
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

High-Performance Computing on Agriculture: Analysis of Corn Leaf
Disease

Evianita Dewi Fajrianti a, Afis Asryullah Pratama a, Jamal Abdul Nasyir b, Alfandino Rasyid a,
Idris Winarno b,*, Sritrusta Sukaridhoto b

a Electrical Engineering Department, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Surabaya, 60111, Indonesia
b Information and Computer Engineering Department, Politeknik Elektronika Negeri Surabaya, Jl. Raya ITS, Surabaya, 60111, Indonesia

Corresponding author: *idris@pens.ac.id

Abstract— In some cases, image processing relies on a lot of training data to produce good and accurate models. It can be done to get

an accurate model by augmenting the data, adjusting the darkness level of the image, and providing interference to the image. However,

the more data that is trained, of course, requires high computational costs. One way that can be done is to add acceleration and parallel

communication. This study discusses several scenarios of applying CUDA and MPI to train the 14.04 GB corn leaf disease dataset. The

use of CUDA and MPI in the image pre-processing process. The results of the pre-processing image accuracy are 83.37%, while the

precision value is 86.18%. In pre-processing using MPI, the load distribution process occurs on each slave, from loading the image to

cutting the image to get the features carried out in parallel. The resulting features are combined with the master for linear regression.

In the use of CPU and Hybrid without the addition of MPI there is a difference of 2 minutes. Meanwhile, in the usage between CPU

MPI and GPU MPI there is a difference of 1 minute. This demonstrates that implementing accelerated and parallel communications

can streamline the processing of data sets and save computational costs. In this case, the use of MPI and GPU positively influences the

proposed system.

Keywords— Corn leaf disease; image analysis; GPU; MPI.

Manuscript received 11 Feb. 2022; revised 28 Mar. 2022; accepted 17 Apr. 2022. Date of publication 30 Jun. 2022.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Indonesia is a country that has a large food source [1]. One
of the food products of this country is corn. Corn is a food
crop that is widely used for staple foods, snacks, and other
food preparations [2]. To maintain a balanced supply, it is
necessary to empower plants to stay healthy. One of the
efforts that can be made to maintain the supply of corn is by
paying attention to the health of corn. Some cases of health
can affect crop yields. Poor yields can harm farmers
financially, and the corn processing industry is experiencing
delays for consumers [3]. Diseases of corn occur in many
leaves, ears, and roots. On corn leaves, specific diseases such
as leaf spots, spots, and fungus often occur on corn. To
eliminate diseases on the leaves that need to be detected early
for immediate treatment of plants [4]. One way to do this is
by analyzing images of each type of disease on the leaves. To
achieve the goal of disease in leaves, of course, requires a
collection of data with complete information that can be used
using computer vision [5].

Computer technology has been widely applied to read
images, pattern recognition for early detection, and automate
some image analysis. However, new problems arise when
studying large amounts of data, usually gigabytes. This can
increase the computer load, which can cause high losses. For
this reason, additional acceleration is needed to read large
amounts of data collection [6].

Several studies on image analysis have been implemented
in certain conditions. For example, diagnosis in the health
field using computer vision [12]. Research about pothole
recognition to find the pothole spot in the city [13]. The
experiment was conducted using a camera node device
attached to a vehicle to recognize a pothole by scanning the
road. The system consists of 2 devices. The first device is
Raspberry zero, with a Raspberry Pi camera attached to the
vehicle's license plate to take a video and stream the frame to
the processing device. The second device is a laptop that
receives the video frame and then compares it with the
classification model. The classification algorithm uses a 1000
image dataset separated into 700 for training data and 300 for
testing data.

411

JOIV : Int. J. Inform. Visualization, 6(2) - June 2022 411-417

The other experiment is about surface segmentation [14]
and the segmentation for quality control in the tile industry
[15]. This experiment focused on detecting the defect of each
tile that has been produced. The dataset that has been used is
about 410 data which are divided into 246 training data and
164 testing data. On the processing device, a GPU used is
NVIDIA GeForce 930mx GPU with CUDNN acceleration.
The experiment was conducted with several methods that
have been recorded, which is SegNet-VGG15 takes time 115
min 36 sec, Deeplabv3plus-Resnetl8 takes time takes time
115 min 36 sec, Deeplabv3plus-Mobilenetv2 takes time 65
min 26 sec. Also, Deeplabv3plus-Xception (takes 100 min 52
sec), and the most accurate model is the model from
Deeplabv3plus-Xception 99.10%.

Object recognition based on computer vision has also been
implemented in a self-driving car to detect a traffic light in
real-time [16]. The self-driving car is one of the solutions for
urban people to minimize the use of fatigue in a constant
concentration. Then this vehicle could raise the safety aspect
of the urban street. Object recognition is one of the issues that
must be done in this scope. The system uses a high-end cloud-
based GPU (NVIDIA Tesla T4 GPU) for the computation,
Keras and Tensorflow backend in the Google Collaboratory
cloud platform, and RetinaNet deep learning architecture for
the model. The dataset that has been used is about 5000 data
for training and 8334 data for testing.

Another experiment used a parallel computing system in
image processing to convert an image using raspberry pi's
CPU [17]. The cluster computer method is chosen since the
image segmentation process is running with limited
parameters while using a single raspberry pi. Here was
compared the interval data while using a single raspberry pi
and while using clustered two raspberry pi. The experiment
uses Open MPI to make the computation parallel. From the
result, the author shows that the cluster or parallel method is
faster than the single one. Although for various data sizes, the
cluster computation's performance is still great.

Another parallel computing experiment is used along with
a GPU framework to detect multitemporal hyperspectral
images [18]. For the overview, this is a part of the change
detection experiment. It is used to detect changes on a pixel
of a hyperspectral image. The experiment consists of 4 main
processes. The first is the Segmentation process, which is
intended to generate the segmented hyperspectral image.
Second is the Fusion process to identify the difference in the
image. The third is the thresholding process using Otsu's
method to create a binary image according to the threshold.
The last is the spatial regularization process to make a
spatially regularized change map. This experiment is
evaluated both in CPU Intel Core i5-3470 and GPU TITAN
X, and the result is projection using GPU reach up to 46.5
times speeds up compared to OpenMP CPU version. For the
accuracy, it reaches 96.96%.

This study proposes HPC (High-Performance Computing)
as a big data training solution. However, it is not easy to
implement HPC for imaging applications. HPC has good
potential to be applied to high computational image
recognition operations [7]. To improve the parallel
programming environment, it is necessary to implement an
MPI (Message Passing Interface) to suppress communication
between GPU and HPC [8]. MPI is a standard to make

implementing the message passing concept easier [9].
Specifically for the parallel MPI programming
implementation, the Open MPI framework is chosen. Open
MPI iso is not just about "open-source" but also because it has
an impressive performance, although for the heterogeneous
platform [10], [11].

The parallelism is implemented through CUDA as the main
execution engine at every level to get the value that attracts
performance and scalability. Integrating GPU with MPI can
be used to solve complex scalability problems where MPI can
act as a communication link between GPUs. In this research,
implementation is carried out in various ranges for use
between CPU, GPU, CPU with MPI, and GPU with MPI. The
experiment was carried out using 3 instances with details of 1
instance serving as master, 2 instances as a slave. The master
instance is responsible for distributing the load on the slave
instances.

II. MATERIALS AND METHOD

A. CPU vs. GPU

CPU (Central Processing Unit) is the most important
hardware component or device for processing data on a
computer. CPU controls all activities and runs all programs,
including applications and software in it, so the CPU can be
called the brain of a computer [19]. At least one "processor"
or chip is built into the CPU, which is involved in the
computing process of the computer. The main function of the
CPU is to perform arithmetic and logical operations on data
retrieved from memory or information provided by hardware.

CPU and GPU are both critical machines whose purpose is
to handle data. But CPUs and GPUs have different
architectures and were created for different purposes [20].
CPUs are designed to handle a wide variety of workloads,
especially if latency or per-core performance is important.
GPUs have evolved into general-purpose parallel processors,
handling growing applications [21]. The use of large data with
the composition of graphic calculations requires the GPU to
accomplish this. The deep learning algorithm is implemented
using a GPU accelerated approach. This can significantly
improve performance and bring real-world problems within
easy reach of work.

B. GPU vs. MPI

GPUs consist of thousands of cores that can execute
commands in parallel [22]. GPU-accelerated graphics cards
allow these programmers to apply programming using
parallel computing technology to the GPU core along with the
CPU. GPUs can consist of thousands of cores working in
parallel. One implementation of GPU acceleration is CUDA.
CUDA is an advanced GPU architecture that is used to assist
the CPU in graphics computing purposes. CUDA is designed
to use more than one block and requires synchronization from
the CPU. A GPU can contain a series of cores that work with
the same instructions, therefore CUDA is widely used to work
in parallel [23].

MPI (Message Passing Interface) is an API that allows
communication between computers to complete a task over a
network [24]. MPI implementation provides a unique
approach to building software with a specific function. MPI
can be run through languages such as Fortran, C, and C++.

412

MPI was also portable in supporting various platforms. MPI
relies on network bandwidth and throughput to be able to
explore parallel computing. MPI supports point-to-point
communication and is collective.

In this scenario, the mpi4py library was used to provide
python binding for the standard use of passing interface
messages (MPI). The use of mpi4py can exploit many
processors on workstations, clusters, and supercomputers.
The application of this library also supports point-to-point
communication. Also, use the OpenCV library to do image
processing. The use of OpenCV supports cross platforms that
use that can be developed a real-time computer vision
application. This study compared the performance of corn leaf
disease detection in four scenarios. The four scenarios cover
CPU, CUDA, and MPI usage. It can be seen in Table 1.

TABLE I
CORN LEAF DISEASE DETECTION PERFORMANCE COMPARISON SCENARIO

Scenario CPU Hybrid MPI Nodes

1 √ 1
2 √ 1
3 √ √ 2
4 √ √ 2

The first experiment implemented 1 node with CPU to

perform corn leaf disease detection, starting with reading the
input image. Then pre-processing is done using the CPU.
Next, feature extraction was performed as input for linear
regression, Figure 1a. The second experiment implementation
used 1 node with CUDA for acceleration on corn leaf disease
detection with the same steps as the CPU, but in pre-
processing it is run using the GPU, Figure 1b.

The third scenario is the implementation using 3 nodes with
MPI to perform corn leaf disease detection, starting with the

master reading the input image then scattering to be divided
into slave 1 and slave 2 using the CPU, then feature extraction
is carried out. After obtaining features, gather from both
slaves to obtain linear regression input, Figure 2a. The fourth
scenario is the implementation using 3 nodes with CPU+MPI
with almost the same steps as the third scenario. However,
there is a slight difference in the pre-processing done using
CUDA, Figure 2b.

(a)

(b)

Fig. 1 (a) CPU Image Analysis on Corn Leaf Disease, (b) Hybrid Image
Analysis on Corn Leaf Disease.

(a)

(b)

Fig. 2 (a) CPU+MPI Image Analysis on Corn Leaf Disease, (b) Hybrid+MPI Image Analysis on Corn Leaf Disease

413

The amount of data learned by algorithm design using CPU
requires power optimization. Introducing GPUs to integrate
with CPUs has been widely implemented to predict execution
time. This study discusses the integration of four different
scenarios for the implementation of image analysis on corn
leaf disease. The dataset used is open source from
Kaggle[https://www.kaggle.com/qramkrishna/corn-leaf-
infection-dataset]. The dataset is taken based on the need to
test the efficiency of using CUDA and MPI; high-resolution
images are applied with many datasets. The dataset obtained
is 14.04 GB in size which consists of two classes of leaf
conditions, i.e., healthy and infected. A total of 4225 images
obtained with 2000 healthy and 2226 infected compositions

have also been annotated. Splitting of data 60% training and
40% testing is done to avoid over-learning and poor
performance. The proportion of the dataset resulting from
splitting obtained 2535 trains and 1690 tests. In the image pre-
processing process, the following processes occur, Figure 3.
The first stage is reading the image for conversion to HSV and
grayscale. In HSV conversion, masking is performed, while
gray-level correlation is performed in grayscale. Then the
feature extraction is carried out, namely the mean, standard
deviation, variance, entropy, root mean square, and
smoothness of the masked HSV as well as the contrast, energy,
and homogeneity features of the gray level correlation matrix.

Fig. 3 Preprocessing Image Leaf Corn Disease

Parallel computing is implemented through a virtual
personal computer with NVIDIA Tesla T4 professional
graphics card. The device specifications used in the
implementation of this study are shown in Table 2.
Implementation of the use of Google Cloud Platform to be
easily accessible on mobile with the Google Compute Engine
Virtual Machine model with 13 GB of RAM. The virtual
personal computer is set up for CUDA and no CUDA usage
scenarios.

TABLE III
TECHNICAL SPECIFICATION

Specification

Manufacture Google Cloud Platform
Model Google Compute Engine

Visual Machine
Processor Intel(R) Xeon(R) CPU @

2.20GHz 2.20GHz
Installed Memory (RAM) 13.0 GB
System Type 64-bit Operating System, x64-

based processor

Algorithm 1. explains that pre-processing images without
using a GPU accelerator, namely CUDA, is carried out by
converting the image to HSV, then creating an image mask
based on the lower threshold of 14, 32.64, 22.185, and the
upper threshold of 34, 255, 232, 815. If the image mask is
between the threshold, it reads yellow. Outside the threshold,
it is changed to 0 or black. The masked image due to the
threshold value is converted to gray for the Gray Level
Correlation Matrix (GLCM) process. The results from GLCM
are then returned to feature extraction.

Algorithm 1. Pseudocode on a pre-processing image
without CUDA

Pre-processing without CUDA

Input: (1) image, (2) lower threshold for mask, (3) upper
threshold for mask
Output: (1) masked HSV image, (2) GLCM (gray level
correlation matrix)
1:
2:
3:
4:
5:
6:

Convert the input image to HSV
Create a image mask, based on lower & upper threshold
Create a masked image with the image mask
Create a gray image from masked image
Make a GLCM (gray level correlation matrix) from gray
image
Return masked image and GLCM

Algorithm 2. explains that pre-processing images using
hybrid (CPU and CUDA) which is done by converting the
image to HSV, then creating an image mask based on the
lover threshold and upper threshold. The difference in pre-
processing using CUDA lies in masking the image done
through CUDA.

Algorithm 2. Pseudocode on a pre-processing image with
CUDA

Pre-processing with CUDA
Input: (1) image, (2) lower threshold for mask, (3) upper
threshold for mask
Output: (1) masked HSV image, (2) GLCM (gray level
correlation matrix)
1:
2:
3:
4:
5:
6:
7:
8:

9:
10:

Create a GPU CUDA image object
Upload input image into the GPU CUDA image
Convert the GPU CUDA image to HSV
Download the HSV image from the GPU CUDA image
Create an image mask, based on lower & upped threshold
Create a masked HSV image with the image mask
Create GPU CUDA HSV masked image object
Upload HSV masked image into the GPU CUDA HSV
masked image
Convert the GPU CUDA HSV masked image to gray
Download the grey image from GPU CUDA HSV masked
image

414

11:

12:

Return a GLCK (gray level correlation matrix) from grey
image
Return masked HSV image and GLCM

III. RESULTS AND DISCUSSION

Tests were carried out using four tests with the same
datasets. The first test was performed using one CPU. In this
process, images of various sizes and sizes are sent for pre-
processing through the CPU. The processing time for each
image depends on the image size, and figure 4 shows the
reading time of each image. The results of image pre-
processing using a single CPU get a total value of 44 minutes.
This needs to be compared with the use of the GPU to
determine the effect of adding acceleration to image reading.

Fig. 4 Image analysis time using Single CPU and Single hybrid

In image processing based on sequence, several images

take about 3 s per frame, but in using a single CPU, image
processing is dominant in the range of 1 – 1.5 ms. Tests by
adding a GPU are also applied to determine the effect of GPU
usage on image analysis. However, the use of this GPU cannot
be perfectly applied. The CPU participates in completing the
image task. Figure 4 shows the result of reading a sequence of
images against the length of time it takes for each frame. From
the Hybrid test for image pre-processing, the total value is 42
minutes. If the two are compared, namely between single
GPU and Hybrid, it shows a significant increase in the
efficiency of time requirements in the pre-processing process,
namely, the time difference between the two is about 2
minutes.

The next experiment was to add MPI to the CPU for
parallel communication, Figure 5. The results of this test
obtained a total value of 23 minutes for image pre-processing.
In the MPI addition test, there was a significant increase in
time when compared to without using MPI. The use of MPI,
in this case, can communicate in parallel between networks.
Communication between networks in MPI uses its modular
nature to accelerate portable parallel development, so the time
required is relatively less. This means that the time used to
perform image pre-processing is getting smaller. Efficient use
of time can reduce computing costs.

Fig. 5 Image analysis time using CPU MPI and using MPI Hybrid

The use of MPI has a big influence on time requirements.

The next experiment implemented MPI with the GPU, Figure
5. The results of this test obtained a total value of pre-
processing images of 22 minutes. When compared between
the use of MPI on the CPU and GPU, there is a significant
increase, namely the difference of 1 minute. This shows that
the use of CUDA acceleration with MPI results in significant
time cuts. This efficiency can cut computational costs and
speed up pre-processing with bloated amounts of data.

A confusion matrix can be applied to measure the
classification performance of outputs with two or more
classes. The Confusion Matrix is a table with four
combinations of predicted and actual values. Four terms
represent the results of the classification process in the
confusion matrix, namely True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). Equation
1. is a formula for calculating accuracy values in two classes.

 accuracy � �TP � TN/�TP � TN � FP � FN (1)

�������� � 83.37%

 ��������� � !/� ! � "! (2)

��������� � 86.18%

 ����%% � !/� ! � "& (3)

����%% � 82.71%

 "1 ����� � 2����������� ∙ ����%% ⁄ ���������� � ����%%(4)
"1 ����� � 0.8441

Figure 6. shows the predicted result with the true value.

Where in the implementation of image analysis is classified
into two classes, namely the infected class and the health class.
The combination resulting from the confusion matrix is True
positive 761, False Positive 122, False Negative 159, and True
Negative 648. So, the accuracy value obtained from pre-
processing corn leaf disease is 83.37%. Also obtained a
precision value of 86.18%, recall value of 82.71%, and F1
score of 0.8441, which describes the accuracy between the
actual data and the prediction results given by the model.

415

Fig. 6 Confusion Matrix Value on CPU, Hybrid, CPU MPI, and Hybrid MPI
Preprocessing

To measure processing performance can be measured
through the speed-up factor. The speed-up factor refers to the
increase in performance from the addition of processing
elements in Equation 3.

 ,�� � -�/-� (3)

Equation 3 is the execution time on a single processor and
the execution time on a multiprocessor. Speed up increases its
speed by using a multiprocessor. Figure 7 is a speed-up graph
that refers to an increase in processing performance.

Fig. 7 Speed-up Factor

From the speed-up factor measurement, we get a value of

1.927 for a single CPU against CPU MPI, which indicates that
the value is greater than 1.0 and that the program has
accelerated more than the CPU increase. As for the speed-up
factor for a single Hybrid against Hybrid MPI, getting a value
of 1.882 means the program has benefited from parallel
execution.

IV. CONCLUSION

In the case of image processing, producing accurate and
precise readings requires large training data. The larger the
training data provided, the greater the computational
requirements. One way to reduce computational costs is to
take advantage of CUDA acceleration and parallel
communication on MPI. In this study, the utilization of
CUDA runs as expected, which can reduce the time required

by 2 minutes compared to a single CPU. The application of
MPI with CUDA also has a good effect on time efficiency
compared to the use of MPI with CPU. The difference
between the two is 1 minute. Thus, MPI and CUDA can be a
new alternative for processing large image data. This study
discusses the comparison of parallel computing that applies
CUDA and MPI. The use of MPI has a good effect on the case
of image pre-processing of corn leaf disease. MPI can reduce
the time required for large data. However, the implementation
of MPI with GPU still uses a hybrid scenario due to a bug in
the OpenCV library so that pure CUDA cannot be
implemented, but in future developments, it can be
implemented using CUDA without dependence on the CPU.

ACKNOWLEDGMENT

The authors thank to Politeknik Elektronika Negeri
Surabaya for supporting research. This research was under the
project of the high-performance computing course in 2021.

REFERENCES
[1] Z. Rozaki, "Chapter Five - Food security challenges and opportunities

in indonesia post COVID-19," in Advances in Food Security and
Sustainability, vol. 6, M. J. Cohen, Ed. Elsevier, 2021, pp. 119–168.
doi: 10.1016/bs.af2s.2021.07.002.

[2] N. Palacios-Rojas et al., "Mining maize diversity and improving its
nutritional aspects within agro-food systems," Compr. Rev. Food Sci.
Food Saf., vol. 19, no. 4, pp. 1809–1834, 2020, doi: 10.1111/1541-
4337.12552.

[3] D. S. Mueller et al., "Corn Yield Loss Estimates Due to Diseases in
the United States and Ontario, Canada, from 2016 to 2019," Plant
Health Prog., vol. 21, no. 4, pp. 238–247, Jan. 2020, doi:
10.1094/PHP-05-20-0038-RS.

[4] R. Meng et al., "Development of Spectral Disease Indices for Southern
Corn Rust Detection and Severity Classification," Remote Sens., vol.
12, no. 19, Art. no. 19, Jan. 2020, doi: 10.3390/rs12193233.

[5] K. P. Panigrahi, A. K. Sahoo, and H. Das, "A CNN Approach for Corn
Leaves Disease Detection to support Digital Agricultural System," in
2020 4th International Conference on Trends in Electronics and
Informatics (ICOEI)(48184), Jun. 2020, pp. 678–683. doi:
10.1109/ICOEI48184.2020.9142871.

[6] L. I. U. Zhentao, Y. Yi, W. Dongchao, and X. I. E. Xiaoyao, "A
CUDA-based parallel accelerating geographically weighted regression
algorithm for big data," Bull. Surv. Mapp., vol. 0, no. 12, p. 1, Jan.
2021, doi: 10.13474/j.cnki.11-2246.2020.0379.

[7] M. A. Elaziz, K. M. Hosny, A. Salah, M. M. Darwish, S. Lu, and A.
T. Sahlol, "New machine learning method for image-based diagnosis
of COVID-19," PLOS ONE, vol. 15, no. 6, p. e0235187, Jun. 2020,
doi: 10.1371/journal.pone.0235187.

[8] A. Gupta, D. Singh, and M. Kaur, "An efficient image encryption
using non-dominated sorting genetic algorithm-III based 4-D chaotic
maps," J. Ambient Intell. Humaniz. Comput., vol. 11, no. 3, pp. 1309–
1324, Mar. 2020, doi: 10.1007/s12652-019-01493-x.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, "A high-performance,
portable implementation of the MPI message passing interface
standard," Parallel Comput., vol. 22, no. 6, pp. 789–828, Sep. 1996,
doi: 10.1016/0167-8191(96)00024-5.

[10] E. Gabriel et al., "Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation," in Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Berlin, Heidelberg,
2004, pp. 97–104. doi: 10.1007/978-3-540-30218-6_19.

[11] R. L. Graham, G. M. Shipman, B. W. Barrett, R. H. Castain, G. Bosilca,
and A. Lumsdaine, "Open MPI: A High-Performance, Heterogeneous
MPI," in 2006 IEEE International Conference on Cluster Computing,
Sep. 2006, pp. 1–9. doi: 10.1109/CLUSTR.2006.311904.

[12] R. P, M. A, M. B, and G. K. S, "Lung Cancer Diagnosis and Treatment
Using AI and Mobile Applications," Int. J. Interact. Mob. Technol.
IJIM, vol. 14, no. 17, Art. no. 17, Oct. 2020, doi:
10.3991/ijim.v14i17.16607.

[13] A. Rasyid et al., "Pothole Visual Detection using Machine Learning
Method integrated with Internet of Thing Video Streaming Platform,"

416

in 2019 International Electronics Symposium (IES), Sep. 2019, pp.
672–675. doi: 10.1109/ELECSYM.2019.8901626.

[14] K. Salhi, E. M. Jaara, and M. T. Alaoui, "Texture Image Segmentation
Approach Based on Neural Networks," Int. J. Recent Contrib. Eng. Sci.
IT IJES, vol. 6, no. 1, Art. no. 1, Mar. 2018, doi:
10.3991/ijes.v6i1.8166.

[15] E. D. Fajrianti, E. Suryawati Ningrum, A. Risnumawan, and K. V.
Madalena, "Tile Surface Segmentation Using Deep Convolutional
Encoder-Decoder Architecture," in 2020 International Electronics
Symposium (IES), Sep. 2020, pp. 364–370. doi:
10.1109/IES50839.2020.9231575.

[16] A. N. Aneesh, L. Shine, R. Pradeep, and V. Sajith, "Real-time Traffic
Light Detection and Recognition based on Deep RetinaNet for Self
Driving Cars," in 2019 2nd International Conference on Intelligent
Computing, Instrumentation and Control Technologies (ICICICT), Jul.
2019, vol. 1, pp. 1554–1557. doi:
10.1109/ICICICT46008.2019.8993293.

[17] R. F. Rahmat, T. Saputra, A. Hizriadi, T. Z. Lini, and M. K. M.
Nasution, "Performance Test of Parallel Image Processing Using Open
MPI on Raspberry PI Cluster Board," in 2019 3rd International
Conference on Electrical, Telecommunication and Computer
Engineering (ELTICOM), Sep. 2019, pp. 32–35. doi:
10.1109/ELTICOM47379.2019.8943848.

[18] J. López-Fandiño, D. B. Heras, F. Argüello, and M. Dalla Mura, “GPU
Framework for Change Detection in Multitemporal Hyperspectral

Images,” Int. J. Parallel Program., vol. 47, no. 2, pp. 272–292, Apr.
2019, doi: 10.1007/s10766-017-0547-5.

[19] C. Shen, C. Chen, and J. Zhang, "Micro-architectural Cache Side-
Channel Attacks and Countermeasures," in 2021 26th Asia and South
Pacific Design Automation Conference (ASP-DAC), Jan. 2021, pp.
441–448.

[20] J. C. Phillips et al., "Scalable molecular dynamics on CPU and GPU
architectures with NAMD," J. Chem. Phys., vol. 153, no. 4, p.
044130, Jul. 2020, doi: 10.1063/5.0014475.

[21] M. Liu, H. Li, M. Zhang, and T. Wang, "Graphics Processing Unit‐
Based Match and Locate (GPU‐M&L): An Improved Match and
Locate Method and Its Application," Seismol. Res. Lett., vol. 91, no.
2A, pp. 1019–1029, Jan. 2020, doi: 10.1785/0220190241.

[22] G. M. J. Barca, J. L. Galvez-Vallejo, D. L. Poole, A. P. Rendell, and
M. S. Gordon, "High-Performance, Graphics Processing Unit-
Accelerated Fock Build Algorithm," J. Chem. Theory Comput., vol.
16, no. 12, pp. 7232–7238, Dec. 2020, doi: 10.1021/acs.jctc.0c00768.

[23] D. Rosenberg, P. D. Mininni, R. Reddy, and A. Pouquet, "GPU
Parallelization of a Hybrid Pseudospectral Geophysical Turbulence
Framework Using CUDA," Atmosphere, vol. 11, no. 2, Art. no. 2, Feb.
2020, doi: 10.3390/atmos11020178.

[24] L. Clarke, I. Glendinning, and R. Hempel, "The MPI Message Passing
Interface Standard," in Programming Environments for Massively
Parallel Distributed Systems, Basel, 1994, pp. 213–218. doi:
10.1007/978-3-0348-8534-8_21.

417

