
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Genetic Algorithm for Artificial Neural Networks in Real-Time
Strategy Games

Yudi Widhiyasana a, Maisevli Harika a,*, Fahmi Faturahman Nul Hakim a, Fitri Diani a,
Kokoy Siti Komariah b, Diena Rauda Ramdania c

a Department of Computer and Informatics, Politeknik Negeri Bandung, West Java, Bandung, 40559, Indonesia
b Dept. of IT Convergence and Applications Engineering, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan, Republic of Korea

c Dept. of Informatics, UIN Sunan Gunung Djati, West Java, Bandung, 48513, Indonesia

Corresponding author: *widhiyasana@polban.ac.id

Abstract— Controlling each member of the soldiers to carry out battle with Non-Playable Characters (NPC) is one of the secrets to

winning Real-Time Strategy games. The game could be more complicated and offer a more engaging experience if every NPC acts like

humans rather than machines with patterned behavior. Like people during a war, each army member's command requires rapid

reflexes and direction to strike or evade attacks. An intelligent opponent based on ANN as NPC can react quickly to their opponents.

The accuracy of ANN could be enhanced by weight modifications using a Genetic Algorithm (GA). The crossover and mutation rates

significantly impact GA's performance as an ANN setup. This research aims to find the best crossover and mutation rates in GA as a

weight adjustment in ANN. Experiments were conducted using an RTS game simulator using 20 scenarios on a maximum of 4000

iterations. The initial setup of each troop is random, with a seven-unit type available. In this research, the troops won because their men

were subjected to fewer attacks than the opposing forces. The GA optimal crossover and mutation rates are determined using troop

victories as a baseline. According to the findings, the best crossover rate for GA as an ANN weight adjustment is 0.6, whereas the specific

mutation rate is 0.09. The crossover rate of 0.6 has the highest average win value and tends to increase every generation. As for the

mutation rate of 0.09, it has the highest average win value. Thus, this preliminary study can develop NPC more humanly.

Keywords— Artificial neural networks; game AI; human-like behavior; real-time strategy games.

Manuscript received 25 Feb. 2022; revised 11 Mar. 2022; accepted 20 Apr. 2022. Date of publication 30 Jun. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Many genres in video games include action-adventure,
adventure, role-playing, strategy, and others [1], [2]. Each
genre focuses on its playing style [1]. Like the strategy genre,
it prioritizes careful planning from players to achieve victory.
In strategy games, there are characters called Non-Playable
Characters (NPC). NPCs can act as observers, allies, or
enemies in the game. NPCs respond interactively to player
interactions [1], [3].

Today, video games are becoming a popular subject,
ranging from entertainment to improving understanding of
learning[2], [4]. Much research has been done involving video
games. One of the popular genres related to Artificial
Intelligence (AI) is the Real-Time Strategies (RTS) genre [5]–
[7]. Players of this RTS game need to collect resources, build
infrastructure, train military units, upgrade technology,
declare war, and defeat enemies [8]. So, in general, decision-

making in RTS games is categorized into two. Macro-
management (MaM) and micromanagement (MiM)[9].

Macro management is decision-making for long-term
planning, such as: building military barracks, conducting
technological research, training military units, and others.
Micromanagement can plan small units in battle or small units
to minimize unit losses and maximize damage to opponents
[9], [10]. Small units are NPCs. NPCs with human-like
decision-making habits could improve the gaming experience
[11], [12]. Making NPCs with human-like decision-making
abilities can use AI [13], [14]. One of them uses the Artificial
Neural Network (ANN) method.

ANN is a mathematical method that tries to simulate the
structure and function of biological neural networks in the
human brain [15]. The basic form of ANN is an artificial
network with simple mathematical operations. The ANN
inputs and outputs are weighted[15]. Weight set is a
significant problem in the use of ANN. Algorithms such as

298

JOIV : Int. J. Inform. Visualization, 6(2) - June 2022 298-305

backpropagation, genetic algorithms, and others are a choice
of solutions[16].

A Genetic Algorithm is a widespread evolutionary
algorithm. The ability to obtain the best generation due to
crossover, mutation, and selection determines the
performance of GA. Some previous studies have used this
algorithm for several purposes. An example: academic
scheduling [17], sentiment review analysis of fashion online
companies [18], microgrid energy management [19], children
activities model [20], operational planning of cement mills
loading [21], corporal Portal Search Engines [22], the optimal
combination of forest fire [23], heart sound segmentation [24],
detection of urban areas [25], short-term solar power
forecasting [26], breast cancer [27], mobile robot path [28],
Bone Cancer Survivability Prognosis [29], Space-Based
Telescopes [30], et cetera. This study aims to adjust the
weight on the ANN using a genetic algorithm (GA) to
determine the best crossover rate and mutation rate values for
troops in RTS games. This study could show the best
crossover rate and mutation rate for GA to weigh ANN
against troop wins in RTS games.

II. MATERIAL AND METHOD

The stages of research carried out in this study started from
identifying the problem and research objectives, then
conducting a literature study, collecting data used as input,
conducting system design, system testing, analyzing results,
and finally drawing conclusions. This section discusses
related to research rather than the stages of research. The
research steps are more or less the same as research in general.
They started by identifying the problem and research
objectives. Then do a literature study, develop a simulator to
simulate an RTS game, test the simulator, conduct
experiments, and conclude the investigation.

A. Research Analysis

The input layer of the ANN is information related to the
environment and unit information, while the output layer
controls the unit. This research uses one hidden layer with 18
neurons. We utilize the sigmoid function as an activation
function to get a result between zero and one.

Gene is a weighted ANN with 56 chromosomes for one
fitness function. The battle between two armies is a fitness
function and has seven different units, or each type consists
of four teams. The initial formation of the troops is randomly
chosen. The battle could last as long as all units can move and
start Returning to the initial appearance if all teams are not
moving.

After getting the fitness value of each chromosome at the
fitness function stage, a selection is made. The selection
method used is Tournament selection (TOS). The principle of
TOS is first to select several � in all individuals and then find
the most significant fitness value. The crossover method in
this study uses a one-point crossover.

B. Experiment Unit

In the RTS game, each unit has four parameters: health,
attack damage, fire damage, and delay. Health is the unit's

health value with a minimum value of one, and damage is the
unit attack value that can reduce the health value of the enemy.
This study has two categories: damage for melee attacks and
fire or long-range attacks and delays. Delays is a unit's
movement to move forward or attack the enemy. This
parameter has a fairness of 10. Fairness data on each unit can
be seen in Table I.

TABLE I
FAIRNESS DETAILS FOR EACH UNIT

Type Unit Attack Fire Delay Health Total

1 Swordman 2 1 5 2 10
2 Archer 2 4 3 1 10
3 Spearman 3 3 3 1 10
4 Axeman 3 1 4 2 10
5 Heavy 3 1 3 3 10
6 Very

Heavy
4 1 1 4 10

7 Cavalry 2 1 6 1 10

The experimental unit is a simulation of the RTS game that

GA has set as the ANN weight setting for the troop control
unit. The simulation accepts input in crossover rate and
mutation rate values, and the output is the ANN model after
weight adjustment. This model could be the input to
determine the best crossover and battle mutation rates. The
battle output is the winning percentage for each crossover rate
and mutation rate used in the learning stage.

C. Experimental Scenario

The experiment in this study has two scenarios, learning
and measuring the win rate of learning—experiments on
learning change the crossover rate and mutation rate values.
This study's maximum number of generations is 4000 [31].
ANN model with each weight after learning is the result. The
crossover rate uses 0.6 to 0.9 based on the research results of
Soon et al. [32].

The second scenario measures the win rate from the first
scenario. It aims to find out the win rate for each weight. Both
designs have conducted a battle between two armies with unit
weights according to the results of the learning scenario. The
flow of the simulation game in this experiment is divided into
several processes.

1) GA Process Flow: GA process flow is a process flow
that describes the process of GA after it is implemented with
ANN, ground manager, and units. Fig. 1 is an illustration of
the GA process flow. In Fig. 1, the GA process flow. Initial
weight is the initial weight initiation of the GA process. The
ground manager sets respawn units, stores fitness values, and
calculates the number of wins. Selection weight is the stage
of choosing the weight to be the parent, selection repeatedly
until getting a parent with half the population.

2) ANN Process Flow is the ANN process flow after
implementing GA. The flow is shown in Fig. 2. The first step
is to set the weight to assign weights from the comma-
separated values (CSV) file to the ANN model. Weight is a
single-line CSV file. Furthermore, ANN running receives
input. Save output saves ANN output on a variable that can
be used for further processing.

299

Fig. 1 GA Process flow in the experiment

Fig. 2 ANN process flow in the experiment

ANN input in the form of neurons connected to the hidden

layer. The two input neurons are information about the unit's
environment and the unit itself. The large-scale environment
of the unit is depicted as a four-region overall battle
environment, as shown in Fig. 3a, while the small-scale
environment of the unit is depicted in eight grids, as shown in
Fig. 3b.

(a) (b)

Fig. 3 Large-scale environment (a) and small-scale environment (b)

Each region in a large-scale environment could record

information in the form of:
 The average distance of opponents in each region,
 The average friend distance in each region,
 Number of opponents in each region, and
 The number of friends in each region.

The small-scale environment could record information in
the form of whether or not friends or foes are present on each
grid, including unit information itself, such as:

 Current health,
 Delay value,
 Attack value,
 Fire value, and
 Previous outputs.

All input neurons can be seen in Table II.

TABLE II
INPUT NEURON

Id input Information
1 Region one Enemy Average Distance
2 Region two Enemy Average Distance
3 Region three Enemy Average Distance
4 Region four Enemy Average Distance
5 Region one Friend Average Distance
6 Region two Friend Average Distance
7 Region three Friend Average Distance
8 Region four Friend Average Distance
9 Region one Number of Enemy
10 Region two Number of Enemy
11 Region three Number of Enemy
12 Region four Number of Enemy
13 Region one Number of Friend
14 Region two Number of Friend
15 Region three Number of Friend
16 Region four Number of Friend
17 Self-Current Health
18 Self-Delay
19 Self-Attack
20 Self-Fire
21 Prev (Attack/Fire/Move)
22 Enemy at Grid one
23 Enemy at Grid two
24 Enemy at Grid three
25 Enemy at Grid four
26 Enemy at Grid five
27 Enemy at Grid six
28 Enemy at Grid seven
29 Enemy at Grid eight
30 Friend at Grid one
31 Friend at Grid two
32 Friend at Grid three

33 Friend at Grid four
34 Friend at Grid five
35 Friend at Grid six
36 Friend at Grid seven
37 Friend at Grid eight

300

The results of the output neurons must be able to contain
the values of output 1 (attack) and output 3 (fire). Output 2
has the value of the movement with the illustration of
Fig. 4.

Fig. 4 Movement representation on output neurons

The condition of the unit that could attack, fire, or move can
be seen in Table III.

TABLE III
REPRESENTATION OUTPUT NEURON

Output 1 (Fire) Output 3 (Attack) Information
Value 0 to 0.5 Value 0 to 0.5 Units move
Value 0 to 0.5 Value 0.5 to 1 Unit attack
Value 0.5 to 1 Value 0 to 0.5 Unit fire
Value 0.5 to 1 Value 0.5 to 1 Unit does not act

A unit could attack if output 1 is between 0.5 and one and

output three is zero to 0.5. Likewise, the team could fire if
output 1 is between zero and 0.5 and output three is between
0.5 and one. Meanwhile, the team could move if outputs 1 and
3 are between zero and 0.5. The unit may not act if output one
and output 3 are between 0.5 and one. A unit could attack, fire,
or move to the north or grid number two in Table IV if output
2 is between 0.11 to 0.22, as in Table IX, row two. So, a unit
could fire to the east or grid number six in Table III if output

1 is between zero and 0.5, output 3 is between 0.5 to one, and
output 2 is between 0.55 to 0.66.

TABLE IV
OUTPUT VALUE AS A GRID NUMBER

Output 2 (Coordinate) Grid Number
Value 0 to 0,11 1
Value 0.11 to 0.22 2
Value 0.22 to 0.33 3
Value 0.33 to 0.44 4
Value 0.44 to 0.55 5
Value 0.55 to 0.66 6
Value 0.66 to 0.77 7

3) Ground Manager Process Flow: The ground manager
is the function of controlling the entire existing unit, and f is
the ground manager process flow.

Fig. 5 Ground manager process flow in experiments

The declared squad stage is the process of respawning units
on the ground. Unit positions are determined randomly
according to each team and followed by unit process flow.

4) Unit Process Flow: Unit process flow helps manage units.
Fig. 6 shows the process flow. Read environment process to
see environmental conditions for ANN input. The Do output
stage is a unit process running ANN output and finally
calculating the fitness value.

Fig. 6 Unit process flow in the experiment

D. Battle Analysis

The battle between two teams lasts for 10 seconds, and
each unit uses its attributes. For example, unit type 1 could
run ANN every 0.2 seconds. Unit type 2 could run ANN every
0.4 seconds, and so on. The unit ability is shown in Table V
according to the points of each unit in Table I.

TABLE V
ABILITY THE UNIT AND ANN PROCESSING TIME

U
n

it
 T

y
p

e

U
n

it
 N

a
m

e

Damage

Attack

Damage

Fire

Delay Health

P
o

in
t

R
e
a

l

P
o

in
t

R
e
a

l

P
o

in
t

R
e
a

l
(s

)

P
o

in
t

R
e
a

l

1 Swordman 2 20 1 10 5 0,2 2 100
2 Archer 2 20 4 40 3 0,4 1 50
3 Spearman 3 30 3 30 3 0,4 1 50
4 Axe man 3 30 1 10 4 0,3 2 100
5 Heavy 3 30 1 10 3 0,4 3 150
6 Very

Heavy
4 40 1 10 1 0,6 4 200

7 Cavalry 2 20 1 10 6 0,1 1 50

Issues could have a real value using the equation,
multiplied by ten for each case for the damage parameter and
50 for each point for the health parameter. Meanwhile, the
delay parameter uses the formula (5−�����)/10. The unit
could not perform ANN or die until health is zero. Unit health
can be reduced if the unit receives an attack from the enemy
unit.

The battle is a fitness function from GA to get a fitness
score, where the higher the fitness score, the better the unit.
The fitness function is recorded for every unit's movement, as
shown in Table VI. Each fitness score could be totaled after
the battle takes place. The lowest possible value for each unit
is -2050. The lowest value could occur if unit type 7 attacks
on space until the end of the battle and is hit by attacks from
enemy units until health is zero. In comparison, the highest
possible value is 2000. The highest value could occur if unit
type 7 attacks the enemy unit during the battle.

TABLE VI
REWARDS AND PUNISHMENT FOR EACH UNIT

Fitness Function Fitness Score Reward Code
Move Success 0,1/move RC1
Damage Taken -1/damage RC2

301

Fitness Function Fitness Score Reward Code
Damage Given
Enemy

1/damage RC3

Attack 1/damage RC3.1
Fire 1/damage RC3.2
Crash with Wall -0,1/crash RC4
Damage Given
Friend

-1/damage RC5

Attack -1/damage RC5.1
Fire -1/damage RC5.2
Crash with Friend
or Enemy

-0,1/crash RC6

Damage to Nothing
or Self

-1/damage RC7

Nothing -1/damage RC7.1
Self -1/damage RC7.2
Attack and Fire
(both)

-1 RC8

E. GA Analysis as ANN Weight Setting

The ANN structure consists of the input layer, hidden layer,
and output layer. The input layer consists of 37 neurons,
where each neuron is represented in Table II. The hidden layer
consists of 18 neurons, and the output layer consists of 3
neurons. The number of weights on the ANN is 720,
consisting of 666 weights connecting id input 1 to input id 37
to hidden neurons 1 18, and 54 weights connecting hidden
neurons 1 to hidden neurons 18 to output 1 to output 3. Each
weight has an id starting from 1 connecting id input 1 to
hidden neuron 1 to 720 connecting hidden neuron 18 to output
3. Visualization explanation Fig. 7.

Fig. 7 ANN structure and its mapping to GA

The GA chromosome is a set of 720 ANN weights. The GA

chromosome consists of 720 genes which represent 720 ANN
weights. Gene 1 on the GA chromosome is 1 in ANN, gene 2
is w2 on ANN, and so on until gene 720 is 720 in ANN. The
number of chromosomes used in this study is 56
chromosomes. Chromosome 1 could use ANN belonging to
id unit 1, chromosome 2 use ANN belonging to id unit 2, and
so on until chromosome 56 for id unit 56 representation can
be seen in Fig. 8.

Fig. 8 Representation of chromosomes to units

Each unit could be divided into two teams, as shown in Fig.

9, team A and team B. Unit id 1 to unit id 28 is team A, and
unit id 29 to unit id 56 is team B.

Fig. 9 Representation of unit id to unit type

III. RESULT AND DISCUSSION

Before the experiment is carried out, developing a
simulator using the C# programming language with the Unity
Game Engine library is necessary. The simulator has been
tested with test cases, as shown in Table VII.

TABLE VII
FUNCTIONAL REQUIREMENTS OF THE SIMULATOR

Req.ID Requirements Status

REQ.1 The simulator can accept input crossover rate,
mutation rate, and total generation during the
learning stage

Success

REQ.2 The simulator records the weight value of each
population and generation into a .csv file inside
a folder chosen at the learning stage

Success

REQ.3 The simulator displays information on the most
significant fitness value in that generation and
the total of the generations that have been
carried out in the learning stage

Success

REQ.4 The simulator is capable of receiving input
folder locations of each battle scenario and the
total battles of each scenario at the measurement
stage

Success

REQ.5 Simulator capable of measuring win rate,
displaying and saving to .csv file

Success

302

The simulator display during the learning scenario can be
seen in Fig. 10 and the win rate in Fig. 11.

Fig. 10 Experiment simulator view when doing learning scenario

Fig. 11 The simulator display when carrying out the number of wins
scenarios

After getting the number of wins in each scenario. The team's
win percentage is added to each scenario code, and the
winning generation is divided into the total battle. Table VIII
shows the experimental results measuring the win rate for
each scenario code.

TABLE VIII
WIN RATE EXPERIMENT RESULTS

Scenario

Code

Generation

1000 2000 3000 4000

S606 45% 65% 42% 72%
S607 35% 63% 48% 39%
S608 47% 55% 41% 63%
S609 47% 45% 54% 57%
S610 47% 49% 46% 46%
S706 63% 29% 42% 41%
S707 53% 39% 45% 43%
S708 54% 35% 47% 47%
S709 45% 69% 58% 53%
S710 39% 57% 64% 51%
S806 42% 45% 41% 44%
S807 45% 51% 39% 43%
S808 56% 42% 61% 50%
S809 63% 59% 59% 47%
S810 48% 43% 44% 47%
S906 42% 27% 42% 37%
S907 37% 40% 54% 42%
S908 43% 60% 39% 36%
S909 57% 46% 48% 33%
S910 38% 34% 42% 57%

F. Experiment with Each Crossover rate

The average wins for the crossover rates generation are
1000, 2000, 3000, and 4000 (Table IX). The initial

assumption of a crossover rate is 0.8, and 0.9 cannot give a
better average win than 0.6 and 0.7. A crossover rate of 0.6
showed the best performance in Generation 2000 and 4000,
while 0.7 in Generation 1000 and 3000. A crossover rate of
0.8 showed the best performance in Generation 1000, but the
value was slightly different from 0.7. The best performance is
0.9 on the Generation 3000 Force, but the overall percentage
is still under 47.5%.

TABLE IX
THE AVERAGE WINS FOR THE CROSSOVER RATES

Crossover

Rate

Generation
Average

1000 2000 3000 4000

0.6 44.4% 55.3% 46.1% 55.4% 50.3%
0.7 50.8% 45.9% 51.2% 46.8% 48.7%
0.8 50.6% 48.1% 48.9% 46.4% 48.5%
0.9 43.5% 41.2% 45.1% 41.1% 42.7%

G. Experiment for Each Mutation Rate

Table X shows the average win rate for each mutation rate
in the generation 1000, 2000, 3000, and 4000. In Table X, the
mutation rate of 0.09 shows the best performance in the
generation 1000, 2000, and 3000, while the generation 4000
mutation rate of 0.1 is better. Mutation rates of 0.06 and 0.07
gave the best performance of 48%, which is the average value
of the overall mutation rate. The mutation rate of 0.1 shows
an increase in each generation of generations, from 1000,
worth 43%, to the generation of 4000, worth 50%. The 0.09
mutation rate shows its best performance in each generation,
except for 4000 (shown in Table X, line four with a value of
47,7%). However, it is still, on average, the overall mutation
rate.

TABLE X
THE AVERAGE WINS FOR THE MUTATION RATES

Mutation

Rate

Generation
Average

1000 2000 3000 4000

0.06 48.0% 41.4% 41.8% 48.2% 44.9%
0.07 42.6% 48.2% 46.4% 41.7% 44.7%
0.08 49.9% 48.0% 47.2% 49.2% 48.6%
0.09 53.1% 54.7% 54.7% 47.7% 52.5%
0.1 43.2% 45.8% 48.9% 50.3% 47.0%

H. Experiment for Each Crossover Rate and Mutation Rate

Table XI shows the win rate for each scenario code carried
out. The highest victory rate for generation 1000 is scenario
code S706 or crossover rate 0.7 and mutation 0.06 with a
value of 62.9 %, which is 0.3 % more than scenario code S809
with a value of 62.6 %. The "generation 2000" scenario code
S709 has the highest win rate with a win percentage of 69.5 %.
Next, with 63.9 %, "generation 3000" scenario code S710 has
the highest victory rate, and "generation 4000" scenario code
S606 has the best win rate with 71.6 %. Overall, with a value
of 56.9%, the S809 scenario code delivers the best average for
each generation, a difference of 0.5 % from the second place,
namely the S709 scenario.

TABLE XI
THE AVERAGE WINS FOR THE CROSSOVER RATES AND MUTATION RATE

Scenario

Code

Generation
Average

1000 2000 3000 4000

S606 45.0% 65.3% 41.8% 71.6% 55.9%
S607 35.3% 62.6% 47.9% 38.9% 46.2%
S608 47.4% 55.0% 41.3% 63.4% 51.8%
S609 47.4% 45.0% 53.9% 56.8% 50.8%

303

Scenario

Code

Generation
Average

1000 2000 3000 4000

S610 47.1% 48.7% 45.5% 46.1% 46.8%
S706 62.9% 28.9% 42.4% 40.8% 43.8%
S707 52.6% 39.2% 44.7% 42.6% 44.8%
S708 54.2% 34.7% 47.1% 46.8% 45.7%
S709 45.3% 69.5% 57.6% 53.4% 56.4%
S710 39.2% 57.1% 63.9% 50.5% 52.7%
S806 41.8% 44.7% 40.5% 43.7% 42.7%
S807 45.0% 51.3% 39.2% 43.2% 44.7%
S808 55.5% 42.1% 61.3% 50.3% 52.3%
S809 62.6% 58.7% 58.9% 47.4% 56.9%
S810 48.2% 43.4% 44.5% 47.4% 45.9%
S906 42.1% 26.8% 42.4% 36.8% 37.0%
S907 37.4% 39.7% 53.9% 42.1% 43.3%
S908 42.6% 60.0% 38.9% 36.3% 44.5%
S909 57.1% 45.5% 48.4% 33.2% 46.1%
S910 38.4% 33.9% 41.6% 57.1% 42.8%

IV. CONCLUSION

Micromanagement in RTS games significantly affects the
victory of the game. Reasonable reaction control on NPCs
could make the RTS experience more challenging. Using GA
as ANN weight adjustment proves that NPCs can learn well.
The correct crossover rate for this study is 0.6 because it has
the highest average win value and tends to increase every
generation. Meanwhile, the exact mutation rate in this study
is 0.09 because it has the highest average win value. After the
correct crossover rate and mutation rate, this research can be
continued to other cases or add more input to ANN, such as
dangerousness and attack range parameter for long-range
attack type units.

REFERENCES

[1] L. F. Bicalho, B. Feijó, and A. Baffa, "A culture model for non-player
characters' behaviors in role-playing games," in Brazilian Symposium

on Games and Digital Entertainment, SBGAMES, 2020, vol. 2020-
Novem, pp. 9–18, doi: 10.1109/SBGames51465.2020.00013.

[2] M. Mostafa and O. S. Faragallah, "Development of Serious Games for
Teaching Information Security Courses," IEEE Access, vol. 7, pp.
169293–169305, 2019, doi: 10.1109/ACCESS.2019.2955639.

[3] M. Černý, T. Plch, M. Marko, J. Gemrot, P. Ondráček, and C. Brom,
"Using behavior objects to manage complexity in virtual worlds,"
IEEE Trans. Comput. Intell. AI Games, vol. 9, no. 2, pp. 166–180,
2017, doi: 10.1109/TCIAIG.2016.2528499.

[4] D. Rauda Ramdania, M. Harika, S. Rahmadika, and G. Giftia Azmiana,
"The Use of Relations and Functions Games Based on Balanced
Design in Mathematics Subjects to Improve Student Learning
Outcomes," J. Phys. Conf. Ser., vol. 1175, no. 1, 2019, doi:
10.1088/1742-6596/1175/1/012069.

[5] D. Novak, D. Verber, J. Dugonik, and I. Fister, "A comparison of
evolutionary and tree-based approaches for game feature validation in
real-time strategy games with a novel metric," Mathematics, vol. 8, no.
5, 2020, doi: 10.3390/MATH8050688.

[6] L. Wu and A. Markham, "Evolutionary machine learning for RTS
game starcraft," in 31st AAAI Conference on Artificial Intelligence,

AAAI 2017, 2017, pp. 5007–5008.
[7] Y. Zhen, Z. Wanpeng, and L. Hongfu, "Artificial intelligence

techniques on real-time strategy games," in ACM International

Conference Proceeding Series, 2018, pp. 11–21, doi:
10.1145/3297156.3297188.

[8] D. Churchill et al., "StarCraft Bots and Competitions," Encycl.

Comput. Graph. Games, pp. 1–18, 2016, doi: 10.1007/978-3-319-
08234-9_18-1.

[9] F. F. Duarte, N. Lau, A. Pereira, and L. P. Reis, "A survey of planning
and learning in games," Appl. Sci., vol. 10, no. 13, 2020, doi:
10.3390/app10134529.

[10] F. Dai, J. Gong, J. Huang, and J. Hao, "Macromanagement and
Strategy Classification in Real-Time Strategy Games," Proc. - 2nd

China Symp. Cogn. Comput. Hybrid Intell. CCHI 2019, pp. 263–267,
2019, doi: 10.1109/CCHI.2019.8901957.

[11] M. J. Kim, K. J. Kim, S. Kim, and A. K. Dey, "Performance Evaluation
Gaps in a Real-Time Strategy Game between Human and Artificial
Intelligence Players," IEEE Access, vol. 6, pp. 13575–13586, 2018,
doi: 10.1109/ACCESS.2018.2800016.

[12] C. A. Cruz and J. A. R. Uresti, "HRLB^2: A reinforcement learning
based framework for believable bots," Appl. Sci., vol. 8, no. 12, 2018,
doi: 10.3390/app8122453.

[13] V. M. Petrovic, "Artificial Intelligence and Virtual Worlds-Toward
Human-Level AI Agents," IEEE Access, vol. 6, pp. 39976–39988,
2018, doi: 10.1109/ACCESS.2018.2855970.

[14] M. Kopel and T. Hajas, "Implementing AI for Non-player Characters
in 3D Video Games," in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), vol. 10751 LNAI, 2018, pp. 610–619.
[15] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E.

Mohamed, and H. Arshad, "State-of-the-art in artificial neural network
applications: A survey," Heliyon, vol. 4, no. 11, 2018, doi:
10.1016/j.heliyon.2018.e00938.

[16] M. A. J. Idrissi, H. Ramchoun, Y. Ghanou, and M. Ettaouil, "Genetic
algorithm for neural network architecture optimization," Proc. 3rd

IEEE Int. Conf. Logist. Oper. Manag. GOL 2016, 2016, doi:
10.1109/GOL.2016.7731699.

[17] T. Suratno, N. Rarasati, and Z. Gusmanely, "Optimization of Genetic
Algorithm for Implementation Designing and Modeling in Academic
Scheduling," Eksakta Berk. Ilm. Bid. MIPA (E-ISSN 2549-7464), vol.
20, no. 1, pp. 17–24, 2019.

[18] S. Ernawati, E. R. Yulia, Frieyadie, and Samudi, "Implementation of
the Naïve Bayes Algorithm with Feature Selection using Genetic
Algorithm for Sentiment Review Analysis of Fashion Online
Companies," in 2018 6th International Conference on Cyber and IT

Service Management, CITSM 2018, 2019, pp. 1–5, doi:
10.1109/CITSM.2018.8674286.

[19] S. Leonori, M. Paschero, F. M. F. Mascioli, and A. Rizzi,
"Optimization strategies for Microgrid energy management systems
by Genetic Algorithms," Appl. Soft Comput., vol. 86, p. 105903, 2020.

[20] A. García-Dominguez et al., "Feature Selection Using Genetic
Algorithms for the Generation of a Recognition and Classification of
Children Activities Model Using Environmental Sound," Mob. Inf.

Syst., vol. 2020, 2020, doi: 10.1155/2020/8617430.
[21] V. I. Svetlichnaya, E. O. Savkova, O. O. Shumaieva, O. V Chengar,

and V. I. Shevchenko, "Using genetic algorithms for operational
planning of cement mills loading," in IOP Conference Series:

Materials Science and Engineering, 2021, vol. 1047, no. 1, p. 12134.
[22] Y. Qiu, D. Wang, and H. Yan, "Research on Application of Genetic

Algorithms in Corporal Portal Search Engines," in 2021 IEEE 5th

Advanced Information Technology, Electronic and Automation

Control Conference (IAEAC), 2021, vol. 5, pp. 1310–1314.
[23] H. Hong, P. Tsangaratos, I. Ilia, J. Liu, A.-X. Zhu, and C. Xu,

"Applying genetic algorithms to set the optimal combination of forest
fire-related variables and model forest fire susceptibility based on data
mining models. The case of Dayu County, China," Sci. Total Environ.,
vol. 630, pp. 1044–1056, 2018.

[24] M. A. Alonso-Arévalo, A. Cruz-Gutiérrez, R. F. Ibarra-Hernández, E.
García-Canseco, and R. Conte-Galván, “Robust heart sound
segmentation based on spectral change detection and genetic
algorithms,” Biomed. Signal Process. Control, vol. 63, p. 102208,
2021, doi: 10.1016/j.bspc.2020.102208.

[25] D. Mokadem, A. Amine, Z. Elberrichi, and D. Helbert, "Detection of
urban areas using genetic algorithms and kohonen maps on
multispectral images," Int. J. Organ. Collect. Intell., vol. 8, no. 1, pp.
46–62, 2018.

[26] M. Ratshilengo, C. Sigauke, and A. Bere, "Short-Term Solar Power
Forecasting Using Genetic Algorithms: An Application Using South
African Data," Appl. Sci., vol. 11, no. 9, p. 4214, 2021.

[27] F. Ahmad, N. A. M. Isa, M. H. M. Noor, and Z. Hussain, "Intelligent
breast cancer diagnosis using hybrid GA-ANN," in Proceedings - 5th

International Conference on Computational Intelligence,

Communication Systems, and Networks, CICSyN 2013, 2013, pp. 9–
12, doi: 10.1109/CICSYN.2013.67.

[28] W. Rahmaniar and A. E. Rakhmania, "Mobile Robot Path Planning in
a Trajectory with Multiple Obstacles Using Genetic Algorithms," J.

Robot. Control, vol. 3, no. 1, pp. 1–7, 2022.
[29] S. Muthaiyah and V. A. Singh, "Bone Cancer Survivability Prognosis

with KNN and Genetic Algorithms," in Concepts and Real-Time

Applications of Deep Learning, Springer, 2021, pp. 123–134.

304

[30] H. Chit Siu and V. Pankratius, "Genetic Algorithms for Starshade
Retargeting in Space-Based Telescopes," arXiv e-prints, p. arXiv-
1907, 2019.

[31] K. Shao, Y. Zhu, and D. Zhao, "StarCraft Micromanagement with
Reinforcement Learning and Curriculum Transfer Learning," IEEE

Trans. Emerg. Top. Comput. Intell., vol. 3, no. 1, pp. 73–84, 2019, doi:
10.1109/TETCI.2018.2823329.

[32] G. K. Soon, T. T. Guan, C. K. On, R. Alfred, and P. Anthony, "A
comparison on the performance of crossover techniques in video
game," in Proceedings - 2013 IEEE International Conference on

Control System, Computing and Engineering, ICCSCE 2013, 2013, pp.
493–498, doi: 10.1109/ICCSCE.2013.6720015.

305

