
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Design of a Low Area Digit Recognition Accelerator Using MNIST

Database

Joonyub Kwon a, Sunhee Kim a,*

a
Department of Semiconductor System Engineering, Sangmyung University, 31, Sangmyeongdae-gil, Dongnam-gu, Cheonan-si,

Chungcheongnam-do, 31066, Republic of Korea

Corresponding author: *happyshkim@smu.ac.kr

Abstract—Deep neural networks, a field of artificial intelligence, have been used in various fields. Deep learning is processed on high-

performance GPUs or TPUs. It requires a high cost as much as its good performance. As the demand for edge computing increases,

many studies have been conducted to perform complex deep learning operations in a low-computing processor. Among them, a typical

study is to lighten the deep learning network. This paper proposes a handwritten digit recognition hardware accelerator suitable for

edge computing using the MNIST database. After setting the correct rate for MNIST to 94% and performing network lighting

processes, a hardware structure that can reduce the area of hardware and minimize memory access is proposed. The network is set as

a two-layer, fully connected network. The network is modeled with Python and lightened while checking the performance. Network

parameters, weights, and biases are quantized. The pixel number and bit number of MNIST input data are also reduced. The number

of MAC units and the processing order of the hardware accelerator are determined so that there are no used MACs while performing

the MAC operations in parallel. It is designed with Verilog HDL, and its functions are checked in ModelSim. And then, it is implemented

in Xilinx Zynq ZC-702 to verify the operations. The designed number recognition accelerator is expected to be widely used in edge

devices by reducing the area and memory access.

Keywords— MNIST; accelerator; digit recognition; edge computing; fully-connected network.

Manuscript received 22 Oct. 2021; revised 1 Nov. 2021; accepted 15 Dec. 2021. Date of publication 31 Mar. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Deep neural networks, which is a field of artificial

intelligence (AI), are being used in various fields such as

speech recognition, image classification, disease diagnosis,

autonomous driving, image generation, and complex games

[1]–[4]. In some fields, the accuracy of AI has reached a level

that surpasses that of humans. The accuracy of AI

presupposes very high costs: mass storage, high-speed

parallel computing, etc. Google DeepMind's AlphaGo, which

won against the legendary Sedol Lee by 4-1 in March 2016,

is known to use 48 Tensor Processing Units (TPUs). TPUs are

hardware devices specialized to parallelize vector/matrix

calculations, compared to graphics processing units (GPUs).
Therefore, now, methods for network optimization, such as

computational convolution optimization, activation function

improvement, parameter factorization, network pruning, and

network quantization, are being studied as well as

performance improvement [5]–[9].

Recently, as the demand for edge computing increases,

research on dedicated accelerators instead of high-

performance processors such as GPUs and TPUs has been

conducted [10]–[12]. In edge computing, edge AI devices

process data in real-time, and the collected data are sent to a
central server [13]–[15]. Improvement, including network

training, is made on a central server. In other words, most

edge AI devices only inference without training. In addition,

most edge AI devices run on batteries. Therefore, the area and

power consumption of the devices is as important as the

performance [16]. Although 64/32-bit floating-point numbers

are used based on GPU/TPU-software [17]–[19] to find

network parameters through training, 16/8/4/2 fixed-point

numbers are used in inference to reduce area and power

consumption [20]–[22]. In addition, many efforts have been

made to reduce area and power consumption, such as reducing
memory storage capacity and memory access by compressing

data [23]–[25].

The MNIST database (Modified National Institute of

Standards and Technology database) is a database of

53

JOIV : Int. J. Inform. Visualization, 6(1) - March 2022 53-59

handwritten digits [26]. Each data is a digit image between 0

and 9, and the digit is located in the center of the 28x28 black

and white image. It consists of 60,000 training sets and 10,000

test sets. It is a representative database widely used in neural

networks. As a result, many studies using the MNIST

database have been conducted, and the accuracy reaches

about 99.8% [27]–[29]. Most of the networks with an

accuracy of 99% or more use a convolutional neural network

(CNN) [30], [31]. CNN consists of a convolutional layer, an

activation layer, a pooling layer, and a fully connected layer.
It is difficult for even people to accurately judge the digit
figures in which these networks made errors [32]. Recently,

rather than improving the performance of MNIST, many

studies have been conducted to reduce complexity and

increase usability so that it can be processed even in small

devices [33], [34].

This paper investigates the handwritten digits detector

using the MNIST database as a dedicated accelerator that can

be used in edge AI devices. It focuses on area and power

consumption rather than accuracy. The next section explains

network model lightning methods and hardware structure. In

section III, we show implementation and results and then
conclude.

II. MATERIALS AND METHOD

A. Network model optimization

In this study, a neural network model optimization is

performed with the goal of a neural network with two fully

connected layers for the MNIST database. The network model

is coded in Python to train and test. First, the two-dimensional

input images are converted into one-dimensional arrays.

Since they are image data, when they are changed to one-
dimensional arrays, the spatial information of the images is

lowered. However, it is possible to reduce the complexity of

the convolution calculation and power consumption due to

memory access.

The second lighting method is to reduce input data size to

reduce hardware area and power consumption. The MNIST

database consists of images of 728 (=28x28) pixels. In this

study, the size of input data is reduced by half in the horizontal

and vertical directions, respectively, and a 14x14 pixel image

is created. In other words, the number of pixels of the input

image data decreases by a quarter. To reduce the image size,
pooling is required. Pooling methods include max pooling,

min pooling, and average pooling. Max pooling selects the

largest pixel value in a predetermined pixel area. Conversely,

min pooling selects the smallest pixel in a predetermined pixel

area. Averaging pooling selects the average value of the pixel

values included in a predetermined pixel area.

To compare the three pooling methods, a 2-layer network

is constructed, as shown in Fig. 1. The input layer consists of

196 input nodes and one bias node. The hidden layer has 14

nodes, and the output layer consists of 10 nodes. Since no

operation is performed in the input layer, it is a 2-layer
network consisting of one hidden layer and one output layer.

The input layer has 196 nodes (x0 ~ x195) because MNIST

images are converted to one-dimensional arrays with 196

(=14x14) elements after max pooling with 2x2 filter and

stride. The number of nodes in the hidden layer is set to 14.

The number of nodes in the input layer, which is already set

to 196, is the integer multiple of the number of nodes in the

hidden layer. As will be explained later, if it is set to an integer

multiple, it is to reduce the not-used multipliers when

processing multiplication in parallel.

Fig. 1 Two-layer network model

In the hidden layer, each node applies a linear

transformation to the input data xn through the weights w(t,s)

and sums the bias b0. This can be expressed as a formula as

follows.

 ��[�] =� �	(�,�)[�] ���
���

���
+ ��[�] (1)

where w(t,s)
[n] is the weight of the n-th layer and represents a

weight connected from the s-node of the n-1 th layer to the t-

node of the n-th layer. That is, w(t,s)
[1]

 is the weight of layer 1,

and is the weight connected from the s node of the input layer

to the t node of the first layer. b0
[1] means the bias is connected

to the first layer, and there is only one node in one layer. And

zt
[n] means the value after multiply-accumulate (MAC) is

performed at the t-th node of the n-th layer.
The ReLU function is used as the activation function of the

hidden layer. Among the activation functions, the sigmoid

function is widely used in logistic classification because it

outputs a value between 0 and 1. However, the sigmoid

function has a disadvantage in that the optimization process is

slow. In addition, the larger the absolute value of x, the greater

the possibility of losing the differential value during gradient

backpropagation. The hyperbolic tangent function, tanh,

solves the problem of slowing down in the sigmoid

optimization process by shifting the function's center point to

zero. However, the vanishing gradient problem in which the
derivative value disappears above a certain value for the

differential function remains [35]. The ReLU function is a

function to solve the gradient vanishing problem of sigmoid

and tanh. If x is greater than 0, the slope is 1, and if it is less

than 0, the value of the function becomes 0. It is characterized

by faster learning, less computational cost, and simpler

implementation than sigmoid and tanh functions. Leaky

ReLU and PReLU have been developed to compensate for the

disadvantage of dying ReLU in which neurons can die when

their value is less than 0. However, they have similar

performance to ReLU and have the disadvantage of being

complex. Therefore, the ReLU function is selected as the
activation function. The MAC calculation result of the hidden

layer z[1] passes through the activation function ReLU, and the

result value a[1] is transmitted to the output layer.

The output layer is composed of 10 nodes because it

represents the probabilities for each of the 10 digits from 0 to

9. In the output layer, as in the hidden layer, each node applies

54

a linear transformation to the input data an through the weights

w(t,s)
[2] and sums the bias b1

[2]. In the output layer, the final

result value y is obtained through the Max function, which

selects the largest value of given input data instead of the

ReLu function.

TABLE I

COMPARISON OF NETWORK ACCURACY ACCORDING TO BATCH SIZE

batch size 10 100 1000

train images 91.53% 93.59% 94.07%
test images 91.50% 93.26% 93.96%

The network model is coded using Python. After training

10,000 times while changing the mini-batch size of the

MNIST data, the accuracy of the training data and the test data

is compared. As shown in Table I, the performance difference

after 100 was less than 1%. Therefore, the mini-batch size is

set to 100 and then trained 10,000 times.

Since MNIST data is a black and white image, max pooling

is expected to perform much better than the other two pooling

methods, but there is a difference of about 0.1% in accuracy.
As a result, the image size is reduced by max pooling.

TABLE Ⅱ

COMPARISON OF NETWORK ACCURACY ACCORDING TO THE NUMBER OF BIT

S OF WEIGHTS AND BIASES

 float 9bits 8bits 7bits 6bits 5bits

accuracy 94.08% 94.08% 94.03% 94.01% 93.67% 92.87%

Third, the number of bits of weights and biases is

optimized. In general, GPUs are used to train with datasets,
so float 32 or float 16 data types are used. However, if the

network is not very deep and the data input itself is 8 bits as

in this study, good performance can be obtained even if

weights and biases are defined as a fixed-point data type.

Table Ⅱ and Fig. 2 show the results of comparing accuracy

while changing the number of bits of weights W and biases b

from float 32 to fixed point 4 bits. For float 32, the accuracy

is about 94%. When changing to a fixed point and reducing

the number of bits from 9 bits to 4 bits, if it is more than 7

bits, it shows about 94% accuracy, which is similar to the case

of float 32. And, when it is lowered to 6 bits, it can be seen

that the accuracy drops sharply. We select 8 bits for weights
and biases to reduce the number of bits while maintaining the

accuracy to a certain degree.

Fig. 2 Comparison of Network Accuracy according to the Number of Bits

(4-10 bits) of Weights and Biases

Fourth, the number of bits of input data is optimized. The

input data is the pixel data of MNIST. Since it is a black (255)

and white(0) image, its number of bits is 8. As summarized in

Table Ⅲ, the accuracy is checked by lowering the number of

input data bits from 8 bits to 3 bits. Accuracy differs by about

0.1% from 8 bits to 3 bits. When its number of bits is 4, the

accuracy of the test image is the highest. Therefore, in this

study, the number of bits for the handwritten-digit image is

selected to be 4 to optimize the hardware area. As a result, the

size of one image is reduced by 1/8 from 6,272 (=28x28x8)

bits to 784 (=14x14x4) bits. This can reduce the required

memory storage and reduce memory access, which can reduce

power consumption as well as area.

TABLE Ⅲ

COMPARISON OF NETWORK ACCURACY ACCORDING TO THE NUMBER OF BIT

S OF AN INPUT DATA PIXEL

 8bits 7bits 6bits 5bits 4bits 3bits

accuracy 93.98% 93.97% 93.98% 93.98% 94.03% 93.97%

B. Hardware architecture

An accelerator consists of a controller, a MAC block, a

ReLU block, and a Max block. The controller sequentially
executes the entire hardware process. The MAC block is

responsible for the operation of the affine layer. The ReLU

block acts as an activation function of the first layer, and the

final number recognition is made in the MAX block.

In order to implement the proposed two-layer network in

hardware, the following four structures are compared in terms

of low area and low power consumption. For explanation, we

will use the Tm symbol, which means the time it takes from

the start of one multiplication to the start of the next

multiplication in the m-th structure. After the first

multiplication, it becomes T. After the second multiplication

operation, it becomes 2T, and after the n-th multiplication
operation, it becomes nT.

As shown in Fig. 3, the first structure has multipliers as

many as the nodes of the input layer to take advantage of the

parallel hardware processing. For hidden layer processing,

196 input data x are given as the first input of each multiplier.

At the start of the operation, a weight w(0,n) is given to each

multiplier Mn. That is, all multiplication operations for the

first node of the hidden layer are performed at time T. To add

all 196 multiplication results, adders with an 8(=log2(196))-

step tree structure are used. When the accumulated result

passes through the ReLU block, the result of the first node of
the hidden layer is completed. The result is stored in the local

register and waits until all calculations of the hidden layer are

finished.

Fig. 3 The first structure of the accelerator MAC

Next, while x is fixed, w(1,n) is given to each multiplier Mn,
and all multiplication operations for the second node of the

hidden layer are performed. Similarly, the result of the second

55

node of the hidden layer is completed through the 8-step tree

structure adders and the ReLU block. When this process is

repeated 14 times, the operation on the hidden layer is

finished. During this time, the 196 input data are accessed

from memory at once, and weights are accessed from memory

14 times by 196. To store the 196 input data and results, 196

4-bit local registers and 14 25-bit local registers are required.

The output layer is calculated using w[2], b1 and the results

of the hidden layer. The number of the hidden layer results is

14, and the output layer has 10 nodes. That is, a total of

140(=14x10) multiplication operations are required. Since
there are 196 MACs for the hidden layer, the output layer can

complete the calculation at one T. In summary, this structure

has 196 multipliers, and all operations are completed in 15T.

All input data and weight are accessed only once from a

memory. Although the processing speed is fast, it is not

suitable for a low-area and low-power accelerator because

there are too many multipliers.

In the second structure, there are 14 multipliers instead of

196 multipliers. In the hidden layer, as shown in Fig. 4, the

one input data xn is broadcast to 14 multipliers, and the 14

weights w(t,n)
[1] corresponding to the input are transmitted to

14 multipliers, respectively. As can be seen from the index of

weights, 14 multiplication results are values for different

nodes. 14 multiplication results are added in the first structure

because they are all for one hidden layer node. However, in

the second structure, since 14 multiplication results are results

for different nodes, each result must be stored in the local

register and accumulated until the rest of the multiplication is

finished. Since one input data is processed at a time, the

hidden layer operation is finished when 196T is reached. The

14 values stored in the local registers are input to the next

output layer through the ReLU function.

Fig. 4 The second structure of the accelerator MAC

Since the output layer has 10 nodes, 4 out of 14 MACs are

not used when calculating the output layer. As in the hidden

layer, xn is input equally to 10 multipliers, and 10 weights
w(t,n)

[2] corresponding to the input are connected to each

multiplier. When this process is repeated 14 times, the output

layer operation is finished. Totally, it takes 210(= 196+14)T.

Memory access is performed only once for both input data

and weights.

In order to eliminate not used multipliers when calculating

the output layer, the third structure does not broadcast input

data as shown in Fig.5. In the second structure, as input data

are broadcast, each multiplier calculates the value transmitted

to different nodes at a specific time. However, in the third

structure, each multiplier uses different input data, so

multipliers calculate values transmitted to the same node at a
specific time. Therefore, since the result of one hidden layer

node requires 196 multiplications, the result can be obtained

at 14T. Since there are 14 nodes in the hidden layer, repeating

this 14 times will get the results of all hidden layer nodes. That

is in the second structure, the calculation of the hidden layer

ends at 196T.

Fig. 5 The third structure of the accelerator MAC

When comparing the hardware structure, in the second

structure, one adder is connected to each multiplier as shown

in Fig. 4, but in the third structure, there are adders in a tree

structure that adds all the results of 14 multiplication, as

shown in Fig. 5. The second structure requires 14 20-bit
adders, whereas, in the third architecture, there are 7 13-bit

adders, 3 14-bit adders, 2 15-bit adders, one 16-bit adder, and

finally, one 20-bit adder. That is, the number of adders is the

same as 14, but since the number of bits of the adders of the

third structure is smaller, the hardware area is also smaller.

In addition, in the output layer, since 14 different input data

are connected to 14 multipliers to calculate the result of one

node, not used multipliers do not exist. In addition, since the

number of nodes in the output layer is 10, the calculation of

the output layer can be completed by repeating the calculation

only 10 times. That is, it takes 206(=196+10)T.
Compared to the second structure, the third structure can

reduce the area and computation time. However, in the second

structure, 196 input data must be read from memory only

once, but in the third structure, 196 input data must be read

from memory 14 times, that is, whenever the value of each

node of the hidden layer is calculated. In other words, the third

structure consumes more power than the second structure.

The fourth structure is proposed by supplementing the

shortcomings of two structures, as shown in Fig. 6. The MAC

of the fourth structure is the same as the MAC of the third

structure, but the calculation order is different. During the first
T, in both structures, 14 multipliers calculate the value for the

first node of the hidden layer using the input data x0~x13 and

the weights w(0,0)
[1]~w(0,13)

 [1].

Fig. 6 The fourth structure of the accelerator MAC

In the third structure, the values for the first node of the

hidden layer are calculated successively by changing both the

56

input data and the weights. This increases memory access. So,

in the fourth structure, the first input data x0~x13 are fixed, and

the weights are changed from w(0,0)
[1]~w(0,13)

 [1] to

w(1,0)
[1]~w(1,13)

 [1]. Then, the sum of the multiplications

calculated at the first T and the sum of the multiplications

calculated at the second T become the values of different

hidden layer nodes, so they are stored in different local

registers. When this process is repeated 14 times, the

multiplication of the input data x0~x13 is finished. And then,

the input data are changed to x14~x27. By repeating the input

data from x0~x13 to x182~x195, the results for all hidden layer
nodes can be obtained. In summary, the fourth structure keeps

the area small like the third structure and only accesses each

data once like the second structure.

TABLE Ⅳ

COMPARISON OF AREA AND LATENCY OF THREE STRUCTURES

 multiplier adder
memory
access

latency

2 14 20-bit 14 adders 3,082 210T

3 14
13-bit 7, 14-bit 3, 15-bit 2, 16-bit 1
and 20-bit 1 adders

5,684 206T

4 14
13-bit 7, 14-bit 3, 15-bit 2, 16-bit 1

and 20-bit 1 adders
3,082 206T

Table Ⅳ shows the comparison of multipliers, adders, and
memory accesses for three structures. They have 14

multipliers in common. Two operands of the multiplier are 4-

bit unsigned data and 8-bit signed data. Its result is 14-bit

signed data. As described above, in terms of area, the third

and fourth structures are better than the second structure, and

in terms of memory accesses, the second and fourth structures

are better than the third structure. In addition, the third and

fourth structures are better than the second structure in terms

of latency. Therefore, we make an accelerator for MNIST

based on the fourth structure.

C. Hardware design

The proposed MNIST accelerator consists of a controller,

a MAC block, a ReLU block, a MAX block, local registers,

and memory. The ReLU block receives the MAC results from

the hidden layer as inputs and determines output values with

the ReLU function. The MAX block receives the MAC results

from the output layer as inputs and selects the maximum

value. While calculating the hidden layer and output layer,

local registers store the node results of each layer until the

calculation of each layer is completed. That is, in the hidden
layer, the result of the first node comes out at the first T, and

then it has to wait for 13T, so it is stored in a local register.

When the calculation of the hidden layer is finished, the 14

values stored in local registers are again given as inputs to the

MAC to calculate the output layer.

Weights and input data are stored in memory. The weight

is 8 bits, and 196*14 bytes for the first layer and 14*10 bytes

for the second layer are needed. However, since 14 bytes must

be read at a time, the memory is physically composed of three

32-bit (4 bytes) and one 16-bit (2 bytes), and addresses are

arranged as shown in Fig. 7. The bias is 14 +10 bytes and is

stored between addresses 0xCE0 and 0xD4F. The input data
(196*4 bits) is stored between addresses 0xD00 to 0xD6F.

The MAC block, which is the circuit with the fourth

structure discussed above, consists of 14 multipliers and tree-

structured adders. However, the number of bits of multipliers

and adders is expanded. The number of bits of data used in

the hidden layer and the output layer is different. In the

previous description, the number of bits is decided according

to the hidden layer. In the hidden layer, the inputs of MAC are

4-bit data and 8-bit weight and bias. However, since the inputs

of the output layer are the ReLU results of the hidden layer,

they are neither 4 bits nor 8 bits. The ReLU result is 20-bit

data. Therefore, the two operands of the multiplier have 20

bits and 8 bits, respectively, and the subsequent adders are

expanded by 16 bits each compared to the hidden layer
adders. So, we simulate again and reduce the result of the

hidden layer to 8 bits. Therefore, both multiplier operands are

modified to 8 bits, and the adders are increased by 4 bits from

the previous one. During multiplication and addition, the

calculation is performed with extended bits, and only the final

values, which are the input values of the ReLU and MAX

blocks, are truncated to 8 bits. Since the input data of the

hidden layer are fixed at 4 bits, 4-bit zeros are added to make

8-bit data. The structure of the modified MAC is shown in

Fig. 8.

Fig. 7 Memory allocation

 Fig. 8 Modified structure of the accelerator MAC

As seen in Equation (1), the bias values must be added to

the MAC results before they are transferred to the ReLU or

MAX block. However, as shown in Fig. 8, there is no adder

for bias. This is because we use the bias value of each node as

the initial value of local registers. Therefore, there is no need

for additional hardware for bias, and latency can be reduced.

III. RESULTS AND DISCUSSION

The proposed accelerator was designed using Verilog-
HDL and the functions were verified in ModelSim. First, state

machines in the controller were confirmed. As shown in Fig.

9, three states L-state, X-state, and W-state were defined. L-

state distinguishes the hidden layer and the output layer. X-

57

state indicates the state of the input data, and W-state indicates

the state of the weight. When L-state has a value of 0, that is,

during the hidden layer, X-state changes from 0 to

13(=b1101). And, while X-state maintains one state, W-state

changes 14 times. In output layer, L-state is 2(=b10), and the

X-state changes 10 times.

Fig. 9 Verilog simulation results for state machines

Fig. 10 shows input/output data as well as state machines.

The 14x14 pixels modified MNIST handwritten data, 9 and 2,

are sequentially input into the MAC. The input data are 196

(=14x14) one-dimensional arrays. However, 14 input data are

read at a time because the number of multipliers is 14. As

shown in Fig. 10, each row of the input image is read during

the hidden layer processing. So, the simulation waveform

appears as if the input image is rotated. Finally, it is confirmed

that the input images are determined as '9' and '2',

respectively.

Fig. 10 Verilog simulation results for the accelerator

After function verification in ModelSim, it was
implemented using Xilinx ZYNQ ZC-702. The ZC-702 board

consists of a Processing System (PS) containing an ARM

Cortex-A9 processor and an FPGA Aritix-7 Programmable

Logic (PL) for user-designed logic. PS and PL communicate

by AXI bus and support interrupt. So, AXI4-Lite slave

interface was added to the designed accelerator and then

implemented in PL of ZC-702 board.

The operation proceeds in the following order. The ARM

processor writes weights, biases and input data in memory. It

instructs the accelerator to start operation by setting the

operation start register among the control registers of the
accelerator. The accelerator starts operation by reading

weight, bias, and input data from memory. When the

operation is finished, the accelerator interrupts the processor

to inform that the operation is completed. The processor reads

a result value from the result value register. As shown in Fig.

11, the result value determined by the accelerator and the

image written in the memory are displayed on terminal. In

Fig. 11, the image is judged as “2”, and it can be seen that the

actually input image is also “2”. That is, it is confirmed that it

operates correctly.

Fig. 11 Implementation and test

IV. CONCLUSION

In this paper, we designed a low-power, low-area,

handwritten digit recognition deep learning accelerator. In

general, iterative training is performed on high-performance

GPUs to find the optimal deep learning network, and the

optimized network model has high precision. However, in the
case of a handwritten digit recognizer, it is possible to

recognize digits accurately enough without using a high-

performance GPU. Therefore, we conducted the training

process in software and then went through the lighting process

to become a low-power, low-area hardware accelerator while

maintaining proper performance. The handwritten digit data

MNIST is a 28x28 black and white image, and each pixel is 8

bits. The MNIST data was converted into a one-dimensional

array to light the network, and the circuit complexity was

lowered by reducing 784 pixels to 196 pixels. A 2-layer fully

connected network was established, and the hidden layer
consisted of 14 nodes. By lowering the number of bits of

weights and biases, the recognition performance was

analyzed, and weights and biases were set as 8-bit fixed

points. Then, the number of input data bits was lowered, and

the recognition performance was analyzed, and the value of

input data was changed to a 4-bit integer. After confirming

the network model, we designed the hardware and verified the

operation by selecting a structure that can reduce memory

access and area. The designed hardware showed 94%

accuracy as predicted in the algorithm stage and maintains a

level similar to that determined by humans. Therefore, it is

expected to be widely used in edge devices that require low
area and low power.

REFERENCES

[1] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi and J. A. Benediktsson,

“Deep Learning for Hyperspectral Image Classification: An

Overview,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 57, no. 9, pp. 6690-6709, Sept. 2019, doi:

10.1109/TGRS.2019.2907932.

[2] S.L. Oh, Y. Hagiwara, U. Raghavendra, R. Yuvaraj, N. Arunkumar,

M. Murugappan and U. R. Acharya, “A deep learning approach for

Parkinson’s disease diagnosis from EEG signals,” Neural Comput &

Applic.. vol. 32, pp. 10927–10933, 2020. 10.1007/s00521-018-3689-

5.

58

[3] L. Jiao and J. Zhao, “A Survey on the New Generation of Deep

Learning in Image Processing,” IEEE Access, vol. 7, pp. 172231-

172263, 2019. 10.1109/ACCESS.2019.2956508.

[4] N. Justesen, P. Bontrager, J. Togelius and S. Risi, “Deep Learning for

Video Game Playing,” IEEE Transactions on Games, vol. 12, no. 1,

pp. 1-20, March 2020. 10.1109/TG.2019.2896986.

[5] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and

Quantization for Deep Neural Network Acceleration: A Survey,”

Neurocomputing, vol. 461, pp. 370-403, Oct. 2021,

10.1016/j.neucom.2021.07.045.

[6] V. Lebedev, V. Lempitsky, “Speeding-up convolutional neural

networks: A survey,” Bulletin of the Polish Academy of Sciences.

Technical Science, vol. 66, no. 6, pp. 799-811, 2018,

10.24425/bpas.2018.125927.

[7] M. D. Zeiler, and R. Fergus. “Stochastic pooling for regualization of

deep convolutional neural networks,” arXiv preprint arXiv:1301.3557,

2013, 10.48550/arXiv.1301.3557.

[8] J. Y. Wu, C. Yu, S. W. Fu, C. T. Liu, S. Y. Chien and Y. Tsao,

“Increasing Compactness of Deep Learning Based Speech

Enhancement Models With Parameter Pruning and Quantization

Techniques,” IEEE Signal Processing Letters, vol. 26, no. 12, pp.

1887-1891, Dec. 2019. 10.1109/LSP.2019.2951950.

[9] J. Guo, W. Liu, W. Wang, J. Han, R. Li, Y. Lu, S. Hu, “Accelerating

Distributed Deep Learning By Adaptive Gradient Quantization,” in

Proc. ICASSP, Barcelona, Spain, 2020, pp. 1603-1607, doi:

10.1109/ICASSP40776.2020.9054164.

[10] C. Wang, L. Gong, X. Li, and X. Zhou, “A Ubiquitous Machine

Learning Accelerator With Automatic Parallelization on FPGA,”

IEEE Transactions on Parallel and Distributed Systems, vol. 31, no.

10, pp. 2346-2359, 1 Oct. 2020. 10.1109/TPDS.2020.2990924.

[11] Y. Toyama, K. Yoshioka, K. Ban, S. Maya, A. Sai and K. Onizuka,

“An 8 Bit 12.4 TOPS/W Phase-Domain MAC Circuit for Energy-

Constrained Deep Learning Accelerators,” IEEE Journal of Solid-

State Circuits, vol. 54, no. 10, pp. 2730-2742, Oct. 2019.

10.1109/JSSC.2019.2926649.

[12] Y. Wang, Y. Wang, H. Li and X. Li, “An Efficient Deep Learning

Accelerator Architecture for Compressed Video Analysis,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems. pp. 1-1, 2021. 10.1109/TCAD.2021.3120076.

[13] J. Chen and X. Ran, “Deep Learning With Edge Computing: A

Review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674,

Aug. 2019. 10.1109/JPROC.2019.2921977.

[14] K. Cao, Y. Liu, G. Meng and Q. Sun, “An Overview on Edge

Computing Research,” IEEE Access, vol. 8, pp. 85714-85728, 2020.

10.1109/ACCESS.2020.2991734.

[15] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge

computing: A survey,” Future Generation Computer Systems, vol. 97,

pp. 219-235, 2019. 10.1016/j.future.2019.02.050.

[16] S. W. Yang, “Efficient Deep Learning on Limited System Resources

in FPGAs Performance Comparison on Floating Points,” M.S. thesis,

Dept. Computer & Information Technology, Korea Univ., Seoul,

Korea, 2019.

[17] A. Iwata, Y. Yoshida, S. Matsuda, Y. Sato, and N. Suzumura, “An

artificial neural network accelerator using general purpose 24 bits

floating point digital signal processors,” in IJCNN, Washington, DC,

USA, vol. 2, 1989, pp.171–175, doi: 10.1109/IJCNN.1989.118695.

[18] J. Civit-Masot, F. Luna-Perejón, S. Vicente-Díaz, J. M. Rodríguez

Corral and A. Civit, “TPU Cloud-Based Generalized U-Net for Eye

Fundus Image Segmentation,” IEEE Access, vol. 7, pp. 142379-

142387, 2019. 10.1109/ACCESS.2019.2944692.

[19] R. Murillo, A. A. D. Barrio, and G. Botella, “Deep PeNSieve: A deep

learning framework based on the posit number system,” Digital Signal

Processing, vol. 102, 102762, 2020. 10.1016/j.dsp.2020.102762.

[20] Q. H. Vo, N. Linh Le, F. Asim, L. W. Kim and C. S. Hong, “A Deep

Learning Accelerator Based on a Streaming Architecture for Binary

Neural Networks,” IEEE Access, vol. 10, pp. 21141-21159, 2022.

10.1109/ACCESS.2022.3151916.

[21] Y. Toyama, K. Yoshioka, K. Ban, S. Maya, A. Sai and K. Onizuka,

“An 8 Bit 12.4 TOPS/W Phase-Domain MAC Circuit for Energy-

Constrained Deep Learning Accelerators,” IEEE Journal of Solid-

State Circuits, vol. 54, no. 10, pp. 2730-2742, Oct. 2019.

10.1109/JSSC.2019.2926649.

[22] H. F. Langroudi, Z. Carmichael, and D. Kudithipudi, “Deep Learning

Training on the Edge with Low-Precision Posits,” arXiv preprint

arXiv.1907.13216, 2019. 10.48550/arXiv.1907.13216.

[23] H. W. Son, D. Y. Lee, and H. W. Kim, “Compact CNN Accelerator

Chip Design with Optimized MAC And Pooling Layers,” Journal of

the Korea Institute of Information and Communication Engineering,

vol. 25, no. 9, pp. 1158-1165, Sept. 2021,

10.6109/JKIICE.2021.25.9.1158.

[24] S. F. Hsiao, K. C. Chen, C. C. Lin, H. J. Chang, and B. C. Tsai,

“Design of a Sparsity-Aware Reconfigurable Deep Learning

Accelerator Supporting Various Types of Operations,” IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, vol. 10, no.

3, pp. 376-387, Sept. 2020. 10.1109/JETCAS.2020.3015238.

[25] L. Kang, H. Li, X. Li, and H. Zheng, “Design of Convolution

Operation Accelerator based on FPGA,” in Proc. Int. Conf. MLBDBI,

Taiyuan, China, 2020, pp. 80-84,

doi:10.1109/MLBDBI51377.2020.00021.

[26] Y. LeCun, C. Cortes, and C. J. C. Burges, "The MNIST Database of

handwritten digits," [Online]. Available:

http://yann.lecun.com/exdb/mnist/.

[27] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus,

“Regularization of Neural Networks using DropConnect,” in Proc. the

International Conference on Machine Learning, PMLR, Atlanta,

Georgia, USA, 2013, pp. 1058-1066.

[28] Siham Tabik, Ricardo F. Alvear-Sandoval, María M. Ruiz, José-Luis

Sancho-Gómez, Aníbal R. Figueiras-Vidal, Francisco Herrera,

“MNIST-NET10: A heterogeneous deep networks fusion based on the

degree of certainty to reach 0.1% error rate. Ensembles overview and

proposal,” Information Fusion, vol. 62, pp. 73-80, Oct. 2020.

10.1016/j.inffus.2020.04.002.

[29] Matuzas77, “MNIST-0.17,” [Online]. Available:

https://github.com/Matuzas77/MNIST-0.17.

[30] S. S. Kadam, A. C. Adamuthe, and A. B. Patil, “CNN Model for Image

Classification on MNIST and Fashion-MNIST Dataset,” Journal of

Scientific Research, vol. 64, no. 2, pp. 374-384, 2020.

10.37398/JSR.2020.640251.

[31] R. F. Alvear-Sandoval, J. L. Sancho-Gómez, and A. R. Figueiras-

Vidal, “On improving CNNs performance: The case of MNIST,”

Information Fusion, vol. 52, pp. 106-109, Dec. 2019.

10.1016/j.inffus.2018.12.005.

[32] A. Baldominos, Y. Saez, and P. Isasi, “A Survey of Handwritten

Character Recognition with MNIST and EMNIST,” Appl. Sci., vol. 9,

no. 15, 3169, Aug. 2019, 10.3390/app9153169.

[33] A. Velichko A, “Neural Network for Low-Memory IoT Devices and

MNIST Image Recognition Using Kernels Based on Logistic Map,”

Electronics, vol. 9, no. 9, 1432, 2020. 10.3390/electronics9091432.

[34] S. S, Mor, S. Solanki, S. Gupta, S. Dhingra, M. Jain, and R. Saxena,

“Handwritten Text Recognition: with Deep Learning and Android,”

IJEAT, vol. 8, no. 3S, pp. 819-825, Feb. 2019.

[35] S. Himanshu, “Activation Functions : Sigmoid, tanh, ReLU, Leaky

ReLU, PReLU, ELU, Threshold ReLU and Softmax basics for Neural

Networks and Deep Learning,” Jan. 19, 2019. [Online]. Available:

https://himanshuxd.medium.com/activation-functions-sigmoid-relu-

leaky-relu-and-softmax-basics-for-neural-networks-and-deep-

8d9c70eed91e.

59

