was confirmed that the accuracy of 
determining normal and malicious apps according to the 
frequency of permission was improved. In this experiment, 
the frequency of permissions frequently used in apps is added 
as a feature to increase the classification accuracy of normal 
and malicious apps. Even if many permissions make up 
malicious apps, there may be cases where normal apps request 
permission. In order to prevent discriminating normal apps as 
malicious apps, this study improves the accuracy of 
determining normal apps and malicious apps by adding 
frequency features, not the presence or absence of the top 20 
permissions.  

In EXP #2, an experiment was conducted with a total of 
1033 features by adding the frequency of use of the top 20 
Permissions shown in the above feature information 
important to the dataset used in EXP #1. The experimental 
data were divided by a verification ratio of 20%, and the 
Hyper-Parameter value was set to a max_depth value of 50, a 
value of min_samples_split, and a value of n_estimulators of 
50, which are optimal for the experiment. 

The training was conducted by setting the same algorithm 
and the same parameter, and the accuracy was 99.01%, which 
showed higher classification accuracy than EXP #1. The 
reproduction rate was 97.70%, but the reproduction rate was 
100%. Since the False Positive ratio is 0, there is no false 
detection. F1-score also showed high results at 99.01%. To 
compare under the same conditions as EXP #1, the EXP #2 
model was classified with an accuracy of 94.18% due to 8-
layer cross-validation. 

C. Comparison Between Experiments 

As a result of evaluating the two experiments with the same 
performance evaluation index, the Performance of EXP #2 is 

relatively superior to that of EXP #1. Table 7 is the result of 
synthesizing the previous two experimental results. In terms 
of accuracy and F1-score, EXP #2 showed 1.97% higher 
accuracy than EXP #1, and there was a 0.05% fine difference 
in terms of precision. However, the reproduction rate was 
4.6%, showing the biggest difference. This is because there 
was a difference between the two models in the False Positive 
ratio in the confusion matrix.  

In Fig. 4, the two experimental results are shown and 
compared as a ROC curve. Although there is a slight 
difference, the ROC curve corner of EXP #2 is closer to the 
upper left. The AUC value, which means the area under the 
ROC curve, can also be determined by classification 
accuracy, with the AUC value of the EXP #1 model being 
0.9975 and the EXP #2 model being 0.9978. The larger the 
area under the ROC curve, the better the model, so the EXP 
#2 model with a relatively high AUC value is the model 
optimized for classification. In addition, the EXP #2 model 
was classified with 0.7% higher accuracy in the 8-layer cross-
validation conducted to increase the reliability of the 
experimental results further. 

TABLE VII 
EXP 1, EXP 2 COMPARISON OF RESULTS 

Model Accuracy Precision Recall F1 score 

Exp #1
*
 97.04 97.65 95.4 97.04 

Exp #2* 99.01 97.70 100.0 99.01 

*Options: n_neighbors =100, max_depth=50, min_samples_splits =5 

 

 
Fig. 4 The ROC Curves of EXP #1 and EXP 2. 

IV. CONCLUSION 

This study classified normal and malicious apps through 
ML-based detection techniques based on the frequency of 
permission of Android apps. Considering that malicious apps 
require excessive permission, unlike normal apps, we checked 
whether malicious apps could be detected more accurately by 
using them as frequency feature data using permission. 
Among the various ML classification algorithms, Random-
forest showed the highest accuracy. The simple Permission-
based detection model using Random Forest showed an 
accuracy of 95.07%, and the detection model, including the 
frequency at which the app used permission, obtained an 
accuracy of 97.04%. The trained model showed 99.01% 
accuracy, including the frequency of using the top 20 
Permission information that affects distinguishing between 
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normal and malicious apps. It was confirmed that the accuracy 
was improved by about 2% by including meaningful feature 
data such as the frequency of the top 20 permissions based on 
the importance of feature information using the frequency of 
use of the permission. Since it is important to minimize 
misdetection and misdetection and make accurate judgments 
in detecting normal and malicious apps, an ML model 
optimized for classification has been implemented. In this 
study, as the number of malicious apps that develop day-by-
day increases, it was judged that it is important to detect 
malicious apps through the ML model accurately. However, 
simply using permission as a criterion for distinguishing 
between normal and malicious apps is not enough to detect all 
malicious apps appearing with new attack technology. In 
addition, it is expected that higher accuracy of the detection 
model can be expected by combining feature information 
effective in detecting malicious apps, such as APIs that access 
and control sensitive data from users or adding other detection 
criteria. In future research, recent attackers bypass malicious 
app detection using obfuscation that hides malicious code and 
prevents static analysis of malicious apps. It is necessary to 
think about how to detect malicious apps with such 
obfuscation. 
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