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Abstract— Controlling each member of the soldiers to carry out battle with Non-Playable Characters (NPC) is one of the secrets to 

winning Real-Time Strategy games. The game could be more complicated and offer a more engaging experience if every NPC acts like 

humans rather than machines with patterned behavior. Like people during a war, each army member's command requires rapid 

reflexes and direction to strike or evade attacks. An intelligent opponent based on ANN as NPC can react quickly to their opponents. 

The accuracy of ANN could be enhanced by weight modifications using a Genetic Algorithm (GA). The crossover and mutation rates 

significantly impact GA's performance as an ANN setup. This research aims to find the best crossover and mutation rates in GA as a 

weight adjustment in ANN. Experiments were conducted using an RTS game simulator using 20 scenarios on a maximum of 4000 

iterations. The initial setup of each troop is random, with a seven-unit type available. In this research, the troops won because their men 

were subjected to fewer attacks than the opposing forces. The GA optimal crossover and mutation rates are determined using troop 

victories as a baseline. According to the findings, the best crossover rate for GA as an ANN weight adjustment is 0.6, whereas the specific 

mutation rate is 0.09. The crossover rate of 0.6 has the highest average win value and tends to increase every generation. As for the 

mutation rate of 0.09, it has the highest average win value. Thus, this preliminary study can develop NPC more humanly. 
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I. INTRODUCTION 

Many genres in video games include action-adventure, 
adventure, role-playing, strategy, and others [1], [2]. Each 
genre focuses on its playing style [1]. Like the strategy genre, 
it prioritizes careful planning from players to achieve victory. 
In strategy games, there are characters called Non-Playable 
Characters (NPC). NPCs can act as observers, allies, or 
enemies in the game. NPCs respond interactively to player 
interactions [1], [3]. 

Today, video games are becoming a popular subject, 
ranging from entertainment to improving understanding of 
learning[2], [4]. Much research has been done involving video 
games. One of the popular genres related to Artificial 
Intelligence (AI) is the Real-Time Strategies (RTS) genre [5]–
[7]. Players of this RTS game need to collect resources, build 
infrastructure, train military units, upgrade technology, 
declare war, and defeat enemies [8]. So, in general, decision-

making in RTS games is categorized into two. Macro-
management (MaM) and micromanagement (MiM)[9]. 

Macro management is decision-making for long-term 
planning, such as: building military barracks, conducting 
technological research, training military units, and others. 
Micromanagement can plan small units in battle or small units 
to minimize unit losses and maximize damage to opponents 
[9], [10]. Small units are NPCs. NPCs with human-like 
decision-making habits could improve the gaming experience 
[11], [12]. Making NPCs with human-like decision-making 
abilities can use AI [13], [14]. One of them uses the Artificial 
Neural Network (ANN) method. 

ANN is a mathematical method that tries to simulate the 
structure and function of biological neural networks in the 
human brain [15]. The basic form of ANN is an artificial 
network with simple mathematical operations. The ANN 
inputs and outputs are weighted[15]. Weight set is a 
significant problem in the use of ANN. Algorithms such as 

298

JOIV : Int. J. Inform. Visualization, 6(2) - June 2022 298-305 



backpropagation, genetic algorithms, and others are a choice 
of solutions[16]. 

A Genetic Algorithm is a widespread evolutionary 
algorithm. The ability to obtain the best generation due to 
crossover, mutation, and selection determines the 
performance of GA. Some previous studies have used this 
algorithm for several purposes. An example: academic 
scheduling [17], sentiment review analysis of fashion online 
companies [18], microgrid energy management [19], children 
activities model [20], operational planning of cement mills 
loading [21], corporal Portal Search Engines [22], the optimal 
combination of forest fire [23], heart sound segmentation [24], 
detection of urban areas [25], short-term solar power 
forecasting [26], breast cancer [27], mobile robot path [28], 
Bone Cancer Survivability Prognosis [29], Space-Based 
Telescopes [30], et cetera. This study aims to adjust the 
weight on the ANN using a genetic algorithm (GA) to 
determine the best crossover rate and mutation rate values for 
troops in RTS games. This study could show the best 
crossover rate and mutation rate for GA to weigh ANN 
against troop wins in RTS games. 

II. MATERIAL AND METHOD 

The stages of research carried out in this study started from 
identifying the problem and research objectives, then 
conducting a literature study, collecting data used as input, 
conducting system design, system testing, analyzing results, 
and finally drawing conclusions. This section discusses 
related to research rather than the stages of research. The 
research steps are more or less the same as research in general. 
They started by identifying the problem and research 
objectives. Then do a literature study, develop a simulator to 
simulate an RTS game, test the simulator, conduct 
experiments, and conclude the investigation. 

A. Research Analysis 

The input layer of the ANN is information related to the 
environment and unit information, while the output layer 
controls the unit. This research uses one hidden layer with 18 
neurons. We utilize the sigmoid function as an activation 
function to get a result between zero and one. 

Gene is a weighted ANN with 56 chromosomes for one 
fitness function. The battle between two armies is a fitness 
function and has seven different units, or each type consists 
of four teams. The initial formation of the troops is randomly 
chosen. The battle could last as long as all units can move and 
start Returning to the initial appearance if all teams are not 
moving. 

After getting the fitness value of each chromosome at the 
fitness function stage, a selection is made. The selection 
method used is Tournament selection (TOS). The principle of 
TOS is first to select several � in all individuals and then find 
the most significant fitness value. The crossover method in 
this study uses a one-point crossover. 

B. Experiment Unit 

In the RTS game, each unit has four parameters: health, 
attack damage, fire damage, and delay. Health is the unit's 

health value with a minimum value of one, and damage is the 
unit attack value that can reduce the health value of the enemy. 
This study has two categories: damage for melee attacks and 
fire or long-range attacks and delays. Delays is a unit's 
movement to move forward or attack the enemy. This 
parameter has a fairness of 10. Fairness data on each unit can 
be seen in Table I. 

TABLE I 
FAIRNESS DETAILS FOR EACH UNIT 

Type Unit Attack Fire Delay Health Total 

1 Swordman 2 1 5 2 10 
2 Archer 2 4 3 1 10 
3 Spearman 3 3 3 1 10 
4 Axeman 3 1 4 2 10 
5 Heavy 3 1 3 3 10 
6 Very 

Heavy 
4 1 1 4 10 

7 Cavalry 2 1 6 1 10 
 
The experimental unit is a simulation of the RTS game that 

GA has set as the ANN weight setting for the troop control 
unit. The simulation accepts input in crossover rate and 
mutation rate values, and the output is the ANN model after 
weight adjustment. This model could be the input to 
determine the best crossover and battle mutation rates. The 
battle output is the winning percentage for each crossover rate 
and mutation rate used in the learning stage. 

C. Experimental Scenario 

The experiment in this study has two scenarios, learning 
and measuring the win rate of learning—experiments on 
learning change the crossover rate and mutation rate values. 
This study's maximum number of generations is 4000 [31]. 
ANN model with each weight after learning is the result. The 
crossover rate uses 0.6 to 0.9 based on the research results of 
Soon et al. [32]. 

The second scenario measures the win rate from the first 
scenario. It aims to find out the win rate for each weight. Both 
designs have conducted a battle between two armies with unit 
weights according to the results of the learning scenario. The 
flow of the simulation game in this experiment is divided into 
several processes. 

1)   GA Process Flow: GA process flow is a process flow 
that describes the process of GA after it is implemented with 
ANN, ground manager, and units. Fig. 1 is an illustration of 
the GA process flow. In Fig. 1, the GA process flow. Initial 
weight is the initial weight initiation of the GA process. The 
ground manager sets respawn units, stores fitness values, and 
calculates the number of wins. Selection weight is the stage 
of choosing the weight to be the parent, selection repeatedly 
until getting a parent with half the population. 

2)  ANN Process Flow is the ANN process flow after 
implementing GA. The flow is shown in Fig. 2. The first step 
is to set the weight to assign weights from the comma-
separated values (CSV) file to the ANN model. Weight is a 
single-line CSV file. Furthermore, ANN running receives 
input. Save output saves ANN output on a variable that can 
be used for further processing. 
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Fig. 1  GA Process flow in the experiment 

 

 
Fig. 2  ANN process flow in the experiment 

 
ANN input in the form of neurons connected to the hidden 

layer. The two input neurons are information about the unit's 
environment and the unit itself. The large-scale environment 
of the unit is depicted as a four-region overall battle 
environment, as shown in Fig. 3a, while the small-scale 
environment of the unit is depicted in eight grids, as shown in 
Fig. 3b. 
  

  
(a) (b) 

Fig. 3  Large-scale environment (a) and small-scale environment (b) 

 
Each region in a large-scale environment could record 

information in the form of: 
 The average distance of opponents in each region, 
 The average friend distance in each region, 
 Number of opponents in each region, and 
 The number of friends in each region. 

The small-scale environment could record information in 
the form of whether or not friends or foes are present on each 
grid, including unit information itself, such as: 

 Current health, 
 Delay value, 
 Attack value, 
 Fire value, and 
 Previous outputs. 

All input neurons can be seen in Table II. 

TABLE II 
INPUT NEURON 

Id input  Information  
1  Region one Enemy Average Distance  
2  Region two Enemy Average Distance  
3  Region three Enemy Average Distance  
4  Region four Enemy Average Distance  
5  Region one Friend Average Distance  
6  Region two Friend Average Distance  
7  Region three Friend Average Distance  
8  Region four Friend Average Distance  
9  Region one Number of Enemy  
10  Region two Number of Enemy  
11  Region three Number of Enemy  
12  Region four Number of Enemy  
13  Region one Number of Friend  
14  Region two Number of Friend  
15  Region three Number of Friend  
16  Region four Number of Friend  
17  Self-Current Health  
18  Self-Delay  
19  Self-Attack  
20  Self-Fire  
21  Prev (Attack/Fire/Move)  
22  Enemy at Grid one  
23  Enemy at Grid two 
24  Enemy at Grid three 
25  Enemy at Grid four 
26  Enemy at Grid five 
27  Enemy at Grid six 
28  Enemy at Grid seven 
29  Enemy at Grid eight 
30  Friend at Grid one 
31  Friend at Grid two 
32  Friend at Grid three 

33  Friend at Grid four 
34  Friend at Grid five 
35  Friend at Grid six 
36  Friend at Grid seven 
37  Friend at Grid eight 
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The results of the output neurons must be able to contain 
the values of output 1 (attack) and output 3 (fire). Output 2 
has the value of the movement with the illustration of 
Fig. 4. 

 

 
Fig. 4  Movement representation on output neurons 

 
The condition of the unit that could attack, fire, or move can 
be seen in Table III. 

TABLE III 
REPRESENTATION OUTPUT NEURON 

Output 1 (Fire)  Output 3 (Attack)  Information 
Value 0 to 0.5  Value 0 to 0.5  Units move 
Value 0 to 0.5  Value 0.5 to 1  Unit attack  
Value 0.5 to 1  Value 0 to 0.5  Unit fire  
Value 0.5 to 1  Value 0.5 to 1  Unit does not act 

 
A unit could attack if output 1 is between 0.5 and one and 

output three is zero to 0.5. Likewise, the team could fire if 
output 1 is between zero and 0.5 and output three is between 
0.5 and one. Meanwhile, the team could move if outputs 1 and 
3 are between zero and 0.5. The unit may not act if output one 
and output 3 are between 0.5 and one. A unit could attack, fire, 
or move to the north or grid number two in Table IV if output 
2 is between 0.11 to 0.22, as in Table IX, row two. So, a unit 
could fire to the east or grid number six in Table III if output 

1 is between zero and 0.5, output 3 is between 0.5 to one, and 
output 2 is between 0.55 to 0.66. 

TABLE IV 
OUTPUT VALUE AS A GRID NUMBER 

Output 2 (Coordinate) Grid Number 
Value 0 to 0,11  1 
Value 0.11 to 0.22  2 
Value 0.22 to 0.33  3 
Value 0.33 to 0.44  4 
Value 0.44 to 0.55  5 
Value 0.55 to 0.66  6 
Value 0.66 to 0.77  7 

 

3)  Ground Manager Process Flow: The ground manager 
is the function of controlling the entire existing unit, and f is 
the ground manager process flow. 

 
Fig. 5  Ground manager process flow in experiments 

 
The declared squad stage is the process of respawning units 
on the ground. Unit positions are determined randomly 
according to each team and followed by unit process flow. 

4)  Unit Process Flow: Unit process flow helps manage units. 
Fig. 6 shows the process flow. Read environment process to 
see environmental conditions for ANN input. The Do output 
stage is a unit process running ANN output and finally 
calculating the fitness value.

 

 
Fig. 6 Unit process flow in the experiment 

 

D. Battle Analysis 

The battle between two teams lasts for 10 seconds, and 
each unit uses its attributes. For example, unit type 1 could 
run ANN every 0.2 seconds. Unit type 2 could run ANN every 
0.4 seconds, and so on. The unit ability is shown in Table V 
according to the points of each unit in Table I.  

TABLE V 
ABILITY THE UNIT AND ANN PROCESSING TIME 
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1  Swordman  2 20 1 10 5 0,2 2 100 
2  Archer  2 20 4 40 3 0,4 1 50 
3  Spearman  3 30 3 30 3 0,4 1 50 
4  Axe man  3 30 1 10 4 0,3 2 100 
5  Heavy  3 30 1 10 3 0,4 3 150 
6  Very 

Heavy  
4 40 1 10 1 0,6 4 200 

7  Cavalry  2 20 1 10 6 0,1 1 50 

 

Issues could have a real value using the equation, 
multiplied by ten for each case for the damage parameter and 
50 for each point for the health parameter. Meanwhile, the 
delay parameter uses the formula (5−�����)/10. The unit 
could not perform ANN or die until health is zero. Unit health 
can be reduced if the unit receives an attack from the enemy 
unit. 

The battle is a fitness function from GA to get a fitness 
score, where the higher the fitness score, the better the unit. 
The fitness function is recorded for every unit's movement, as 
shown in Table VI. Each fitness score could be totaled after 
the battle takes place. The lowest possible value for each unit 
is -2050. The lowest value could occur if unit type 7 attacks 
on space until the end of the battle and is hit by attacks from 
enemy units until health is zero. In comparison, the highest 
possible value is 2000. The highest value could occur if unit 
type 7 attacks the enemy unit during the battle. 

TABLE VI 
REWARDS AND PUNISHMENT FOR EACH UNIT 

Fitness Function  Fitness Score  Reward Code  
Move Success  0,1/move RC1 
Damage Taken  -1/damage RC2 
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Fitness Function  Fitness Score  Reward Code  
Damage Given 
Enemy  

1/damage RC3 

Attack  1/damage RC3.1 
Fire  1/damage RC3.2 
Crash with Wall  -0,1/crash RC4 
Damage Given 
Friend  

-1/damage RC5 

Attack  -1/damage RC5.1 
Fire  -1/damage RC5.2 
Crash with Friend 
or Enemy  

-0,1/crash RC6 

Damage to Nothing 
or Self  

-1/damage RC7 

Nothing  -1/damage RC7.1 
Self  -1/damage RC7.2 
Attack and Fire 
(both)  

-1 RC8 

E. GA Analysis as ANN Weight Setting 

The ANN structure consists of the input layer, hidden layer, 
and output layer. The input layer consists of 37 neurons, 
where each neuron is represented in Table II. The hidden layer 
consists of 18 neurons, and the output layer consists of 3 
neurons. The number of weights on the ANN is 720, 
consisting of 666 weights connecting id input 1 to input id 37 
to hidden neurons 1 18, and 54 weights connecting hidden 
neurons 1 to hidden neurons 18 to output 1 to output 3. Each 
weight has an id starting from 1 connecting id input 1 to 
hidden neuron 1 to 720 connecting hidden neuron 18 to output 
3. Visualization explanation Fig. 7. 

 

 
Fig. 7  ANN structure and its mapping to GA 

 
The GA chromosome is a set of 720 ANN weights. The GA 

chromosome consists of 720 genes which represent 720 ANN 
weights. Gene 1 on the GA chromosome is 1 in ANN, gene 2 
is w2 on ANN, and so on until gene 720 is 720 in ANN. The 
number of chromosomes used in this study is 56 
chromosomes. Chromosome 1 could use ANN belonging to 
id unit 1, chromosome 2 use ANN belonging to id unit 2, and 
so on until chromosome 56 for id unit 56 representation can 
be seen in Fig. 8. 

 

 
Fig. 8  Representation of chromosomes to units 

 
Each unit could be divided into two teams, as shown in Fig. 

9, team A and team B. Unit id 1 to unit id 28 is team A, and 
unit id 29 to unit id 56 is team B. 
 

 
Fig. 9  Representation of unit id to unit type 

III. RESULT AND DISCUSSION 

Before the experiment is carried out, developing a 
simulator using the C# programming language with the Unity 
Game Engine library is necessary. The simulator has been 
tested with test cases, as shown in Table VII. 

TABLE VII 
FUNCTIONAL REQUIREMENTS OF THE SIMULATOR 

Req.ID Requirements Status 

REQ.1 The simulator can accept input crossover rate, 
mutation rate, and total generation during the 
learning stage 

Success 

REQ.2 The simulator records the weight value of each 
population and generation into a .csv file inside 
a folder chosen at the learning stage 

Success 

REQ.3 The simulator displays information on the most 
significant fitness value in that generation and 
the total of the generations that have been 
carried out in the learning stage 

Success 

REQ.4 The simulator is capable of receiving input 
folder locations of each battle scenario and the 
total battles of each scenario at the measurement 
stage 

Success 

REQ.5 Simulator capable of measuring win rate, 
displaying and saving to .csv file 

Success 
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The simulator display during the learning scenario can be 
seen in Fig. 10 and the win rate in Fig. 11. 

 

 
Fig. 10  Experiment simulator view when doing learning scenario 

 

 
Fig. 11  The simulator display when carrying out the number of wins 
scenarios 

 
After getting the number of wins in each scenario. The team's 
win percentage is added to each scenario code, and the 
winning generation is divided into the total battle. Table VIII 
shows the experimental results measuring the win rate for 
each scenario code. 

TABLE VIII 
WIN RATE EXPERIMENT RESULTS 

Scenario 

Code 

Generation 

1000 2000 3000 4000 

S606  45% 65% 42% 72% 
S607  35% 63% 48% 39% 
S608  47% 55% 41% 63% 
S609  47% 45% 54% 57% 
S610  47% 49% 46% 46% 
S706  63% 29% 42% 41% 
S707  53% 39% 45% 43% 
S708  54% 35% 47% 47% 
S709  45% 69% 58% 53% 
S710  39% 57% 64% 51% 
S806  42% 45% 41% 44% 
S807  45% 51% 39% 43% 
S808  56% 42% 61% 50% 
S809  63% 59% 59% 47% 
S810  48% 43% 44% 47% 
S906  42% 27% 42% 37% 
S907  37% 40% 54% 42% 
S908  43% 60% 39% 36% 
S909  57% 46% 48% 33% 
S910  38% 34% 42% 57% 

F. Experiment with Each Crossover rate 

The average wins for the crossover rates generation are 
1000, 2000, 3000, and 4000 (Table IX). The initial 

assumption of a crossover rate is 0.8, and 0.9 cannot give a 
better average win than 0.6 and 0.7. A crossover rate of 0.6 
showed the best performance in Generation 2000 and 4000, 
while 0.7 in Generation 1000 and 3000. A crossover rate of 
0.8 showed the best performance in Generation 1000, but the 
value was slightly different from 0.7. The best performance is 
0.9 on the Generation 3000 Force, but the overall percentage 
is still under 47.5%. 

TABLE IX 
THE AVERAGE WINS FOR THE CROSSOVER RATES 

Crossover 

Rate 

Generation 
Average 

1000 2000 3000 4000 

0.6  44.4% 55.3% 46.1% 55.4% 50.3% 
0.7  50.8% 45.9% 51.2% 46.8% 48.7% 
0.8  50.6% 48.1% 48.9% 46.4% 48.5% 
0.9  43.5% 41.2% 45.1% 41.1% 42.7% 

G. Experiment for Each Mutation Rate 

Table X shows the average win rate for each mutation rate 
in the generation 1000, 2000, 3000, and 4000. In Table X, the 
mutation rate of 0.09 shows the best performance in the 
generation 1000, 2000, and 3000, while the generation 4000 
mutation rate of 0.1 is better. Mutation rates of 0.06 and 0.07 
gave the best performance of 48%, which is the average value 
of the overall mutation rate. The mutation rate of 0.1 shows 
an increase in each generation of generations, from 1000, 
worth 43%, to the generation of 4000, worth 50%. The 0.09 
mutation rate shows its best performance in each generation, 
except for 4000 (shown in Table X, line four with a value of 
47,7%). However, it is still, on average, the overall mutation 
rate. 

TABLE X 
THE AVERAGE WINS FOR THE MUTATION RATES 

Mutation 

Rate 

Generation 
Average 

1000 2000 3000 4000 

0.06  48.0% 41.4% 41.8% 48.2% 44.9% 
0.07  42.6% 48.2% 46.4% 41.7% 44.7% 
0.08  49.9% 48.0% 47.2% 49.2% 48.6% 
0.09  53.1% 54.7% 54.7% 47.7% 52.5% 
0.1  43.2% 45.8% 48.9% 50.3% 47.0% 

H. Experiment for Each Crossover Rate and Mutation Rate 

Table XI shows the win rate for each scenario code carried 
out. The highest victory rate for generation 1000 is scenario 
code S706 or crossover rate 0.7 and mutation 0.06 with a 
value of 62.9 %, which is 0.3 % more than scenario code S809 
with a value of 62.6 %. The "generation 2000" scenario code 
S709 has the highest win rate with a win percentage of 69.5 %. 
Next, with 63.9 %, "generation 3000" scenario code S710 has 
the highest victory rate, and "generation 4000" scenario code 
S606 has the best win rate with 71.6 %. Overall, with a value 
of 56.9%, the S809 scenario code delivers the best average for 
each generation, a difference of 0.5 % from the second place, 
namely the S709 scenario. 

TABLE XI 
THE AVERAGE WINS FOR THE CROSSOVER RATES AND MUTATION RATE 

Scenario 

Code 

Generation 
Average 

1000 2000 3000 4000 

S606  45.0% 65.3% 41.8% 71.6% 55.9% 
S607  35.3% 62.6% 47.9% 38.9% 46.2% 
S608  47.4% 55.0% 41.3% 63.4% 51.8% 
S609  47.4% 45.0% 53.9% 56.8% 50.8% 
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Scenario 

Code 

Generation 
Average 

1000 2000 3000 4000 

S610  47.1% 48.7% 45.5% 46.1% 46.8% 
S706  62.9% 28.9% 42.4% 40.8% 43.8% 
S707  52.6% 39.2% 44.7% 42.6% 44.8% 
S708  54.2% 34.7% 47.1% 46.8% 45.7% 
S709  45.3% 69.5% 57.6% 53.4% 56.4% 
S710  39.2% 57.1% 63.9% 50.5% 52.7% 
S806  41.8% 44.7% 40.5% 43.7% 42.7% 
S807  45.0% 51.3% 39.2% 43.2% 44.7% 
S808  55.5% 42.1% 61.3% 50.3% 52.3% 
S809  62.6% 58.7% 58.9% 47.4% 56.9% 
S810  48.2% 43.4% 44.5% 47.4% 45.9% 
S906  42.1% 26.8% 42.4% 36.8% 37.0% 
S907  37.4% 39.7% 53.9% 42.1% 43.3% 
S908  42.6% 60.0% 38.9% 36.3% 44.5% 
S909  57.1% 45.5% 48.4% 33.2% 46.1% 
S910  38.4% 33.9% 41.6% 57.1% 42.8% 

IV. CONCLUSION 

Micromanagement in RTS games significantly affects the 
victory of the game. Reasonable reaction control on NPCs 
could make the RTS experience more challenging. Using GA 
as ANN weight adjustment proves that NPCs can learn well. 
The correct crossover rate for this study is 0.6 because it has 
the highest average win value and tends to increase every 
generation. Meanwhile, the exact mutation rate in this study 
is 0.09 because it has the highest average win value. After the 
correct crossover rate and mutation rate, this research can be 
continued to other cases or add more input to ANN, such as 
dangerousness and attack range parameter for long-range 
attack type units. 
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