
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage :  www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON 

INFORMATICS 
VISUALIZATION

 

An Efficient Approach for Uncertain Event Detection in RFID 

Complex Event Processing 

Siti Salwani Binti Yaacob a,b,1, Hairulnizam Bin Mahdin b,2 , Mohammed Saeed Jawad b,  

Nayef Abdulwahab Mohammed Alduais b, Akhilesh Kumar Sharma c, Aldo Erianda d 
a Jabatan Teknologi Maklumat & Komunikasi, Politeknik Sultan Abdul Halim Mu’adzam Shah, Bandar Darulaman, Jitra, 06000, Malaysia  

b Center of Intelligent and Autonomous Systems, Faculty of Computer Science & Information Technology, Universiti Tun Hussein Onn 
Malaysia, 86400, Malaysia  

c Department of Information Technology, Manipal University Jaipur, Jaipur, Rajasthan 303007, India 
d  Department of Information Technology, Politeknik Negeri Padang, West Sumatera, Indonesia 

Corresponding author: 1 salwani1039@gmail.com; 2 hairuln@uthm.edu.my 

 

 

Abstract— The globalization of manufacturing has increased the risk of counterfeiting as the demand grows, the production flow 

increases, and the availability expands. The intensifying counterfeit issues causing a worriment to companies and putting lives at risk. 

Companies have ploughed a large amount of money into defensive measures, but their efforts have not slowed counterfeiters. In such 

complex manufacturing processes, decision-making and real-time reactions to uncertain situations throughout the production process 

are one way to exploit the challenges. Detecting uncertain conditions such as counterfeit and missing items in the manufacturing 

environment requires a specialized set of technologies to deal with a flow of continuously created data. In this paper, we propose an 

uncertain detection algorithm (UDA), an approach to detect uncertain events such as counterfeit and missing items in the RFID 

distributed system for a manufacturing environment. The proposed method is based on the hashing and thread pool technique to solve 

high memory consumption, long processing time and low event throughput in the current detection approaches. The experimental 

results show that the execution time of the proposed method is averagely reduced 22% in different tests, and our proposed method has 

better performance in processing time based on RFID event streams.  
 

Keywords— Uncertain event detection; complex event processing; RFID. 

 
Manuscript received 14 Feb. 2021; revised 22 May 2021; accepted 17 Oct. 2021. Date of publication 31 Dec. 2021. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

 
 

 

I. INTRODUCTION 

With the increasing risk of fraud, industries based on Radio 

Frequency Identification (RFID) systems are seeking to 

manage the entire process more efficiently in real-time. The 

most common frauds in this sector are the non-cash fraud, 

such as stealing goods and materials by employees [1], and 

the misuse of stocks [2] that continues to be the cause of 
concerns. Furthermore, as data from sensors flows into the 

organization at ever-faster speeds, conventional data 

management architectures were not suitable for looking for 

uncertain patterns such as counterfeit and missing items 

within a reasonable time frame [3]. Besides high data 

velocity, these industrial requirements such as shortened life 

cycles, more significant variability, and customized products, 

are reasons for complexity in the production system. To 

process this streaming data according to the manufacturing 

stages requires appropriate techniques to detect uncertain 

conditions and changes. 

In recent lists of industrial systems trends, complex event 

processing (CEP) is thriving for good reasons. CEP is a 

technique used to describe an analytical engine that processes 

information from single or multiple sources of events by 

filtering, analysing and matching semantically low-level 

events relating syntacting structures between individual 

words such as sensor data, log data, or RFID data [4]. Fig. 1 
shows the entire process in CEP, from event producing to 

event use represented by [5]. The sensor devices generate raw 

data. This raw data is pre-processed to create clean data and 

stored in the database. The pre-processing includes filtering 

438

JOIV : Int. J. Inform. Visualization, 5(4) - December 2021 438-447 



redundancy, detecting anomalies, as well as standardization 

according to the domain. 

After refining raw data into historical or logs, simple events 

are generated using an interpreter. The interpreter's function 

is to execute instructions written in a programming or 

scripting language into a machine language program. This 

simple event is a time-series where it comprises a sequence of 

clean raw data written in machine language. Once it is 

completed, these simple events are ready to be processed in 

the complex event processing engine. The CEP engine is a 

cutting-edge technology for extricating information from a 
stream of events. It is a data processing technique according 

to predefined rules based on the specific domain or the 

application requirement. A rule, rules, ruleset, or pattern is 

nothing but a knowledge (facts) base consisting of one or 

more business rules (or simply rules). In other words, a rule 

in the ruleset represents some knowledge. Rules are usually 

in the form of 'if-then'. The CEP engine comprises knowledge 

and instruction representation sets and events processing 

algorithms. It dictates data flows and steps of how data should 

be processed based on rules and generates complex events as 

output. For example, if the matching is successful in the CEP 
engine, a complex event will be generated and sent to the 

business application.  

 

Sensing Devices

Data Preprocessing

Event Interpreter

CEP Engine

Raw 

Database

Complex 

Event 

Database

Raw data

Historical raw data

S
im

p
le

 E
v

en
t 

P
ro

ce
ss

in
g

C
om

p
le

x 

E
ve

n
t 

P
ro

ce
ss

in
g

Complex Event / Business Event

Simple Event

Rules

Complex 

Event

Sensing data / Raw data

Smart 

Farm

Environmental 

Monitoring

Intelligent 

Transportation
Manufacturig

A
p

p
lic

a
ti

on
s

 
 

Fig. 1 Complex Event Processing Architecture 

 

Complex events, also known as high-level semantic events, 

are generally associated with significant business events to 

indicate that they will be responded to in real-time. An 

example of business events or complex events is whether the 

package is delivered or product processing completed. There 

is another underlying assumption that the event rules or 

patterns can always be calculated or deterministic [6]. 

However, in an industry such as product manufacturing, those 

assumptions do not hold, and those patterns are often 

uncertain [7].  

According to [8], the event source that streams into the 
CEP system may contain incorrect data that causes 

uncertainty of events generated by either event stream or 

event rules. Uncertainty in the event stream is more related to 

the deformities and unclearness caused by the sensor [9]. 

While uncertainty rules are the faulty judgment about an event 

occurring or the errors such as an abnormal situation or 

behavior detected according to the business situation in a 

particular domain during the complex event detection process 

[10]. According to [11], the essential for CEP engines is the 

engine being able to process a very high volume of data  with 

minimal delay (low latency) even in presence of complex 

rules and a large number of incoming events. Due to low-

latency requirements, CEP over high-speed rate may consume 

a large amount of CPU and memory resources during the 

complex event detection process [12]. Since it is not possible 

to keep all events in memory, if memory management is not 
adequately handled, intermediate results stored in the main 

memory may excessively grow [4]. Not only that, the CEP 

engine may result in long processing time as a result of high 

latency. Otherwise, some will suffer from high setup costs, 

requiring hours, if not days of unknown configuration setting 

[13]. Thus, lightweight processing and minimizing memory 

consumption play an important role in the robustness of event 

stream processing. After all, without having CEP, a system 

may result in false positives. Which means, a wrong 

indication in reporting or conditions that actually do not 

present a presence in higher level. 
In this research, we focus on detecting the uncertainty in 

event rules efficiently, especially abnormal behavior such as 

counterfeit and missing items  in RFID CEP distributed 

systems [14]. To solve the issues of high-memory 

consumption, long processing time, and high latency, we 

proposed uncertain event detection using modified hashing 

technique and thread pool technique to detect an uncertain 

event in a RFID CEP distributed system. Hashing brings a 

more flexible and reliable method of data acquisition than any 

other data structure. Hashing uses hash functions to map the 

larger key values into the smaller keys. The contributions of 
this paper can be summarized as follows: 

● We propose a novel uncertain event detection algorithm 

(UDA), that is based on the hashing technique and 

thread pool technique to detect uncertain patterns in 

RFID CEP in the distributed system. 

● Comprehensive overall performance evaluation of the 

proposed approach is carried out and in comparison with 

Instans [15], ESPER [16], NFA-HTS [40] and LCA 

[43]. 

II. MATERIALS AND METHOD 

In this section, reviews of related literature are discussed. 

It includes an in-depth analysis of existing approaches 

including the challenges on the techniques that have been 

used before.  

A. RFID System Architecture 

In the RFID distributed system, the devices include RFID 

reader, RFID tag, and the middleware. RFID has been known 
for cost-effective technology as it bridged the gap between 

automation and information flow by improving traceability 

and offline reliability[17]. Despite the benefits, the system 

inevitably carries some practical issues such as inaccuracies 

and imperfections due to the surrounding structures and 

mediators [18]. The inconsistency of raw RFID data has made 

it become unreliable. Besides the fact that the data arrives in 

huge capacity and high volume, RFID data has its implicit 

439



meanings that need to be processed, refined, and filtered to 

get meaningful data [19]. 

In RFID CEP distributed systems, data often arrives in a 

huge capacity and in the form of an event stream. These data 

that are carrying information to the CEP engine are known as 

RFID event, event and simple event [20]. While in the RFID 

CEP engine, it consists of simple event processing and 

complex event processing [21]. Simple event processing 

involves pre-processing data such as filtering and 

aggregating. Complex event processing detects complex 

events based on sequence of appearances or a set of simple 
events by non-stop inspecting the event flow [4]. In CEP, the 

processing includes two types of events; simple event and 

complex event [22]. Simple events are a set of events 

produced during the interconnection and interaction between 

readers and tagged objects [23]. In contrast, a complex event 

is a combination of simple events by pattern matching based 

on rules that happen over some time. 

B. Simple Event Processing 

Simple event processing is a simple process of raw data 

such as filtering out repeated data and aggregate data to get a 

set of data before transforming into an event or simple event. 

Based on Table 1, the RFID data such as electronic product 

tag (EPC) is used as an example to depict the possible event 

in the entire process of device interaction. In this process, the 

data is enriched by adding product name ( Tag A ). This is 

known as a simple event. The simple event can also represent 

a wider range of sensors. 

C. Complex Event Processing 

Complex event processing is an approach of searching 

patterns of simple events in real-time. It involves some 

challenges as the events often happened concurrently [24], 

[25], and it has their temporal and spatial relationship [26]. 

For example in Table 1, consider a verification rule needed to 

be done to verify the existence of Tag A according to the 

RFID reader in Department A and Department B. Based on 

the experiment, there is a certain value that sets up the 

threshold. Considering the threshold is time, Tag A needs to 

have a threshold time of more than 24 hours to consider it 
exists and ready to ship. Based on this situation, the events 

have shown their temporal and spatial relationships. In the 

CEP system, there is a stream of events generated by the users 

or devices, and queries for patterns according to its rules. 

These events were created in a high declarative query 

language such as Event Processing Language (EPL) [15].  

TABLE I 

EXAMPLE OF SIMPLE EVENT AND COMPLEX EVENT 

 Simple Event Complex Event 

Rules if a then b 

if ( a and b and c) and (not d) 

and (time window < e minutes) 

and (asset model = x) then f 

Type 

of 

event 

Tag A is 

epc:001010.0101.1000 

Tag A has done a quality check 

in Department A and 

Department B from 10.00 am 

until 10.00 pm and is ready for 

shipping. 

 

The previous year ahead, a few RFID CEP approaches 

have been reformed and have defined query languages to 

express the complex event. A literature survey shows that the 

scientists have focused on the design and implementation of 

systems that can manage complex event queries over event 

streaming data in real-time. Some general complex event 

detection systems such as SASE [27], CAYUGA [28], [29], 

CASCADIA[30], and RCEDA[20] provide basic detection 

functions for complex event detection. Although the strategies 

offer the greater whole and essential processing capabilities 

to the complex event, those processing strategies implement 

repeatable and needless processing, inserting and seek 

operations while detecting complex events in RFID event 

streams. 

D. Related Works 

Previous years, many studies have been conducted in 

different parts of the engine to analyze a large amount of event 

stream and detect such patterns in real-time. The proposed 

approach includes queries modification of event processing 

language [31], constructing and enhancing rules to detect 

event pattern [10], and modelling the uncertainty of events 

using preferred techniques for complex event detection.  
The detection of uncertainty in the event processing engine 

has been extensively studied in many areas . One of the 

research lines revolves around a method that employs 

probabilistic graphical models to handle uncertainty [32]. In 

general, this model was designed based on the proposed 

networks where nodes serve as random variables and edges 

conceal probabilistic dependencies.  There are two main 

classes of probabilistic graphical models used in CEP: 

Bayesian Model [8] and Markov Model [33]. These 

probabilistic models indicate a mathematical framework to 

compute uncertainty and appoint probability values using 

possible semantics computation. The proposed framework 
shows and supports correlations through conditional 

probability, probability distribution, and joint probability 

factors. In the sensor's environment, these models consider a 

more realistic situation; for example, the RFID reader have a 

tendency to fail to detect a specific tag even if it is under the 

reader's detection vicinity [34]. The detection computation 

may take various non-negative numbers from 0 to 1. 

According to [35], in order to solve the uncertainty issues, 

the authors proposed CEP2U to an existing CEP language, 

TESLA. This approach uses a Bayesian network to model 

uncertainty in rules and probability theory to manage 
uncertainty in events in weather forecasting engines. The 

authors choose additional event processing strategy, namely, 

batch-like solutions to lessen latency withinside the 

processing engine. Similarly, TESLA makes use of 

consumption policies [36] to mould event contexts with assist 

for aggregates and sliding window specification. 

According to [34], a value-driven uncertainty-aware data 

processing method was proposed. The authors consider RFID 

detection reliability, timeliness, and the throughput of an 

assembly line to determine the potential benefits of RFID 

implementation in a mixed-model assembly system. There are 
three components introduced in the proposed method: a CEP 

system, a Bayesian inference model and a value-driven 

optimization model. The Bayesian inference model focuses to 

distinguish the uncertainty propagation with the aid of 

mathematically decoding the reliability of the complex event 

that has been processed, filtered and  aggregated from the raw 

data stream. 

440



According to [8], another approach based on evolving 

Bayesian networks was proposed in order to predict the traffic 

flow. This Bayesian model  is primarily based on event type 

and time using the inference method based on a mixture of a 

finite number of Gaussian distribution (Gaussian mixture 

model) and Expectation-Maximization (EM) algorithm. Their 

evaluation includes simulation of real-time data from traffic-

monitoring networks, where vehicles travelled to and from the 

designated location. 

Another approach using the Markov model was proposed 

to estimate the likelihood of hurricanes under an uncertain 
data stream in CEP [33]. The method focuses on the  

uncertainty in the event by considering the event detection 

such as events that may be lost or incorrectly detected. The 

solution was modeled based on a historical event that depicts 

a complex event as a sequential composition of simple 

events.The proposed technique makes use of a fixed of 

operators primarily based on timestamp and length of 

durations of the interval events. The computation of the 

expected probability of a complex event is designed using 

techniques based on the Markov chain. 

According to [37], in order to detect anomaly of 
manufacturing equipment, the author utilizes the WSO2 Data 

Analytics Server (DAS) by clustering data generated with the 

aid of using sensors, and the state transitions among the 

determined clusters are modelled based on Markov chain 

model. The implementation of the thread pool as part of their 

approach resulted in significant performance improvements. 

The benefit of the thread pool technique is that it can manage 

and execute a large number of tasks concurrently. 

According to [38], in the RFID system, leveraging the 

Markov model is an efficient method to model uncertainty in 

the event streams. However, using CEP may result in serious 
privacy leakage. In CEP, privacy preservation techniques on 

complex events are significant. To address this issue, an 

approach was proposed based on the Markov model in RFID 

for privacy preservation. This approach focuses on the 

privacy preservation of the complex events with the aid of 

using Markov chains technique. Based on the features 

capabilities of Markov correlated events, the authors have 

described optimization targets and proposed two methods. 

The first is taking the uncertainty and quantity of query results 

into account. The latter, the authors discard policy based on 

Markov steady states to enhance processing efficiency. 

Automata theory is a machine that detects patterns within 
data taken from some character set or alphabet. The activity 

of finite automata (FA) is to just accept or reject an input 

subject to the sample described via way of means of the FA 

happening withinside the flow of the stream or data. In 

automata theory, there are two types of finite automata; 

deterministic finite automata (DFA) and non-deterministic 

finite automata (NFA).  

In DFA, we can dictate the state to which the machine will 

process for each input. Previous approaches have used DFA 

to determine complex events. According to [39], the authors 

proposed a pattern recognition approach using DFA and 
Pattern Markov Chain to detect credit card fraud. Besides 

detecting pattern occurrences, this approach will estimate the 

number of future events until the expression is satisfied.  

NFA is a machine that used to detect pattern using a string 

of input symbol ∑. For each input symbol, it changes to a new 

state until all input symbols have been utilized and the 

machine reaches its final state. In CEP, NFA is a 

representation to detect regular expression patterns among 

simple events from the  RFID event streams.  

According to [40], the authors proposed a complex event 

detection approach by using NFA and hash table 

(NFA_HTS). This method was extended by proposing an 

approach using hash table B+ tree structure (NFA-HTBS) in 

[41]. The NFA is used to match related simple events from 

massive RFID event streams, while a hash table is used to 

detect complex events from large matched results using B+ 
tree data structure. The advantage of using HTBS lies in the 

instant classification and storage technologies while reducing 

the unnecessary operation therefore reducing the time 

consumed, high memory used and improving the event 

throughput. Hash table is a flexible data structure for 

processing instant associative lookups. According to [42], the 

research focuses on minimizing the operations in the CEP 

engine based on the previous CEP engine, RCEDA [20]. The 

proposed approach initiates an event query tree and detects 

homogeneous and unnecessary operations by propagating the 

tree and hash table to detect complex events. According to 
[43], lazy chain automata were proposed to detect complex 

events. This approach mainly utilizes the NFA and lazy 

evaluation model to detect the frequency order of the event 

types in stock exchange. 

In recent years, many sophisticated CEP tools have been 

developed to process and interpret massive data into a 

meaningful event. The CEP tool is a resource that has much 

relevance to the overall subject of knowledge management or 

business intelligence [44]. For example, a real-time intrusion 

detection system was tested using CEP tool (ESPER) in RFID 

middleware [45]. ESPER is a Java-based tool and open-
source CEP engine that is used to develop the application. 

Besides storing and running the queries against stored data, 

the ESPER engine enables applications to store the queries 

and run through the data. The approach was designed to detect 

and differentiate the real RFID tag and clone RFID tag in 

RFID middleware. In general, the frequent value of the 

incoming RFID tag data will be compared with the predefined 

threshold value. If the RFID tag is new, the system will 

compute the frequent value of the same attribute in the 

database. An alarm will occur only when the value of RFID 

tag data is below the predefined threshold. 

Besides intrusion, another research was conducted to detect 
theft and counterfeit in the manufacturing ecosystem [15]. 

The research compares the tool performance between 

ESPER[16] and INSTANS [15] engine in CEP platform tool 

in RFID middleware. The internals of ESPER were designed 

particularly relying on state machine and delta networks. 

Besides ESPER, INSTANS is an incremental engine for near 

real-time processing of complex, layered, heterogeneous 

events. It focuses on the continuous query that is in RDF 

format of the stream [46]. To process RDF, INSTANS makes 

use of the Rete algorithm. In this research,the events 

generated withinside the manufacturing process had been 
modelled using Extensible Markup Language (XML) and 

Resource Description Framework (RDF) formats. Both 

engines compare events from a different location to identify 

theft and counterfeit situations. While INSTANS perform the 

detection process in the database, the ESPER engine performs 

441



the detection process in the streaming window before it is sent 

into the database. The authors concluded that ESPER shows 

better performance and better platform maturity, however 

INSTANS is rapid to process classical scenarios used for 

event stream processing. Batch based solutions are commonly 

not efficient because of the excessive latency involved. On top 

of that, they have got the overhead of processing overlapped 

information among batches a couple of times. Hence, this case 

requires an incremental approach to resolve the speed 

dimension. 

E. Discussions 

Based on the previous section, we assume that it is very 

challenging to propose an approach that gives high accuracy, 

low memory usage, high throughput and low detection time. 

In proposing a solution to detect uncertain events in event 

streams, having the right strategy is important to attain the 

desired objective. In this research, we aim at reducing the 

network communication cost by minimizing the unnecessary 

process that leads to high memory consumption and gets 
better results in less time. We especially take proper benefit  

of the storage technologies and immediate classification by 

implementing the hashing technique in the proposed 

approach. Hashing has become a part of the method used, 

especially in the research that is related to the real-time 

detection systems [47]. Besides, it can lessen lots of inserting, 

storing and seeking operations, and it may lessen the average 

searching cost by using optimum hash function, computed 

and flexible table size, and internal data structures. 

We specifically implement ConcurrentHashMap to 

manage the incoming event from RFID event streams. 

ConcurrentHashMap is an enhancement of HashMap  [48] 
that is a thread-safe implementation in which multiple threads 

can operate on a single object without any complications. 

While HashMap is a hash table based implementation that 

implements the maps interface [49]. It is used for storing key 

and value pairs. In other words, it maintains the mapping of 

key and value. ConcurrentHashMap hasn’t been widely used 

yet, although it presents numerous advantages [50]. 

A hash is a function that converts one value to another. 

Different data structures based on hashing do different 

internal work. Hash table is a data structure that stores data in 

an associative manner [51]. In a hash table, data is saved in an 
array format, where each data value has its unique index 

value. Hash tables store data with the aid of using a technique 

called hashing. While in the hashing process, hash code of 

every element is computed internally, and the value of hash 

code determines the index at which the element is saved 

within  the hash table. 

ConcurrentHashMap uses an array to store data. In this 

research, ConcurrentHashMap is a modification of hashmap 

for concurrent processes that executes threads that are more 

than one. By default, the concurrenthashmap concurrently 

permits sixteen (15) threads to examine and write from the 
map with none outside synchronization [52]. Unlike hashtable 

and HashMap, it in no way locks the entire map. Instead, it 

divides the map into segments and locking is done on those. 

In ConcurrentHashMap, any range of threads can carry out 

retrieval operations; however for updates in the object, the 

thread needs to lock the unique segment in which the thread 

desires to operate. This form of locking mechanism is referred 

to as Segment locking. Hence at a time, 16 update operations 

must be completed by using threads. 

Besides ConcurrentHashMap, motivated by [37], we 

utilize the thread pool technique to overcome the unnecessary 

process while performing small tasks in massive RFID event 

streams. Threads are lightweight processes within a process. 

In other words, the thread is a lightweight subprocess, and the 

processing unit is known as a thread. It is a separate path of 

execution. Threads are independent. If there is an exception 

in one thread, it does not affect the other threads.  

The thread pool technique has been used for designing 
scalable multithreaded and distributed systems [53], [54]. A 

thread pool is a group of threads that are created at the time 

the application is started. The thread pool architecture 

comprises a task queue, worker thread, and a pool of thread 

that manages the worker threads. The thread pool provides 

new worker threads or completion threads or tasks that are 

waiting for the job and reuse many times in the worker process 

event cycle 

The idea of these combination techniques is to protect the 

thread production and deletion process when processing small 

tasks asynchronously. In this research, the proposed technique 
provides better performance as respect to time and memory 

complexity. The details of the proposed solution will be 

discussed in the next section.  

F. Detections of uncertain Events 

In a manufacturing company, especially supply chain, 

RFID tags were attached to the products so that the visibility 

of every product can be monitored along the lifecycle of the 

workflows. As motivated by [15], the RFID tags are 

semantically designed and formatted according to the 
electronic product code (EPC) standard. While the RFID 

reader detects tags using antennas that are mounted at 

different locations in the motivated areas. The arriving 

reading that is carrying information from the RFID readers is 

in the form of event stream [55]. To model and detect the 

uncertain event in the RFID CEP, rules were introduced 

according to the standard and acted as a guideline to detect the 

affected events. As for any proposed approach, the ability to 

detect an accurate pattern is crucial. 

By referring to the characteristics of uncertainties in CEP 

[4], the uncertainties were classified into two types; 
uncertainty in the event streaming, and uncertainty in rules. 

Uncertainty in events streaming may happen due to 

operational failure of the sensors. For example, even though 

missing events in the stream happened as a false negative, 

these missing events were wrongly inserted as false positives 

in the event streams. While uncertainty in rules due to lack of 

precision based on comparison operators ( =, <, >,…) between 

uncertain values of attributes such as event timestamp and 

event location, of matched pattern. 

Motivated by [15], consider there are two event windows, 

production and packaging. One, the production line window 
is when the reader reads the items on the conveyor belts once 

the process of making the item is completed. Two, the 

packaging window is for monitoring the correct items 

assembly before it is packaged and transferred into the 

warehouse. Fig 2. portrays the process of movement of items 

with EPC tag during the production process. Time (t) moves 

442



as the items move from the production section to the 

packaging section.  

In this scenario, the manufacturer assigns an Electronic 

Product Code (EPC) to tag items, packages and pallets. EPC 

is defined in the EPCglobal Tag Data Standard, a universal 

identifier that gives a completely unique identification of a 

physical object everywhere withinside the world. The objects 

are packed in the package, packages are loaded onto pallets 

and pallets are shipped.  

To show a clear process of the movement of items in a 

manufacturing company, Fig. 2 and Fig. 3 illustrate the 
movement of items from the production area to the packaging 

area. At t = 1 and t = 2, reader_1 detects the first batch of 

events from the production area. At event t = 3 from the 

packaging window shows that there is imprecision recorded. 

This imprecision is known as missing item as that particular 

item exists in the production window but not in the packaging 

window. While counterfeit is detected in the packaging 

window at time t = 5. This is because the specific items 

recorded in the does not exist in the production window at the 

t = 3 and t = 4 but detected in the packaging window. 

Meanwhile t = 5 and t = 6 is an example of the correct event 
detected in the production window and at t = 7 in the 

packaging window. 

 

t=1 t=2Production

<reader_1>

Packaging

<reader_2>

 
 

Fig. 2 Event stream model at manufacturing  

 

t=1 t=4t=3t=2Production

<reader_1>

Packaging

<reader_2>

Item loss Counterfeit  
 

Fig. 3 Missing item and counterfeit in the event stream 

 

Based on Fig. 4, the uncertain event detection process takes 

place in the RFID CEP engine. The RFID tag readings 

represent the raw, collected data stream. Tag reading event 

gives specific tag’s information at a given time point. The data 
from the RFID data streams are usually unreliable and prone 

to be incomplete and contain noise. Simple event processing 

is responsible for cleaning the tag reading events. After data 

cleaning, the data stream is interpreted as a history of simple 

events. At this stage, as events are divided by the source of 

the event (i.e. Event from production and event from 

packaging), this event sourcing strategy can be an excellent 

solution to deal with the highly concurrent environment. 

However, concurrency instigates the requirement for 

communication among executing threads, this is to 

synchronize their operations. It is shared memory 

communication, which guarantees the shared resources are 
accessed individually and appropriately. While complex 

events are application-based, that displays the need to be 

tracked and monitored withinside the application. Complex 

events are composed via means of the use of  predefined 

patterns or rules. In this research, The rule was defined based 

on previous research in the real industry scenario [15].  The 

rule to detect the uncertain events is as follows; 

 Missing item:  the EPC tags and the associated event 

ID’s exist in production but not in packaging. 

 Counterfeit: Item EPC and associated event ID’s exist 

in packaging but not in the production area.  

RFID Data 

Stream

Tag 

Reading

event

Complex 

Events

Simple 

Events

RFID Complex Event Processing Engine

Event Rules

Event Interpreter

Simple Event Processing

Inventory 

monitoring

Tracking

Database

Hashing Techniques + 

ThreadPool technique

Uncertain Event Detection

  
Fig. 4 Framework of RFID CEP engine 

 

In this paper, we focus on the detection of uncertain events, 

focusing on counterfeit and missing items in the 

manufacturing company. The proposed algorithm consists of 

two subprocesses; main process and thread pool process. 

At the main process, this stage manages the arrivals of 

events. We will store the resources in the event; the 

occurrence time of an event in the temporary string variable 
and the objects' tag ID (elements) in the temporary 

concurrentHashMap. When the process reaches the end of the 

elements, we check if the event is the production event or 

packaging event. If the event is the production event, in a 

separate thread, we pass the temporary event's occurrence 

time and temporary concurrentHashMap into the thread. If the 

event is the packaging event, in a separate thread, we pass the 

temporary event's occurrence time and temporary 

concurrentHashMap into the new concurrenthashMap in the 

thread. After passing the resource, we clear the temporary, 

concurrentHashMap and start reading the next event. 

For the thread pooling process, is where the uncertain 
detections work. During the detection in the thread pool, if 

there are matches between production events and packaging 

events during the time period, the matches get pushed to 

match items listed in the main process. If there are no matches 

within that period, if the tag ID is found in the production 

event but not in the packaging event, the tag ID gets pushed 

as a missing item. If the tag ID is found in the packaging event 

but not in the production event, the tag ID gets pushed as a 

counterfeit item.  

Production

(ObjectEvent)

Packaging

(AggegationEvent)

AB1001 AB1002 AB1003

AB1001 AB1002 AB1003

tagType (START_ELEMENT)

resource

tagType (END_ELEMENT)

t(eventOccurr edAt) = n

epcEvent ; AB1001

t(eventOccurr edAt) = n

 
Fig. 5 Terms used in the proposed algorithm 

G. Uncertain Detection Algorithm (UDA) 

In this section, the proposed algorithm is described. The 

algorithm works based on the reference scenario, process 

443



model at manufacturing [15], that is universal to be 

implemented to other industries as well. The terms used in the 

algorithm are defined based on Fig. 5. The explanation of Fig. 

5 is interrelated with Fig. 2 and Fig. 3 in the previous 

subsection. 

Algorithm 1 shows the proposed approach to detect 

counterfeit and missing items in the RFID event stream. We 

only focus on the operation to detect the uncertain event 

between the production events and the packaging events in the 

event stream. The algorithm is as follows;  

 

ALGORITHM 1: Uncertain Detection Algorithm (UDA) 

INPUT: xmlEvent 

1. BEGIN 

//Read XML as stream 

2. WHILE(xmlStreamReader ← hasNext(dalam ni apa)) 

3. IF (tagType==xmlEvent ← START_ELEMENT) 

4. SWITCH (xmlStreamReader) 

5. CASE “eventOccuredAt”: 

6. update temporaryEventOccuredAt = 

eventOccuredAt 

7. set internal_clock_time = eventOccuredAt 

8. BREAK 

9. CASE “element”: 

10. IF (epcEvent == xmlEvent ← 

START_ELEMENT) 

11. Push resource → 

temporaryEventOccuredAt in 

temporaryConcurrentHashMap as key → 

value 

12. BREAK 

13. END IF 

14. END SWITCH 

15. ENDIF 

16. ELSE IF (tagType==xmlEvent → END_ELEMENT) 

IF (tagType == ObjectEvent) 

//Append temporaryConcurrentHashMap in new 

thread 

17. IF (PRODUCTION_TID ← 

concurrentHashMap(eventOccuredAt) 

18. FOR(entry ← PRODUCTION_TID) 

19. IF(entry(eventOccuredAt)) 

20. PRODUCTION_TID++ 

21. END IF 

22. END FOR 

23. END IF 

24. LOST_ITEM++ 

25. REMOVE ALL LIST OF PRODUCTION_TID after 

t-winc 

26. ENDIF 

27. CLEAR temporaryConcurrentHashMap 

28. CLEAR temporaryEventOccuredAt 

ELSE IF tagType==AggreagtionEvent  

//Append temporaryConcurrentHashMap in new 

thread 

29. IF (PACKAGING_TID ← 

concurrentHashMap(eventOccuredTime) 

30. FOR(entry ← PACKAGING_TID) 

31. IF(entry == eventOccuredAt) 

32.   keyset ← entry 

33. END IF 

34. END FOR 

35. END IF 

36. COUNTERFEIT_ITEM++ 

37. REMOVE ALL LIST OF PACKAGING_TID after t-

winf 

38. END IF 

39. CLEAR temporaryConcurrentHashMap 

40. CLEAR temporaryEventOccuredAt 

41. END IF 

42. END WHILE 

43. END 

 

In this algorithm, the case ‘eventOccuredAt’ is to update 

the internal clock. While case ‘element’ reads the epc and 

adds them into the temporaryConcurrentHashmap. 

Based in Algorithm 1, at line 1 to line 3, read the incoming 

event as streaming data. At line 3, if it is START_ELEMENT, 

store the occurrence time of an event in a temporary string 

variable (line 5 to line 8) and the elements of events in the 

temporaryConcurrentHashMap (line 9 to line 12). At line 16, 

if the tag is END_ELEMENT?, and if the event is from the 

production area (ObjectEvent), in a separate thread, we pass 

the temporary event’s occurrence time and 
temporaryConcurrentHashMap into the thread (line 17 to line 

26). After passing the resource, the clear eventOccurredAt, 

temporaryConcurrentHashMap and started reading the next 

event (line 28 and line 29). In line 30, if the event is from 

packaging area (AggregationEvent), in a separate thread, we 

pass the temporary event’s occurrence time, and 

temporaryConcurrentHashMap into the thread (line 31 to line 

40). After passing the resource, the clear eventOccurredAt, 

temporaryConcurrentHashMap and started reading the next 

event (line 41 and line 42).  

This is the section where we create a thread pool with a 
fixed number of threads. A separate task is created for every 

event in the event stream and is submitted it to the thread pool.  

In line 18, if the event just now was a production event, in 

a separate thread, merge the PRODUCTION_IDs to 

concurrentHashMap. In the thread pool, start the processing 

function to auto-remove and push missing items (line 19 to 

line 26). If there is a temporary entry from production, for 

which event occurred time in addition with active window 

detection where length is less than or equal to time extracted 

from the current event, report the PACKAGING_TID as 

missing item detected in production. 
At line 31 to line 39, if the event just now was a packaging 

event, in a separate thread, merge the PACKAGING_TIDs 

into concurrentHashMap (line 31). In thread pool line 32 to 

line 33, if a pair of resource or element is found between 

production's thread and packaging's thread, it is added to the 

hashmap of matched items. If there is a temporary entry from 

packaging, for which event occurred time in addition with 

active window detection where length is less than or equal to 

time extracted from the current event, report the 

PACKAGING_TID as counterfeit detected in packaging. At 

the end of the process, the main thread checks if there are any 

threads still running, the process will hold a bit until all the 
process terminates itself. 

III. RESULTS AND DISCUSSION 

In order to prove the efficiency of the proposed approach, 

performance analysis was conducted and compared with the 

existing approaches and tools. For the computer environment, 

Intel i3 processor and eight-gigabyte memory were used, and 

the operating system is Windows 7. The modules for CEP 
were implemented in Java. The dataset used in the experiment 

is presented as a time-varying stream of events that represents 

an observation of the actual counterfeiting and theft detection 

scenarios from the pharmaceutical company recorded by the 

sensor [15]. 

The performance evaluation of three processing 

approaches, proposed approach, Instans [50],  ESPER [16], 

NFA-HTS [40] and LCA [43]. A slight modification has been 

444



made to these algorithms to solve the problems. We measured 

mainly execution time, memory consumption and detection 

accuracy according to the event stream scale with 8% 

uncertain events. These measurements are defined as follows; 

 Execution time: the time required to detect uncertain 

events according to the event stream scale. 

 Memory consumption: memory consumed when 

detecting uncertain events in the event stream according 

to the event stream scale. 

 Detection Accuracy: measures the accuracy of uncertain 
events according to the event stream scale. 

 

The system execution time or throughput is the time it takes 

to load and analyse an event stream. It also includes the time 

it takes to load the output into a consistent format and parse 

it, and time it takes to write the results to disk. While memory 

consumption is the amount of memory required to load and 

analyse while processing an  event stream. Detection accuracy 

is the total accuracy detected over the 8% uncertain event in 

the event stream. For robustness, we performed ten (10) 

independent runs for each experiment, and we report the 

median values. The number of event streams scale is varied 
from 1000 to 5000 with an increment of times 1000 for each 

scale. 

A. Analysis Based on Detection Accuracy 

In this section, extensive experiments were performed to 

find the detection accuracy of the proposed approach, Instans 

and ESPER were studied under varying event stream scale. 

Fig. 6 illustrates the performance of the proposed approach, 

Instans and ESPER with 8% uncertain events under varying 
event stream scale. Fig. 6 shows that, UDA and NFA-HTS 

gets 100% accurate. Instans and ESPER also maintain to get 

accurate detection at every event stream scale. For Instans, 

Rete implementations are non-distributed implementation, 

yet efficient in term of detection accuracy.  

 

 
Fig. 6 Detection accuracy percentage under different event stream scale 

 

ESPER is an open source Java-based event stream 

processing engine that analyzes a set of events and draws 

conclusions from the event stream. It provides a language 

called Event Processing Language (EPL) that implements and 

extends the SQL standard. In Instans, the evaluation of 

SPARQL (events) subscriptions is sequential. While in the 
proposed approach (UDA), the evaluation is multithreaded. 

 

 

B. Analysis Based on Execution Time 

Extensive experiments have been conducted in this section 

to see the results of reduced execution times. Fig. 7 below 

shows the execution time of the proposed approach using 

different event stream scale sizes. The execution times of the 
three approaches to the event streams range 1000 to 5000 

events. The UDA took the least time, followed by NFA-HTS. 

While Instans took the longest time to process the event 

stream followed by LCA. This is because Instans has to focus 

on continuously processing RDF event streams while 

employing the Rete algorithm and propagating data through a 

matching network. By using Rete, the event matches are 

produced as soon as all the conditions of SPARQL graph 

patterns are matched. While the LCA algorithm uses a simple 

NFA structure to determine potential matches. In other words, 

events will be buffered until they find a match. 
 

 
Fig. 7 The execution time of the proposed approach under different event 

stream scale 

 

While using the UDA algorithm, the event has to match the 

pattern as soon as the event is merged in the thread pool. At 

the end of the process, in this approach, the main aim is that 
if there are any threads still running, the process will hold a 

bit until all the process terminates automatically. The graph 

also indirectly shows that by using ConcurrentHashMap and 

thread pool technique, it requires less time to process events 

compared to NFA-HTS. NFA-HTS also shares some 

advantages by using hash table structure. It enables easy 

retrieval and reducing computation operations based on 

storage technologies of hash table structure. ESPER is an 

engine primarily relying on state machines. For ESPER, we 

do not have a very detailed architectural diagram because the 

community does not release such materials to the public 

domain. The code is open source and the API's to use the 
engine is sufficiently documented.  

C. Analysis Based on Memory Consumption 

In this section, the proposed approach is compared with 

Instans, ESPER, NFA-HTS and LCA in terms of memory 

consumption under different event stream scales. As depicted 

in Fig. 8, UDA shows the least consumption and slightly 

better than NFA-HTS compared to the Instans, ESPER and 

LCA. While Instans and ESPER show higher memory 
consumption, especially when the event stream scale is 

massive. This is because, by using the thread pool, we do not 

have to create, manage, schedule and terminate the thread. 

Thread pool help mitigate performance issues by reducing the 

number of threads required and managing their lifecycle.  

86

88

90

92

94

96

98

100

102

1000 2000 3000 4000 5000

A
cc

u
ra

cy
 (

%
)

Event Stream Scale

UDA

Esper

Instans

NFA-HTS

LCA

0

0,5

1

1,5

2

2,5

3

3,5

1000 2000 3000 4000 5000

E
x
ec

u
ti

o
n
 T

im
e 

(s
)

Event Stream Scale

UDA

Esper

Instans

NFA-HTS

LCA

445



 

 
Fig. 8 Memory consumption under different event stream scale 

 

Essentially, thread pool reuses its threads to perform the 
work pattern detection until it is completed. In non-technical 

explanation, the threads continue to be in the pool till they 

may be required, after which they execute the task and return 

the pool to be reused later so that it can pick up the next 

available task. This mechanism is beneficial in systems or 

engines that execute a large number of small tasks or 

processes. Besides creating threads, destroying a thread has 

set up and torn down costs (it takes CPU time). While in LCA, 

the engine continuously buffers until they find a match. Same 

as Instans, the engine is in charge of continuously evaluating 

the incoming data and storing intermediate results. At the 

same time, ESPER exploits in-memory processing to address 
the requirements of applications that analyze a high volume 

of event stream and promptly react to events by applying 

complex computations. 

IV. CONCLUSION 

In this research, the issue of uncertain event detection has 

been studied, and a brand new approach based on hashing and 

thread pool technique was proposed.  The overall 
performance of the proposed approach is compared with the 

existing approaches. The results show that the performance of 

the proposed approach was better than the opposite 

approaches in terms of detection time and memory usage. 

Moreover, this research additionally demonstrated that, with 

the aid of using thread pool technique, the proposed approach 

performs quicker than the opposites in terms of the efficiency 

of the experiments. Despite the convenience of use, the thread 

pool has the subsequent limitations when compared to 

manually handling the threads. With thread pool, we do not 

have control over the state and priority of the thread. We 

additionally cannot provide a solid identification to the thread 
and maintain monitoring it. The technique may be inefficient 

whilst there is a excessice  demand for the thread pool.  

Synchronization overhead is one of the reasons that lead to 

inaccurate detections. Even though the detection accuracy 

deteriorates when the event stream scale increases, the 

proposed approach processes at the optimum rate when the 

event stream is at a moderate scale. For future work, we plan 

to expand our research on the relationship between pool size 

and the number of threads can be set dynamically. 

 

ACKNOWLEDGEMENT 

This research is sponsored by Universiti Tun Hussein Onn 

Malaysia under Fundamental Research Grant Scheme Vot 

1611 and the Ministry of Higher Education through MyBrain 

scholarship. 

REFERENCES 

[1] Guthrie, John, Sarah Todd, and Jeffrey Alstete. "Inside advice on 

educating managers for preventing employee theft." International 

Journal of Retail & Distribution Management (2006). 

[2] Singh, Mohan, Smriti Sachan, Akansha Singh, and Krishna Kant 

Singh. "Internet of Things in pharma industry: possibilities and 

challenges." In Emergence of Pharmaceutical Industry Growth with 

Industrial IoT Approach, pp. 195-216. Academic Press, 2020. 

[3] Siddiqa, A., Hashem, I.A.T., Yaqoob, I., Marjani, M., Shamshirband, 

S., Gani, A. and Nasaruddin, F., 2016. A survey of big data 

management: Taxonomy and state-of-the-art. Journal of Network and 

Computer Applications, 71, pp.151-166. 

[4] Flouris, I., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Kamp, 

M. and Mock, M., 2017. Issues in complex event processing: Status 

and prospects in the big data era. Journal of Systems and Software, 

127, pp.217-236. 

[5] Lan, L., Shi, R., Wang, B., Zhang, L. and Jiang, N., 2019. A universal 

complex event processing mechanism based on edge computing for 

internet of things real-time monitoring. IEEE Access, 7, pp.101865-

101878. 

[6] Correcher, J.F., Alonso, M.T., Parreño, F. and Alvarez-Valdés, R., 

2017. Solving a large multicontainer loading problem in the car 

manufacturing industry. Computers & Operations Research, 82, 

pp.139-152. 

[7] Bhat, S. and Krishnamurthy, A., 2016. Interactive effects of seasonal-

demand characteristics on manufacturing systems. International 

Journal of Production Research, 54(10), pp.2951-2964. 

[8] Wang, Y., Gao, H. and Chen, G., 2018. Predictive complex event 

processing based on evolving Bayesian networks. Pattern Recognition 

Letters, 105, pp.207-216. 

[9] Muzammal, M., Gohar, M., Rahman, A.U., Qu, Q., Ahmad, A. and 

Jeon, G., 2017. Trajectory mining using uncertain sensor data. IEEE 

Access, 6, pp.4895-4903. 

[10] Lee, O.J. and Jung, J.E., 2017. Sequence clustering-based automated 

rule generation for adaptive complex event processing. Future 

Generation Computer Systems, 66, pp.100-109. 

[11] Cugola, G. and Margara, A., 2012. Low latency complex event 

processing on parallel hardware. Journal of Parallel and Distributed 

Computing, 72(2), pp.205-218. 

[12] Hewa Raga Munige, T., 2016. Real time stream processing for Internet 

of Things and sensing environments (Doctoral dissertation, Colorado 

State University). 

[13] Hallé, S., 2017. From complex event processing to simple event 

processing. arXiv preprint arXiv:1702.08051. 

[14] Rinne, M., Solanki, M. and Nuutila, E., 2016, June. RFID-based 

logistics monitoring with semantics-driven event processing. In 

Proceedings of the 10th ACM international conference on distributed 

and event-based systems (pp. 238-245). 

[15] Rinne, M., Nuutila, E. and Törmä, S., 2012, November. INSTANS: 

High-performance event processing with standard RDF and SPARQL. 

In 11th International Semantic Web Conference ISWC (Vol. 914, pp. 

101-104). 

[16] “EsperTech.” http://www.espertech.com/ (accessed May 29, 2019). 

[17] Sarac, A., Absi, N. and Dauzere-Peres, S., 2015. Impacts of RFID 

technologies on supply chains: a simulation study of a three-level 

supply chain subject to shrinkage and delivery errors. European 

Journal of Industrial Engineering, 9(1), pp.27-52. 

[18] Fan, T., Tao, F., Deng, S. and Li, S., 2015. Impact of RFID 

Technology on Supply Chain Decisions with Inventory Inaccuracies. 

International Journal of Production Economics, 159, pp.117-125. 

[19] Yao, X., Zhang, J., Li, Y. and Zhang, C., 2018. Towards flexible RFID 

event-driven integrated manufacturing for make-to-order production. 

International Journal of Computer Integrated Manufacturing, 31(3), 

pp.228-242. 

[20] Wang, F., Liu, S. and Liu, P., 2009. Complex RFID event processing. 

The VLDB Journal, 18(4), pp.913-931. 

0

100

200

300

400

500

600

1000 2000 3000 4000 5000

M
em

o
ry

 (
k

b
)

Event Stream Scale

UDA

Esper

Instans

NFA-HTS

LCA

446



[21] Q. J. Lei, L. S. Bo, and C. J. Kun, “Online Monitoring of 

Manufacturing Process Based on autoCEP,” International Journal of 

Online Engineering (iJOE), vol. 13, no. 06, pp. 22–34, Jun. 2017. 

[22] Vlahakis, G., Apostolou, D. and Kopanaki, E., 2018. Enabling 

situation awareness with supply chain event management. Expert 

Systems with Applications, 93, pp.86-103. 

[23] Jia, X., Wenming, Y. and Dong, W., 2009, November. Complex event 

processing model for distributed RFID network. In Proceedings of the 

2nd international Conference on interaction Sciences: information 

Technology, Culture and Human (pp. 1219-1222). 

[24] Brunelli, D., Gallo, G. and Benini, L., 2016, September. Sensormind: 

virtual sensing and complex event detection for Internet of Things. In 

International Conference on Applications in Electronics Pervading 

Industry, Environment and Society (pp. 75-83). Springer, Cham. 

[25] Zhang, Y. and Sheng, V.S., 2018. Fog-enabled Event Processing 

Based on IoT Resource Models. IEEE Transactions on Knowledge and 

Data Engineering, 31(9), pp.1707-1721. 

[26] Wang, Y., Zheng, L., Hu, Y. and Fan, W., 2018, December. Multi-

source heterogeneous data collection and fusion for manufacturing 

workshop based on complex event processing. In Proceedings of the 

48th International Conference on Computers & Industrial Engineering 

(CIE), Auckland, New Zealand (pp. 2-5). 

[27] Agrawal, J., Diao, Y., Gyllstrom, D. and Immerman, N., 2008, June. 

Efficient pattern matching over event streams. In Proceedings of the 

2008 ACM SIGMOD international conference on Management of data 

(pp. 147-160). 

[28] Demers, A.J., Gehrke, J., Panda, B., Riedewald, M., Sharma, V. and 

White, W.M., 2007, January. Cayuga: A General Purpose Event 

Monitoring System. In Cidr (Vol. 7, pp. 412-422). 

[29] Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., 

Riedewald, M., Thatte, M. and White, W., 2007, June. Cayuga: a high-

performance event processing engine. In Proceedings of the 2007 

ACM SIGMOD international conference on Management of data (pp. 

1100-1102). 

[30] Welbourne, E., Khoussainova, N., Letchner, J., Li, Y., Balazinska, M., 

Borriello, G. and Suciu, D., 2008, June. Cascadia: a system for 

specifying, detecting, and managing RFID events. In Proceedings of 

the 6th international conference on Mobile systems, applications, and 

services (pp. 281-294). 

[31] Gillani, S., Zimmermann, A., Picard, G. and Laforest, F., 2019. A 

query language for semantic complex event processing: Syntax, 

semantics and implementation. Semantic Web, 10(1), pp.53-93. 

[32] Akila, V., Govindasamy, V. and Sandosh, S., 2016, April. Complex 

event processing over uncertain events: Techniques, challenges, and 

future directions. In 2016 International Conference on Computation of 

Power, Energy Information and Commuincation (ICCPEIC) (pp. 204-

221). IEEE. 

[33] Rincé, R., Kervarc, R. and Leray, P., 2018, September. Complex event 

processing under uncertainty using Markov chains, constraints, and 

sampling. In International Joint Conference on Rules and Reasoning 

(pp. 147-163). Springer, Cham. 

[34] Tang, L., Cao, H., Zheng, L. and Huang, N., 2015. Value-driven 

uncertainty-aware data processing for an RFID-enabled mixed-model 

assembly line. International Journal of Production Economics, 165, 

pp.273-281. 

[35] Cugola, G., Margara, A., Matteucci, M. and Tamburrelli, G., 2015. 

Introducing uncertainty in complex event processing: model, 

implementation, and validation. Computing, 97(2), pp.103-144. 

[36] Cugola, G. and Margara, A., 2012. Processing flows of information: 

From data stream to complex event processing. ACM Computing 

Surveys (CSUR), 44(3), pp.1-62. 

[37] Akram, N., Siriwardene, S., Jayasinghe, M., Dayarathna, M., Perera, 

I., Fernando, S., Perera, S., Bandara, U. and Suhothayan, S., 2017, 

June. Anomaly detection of manufacturing equipment via high 

performance rdf data stream processing: Grand challenge. In 

Proceedings of the 11th ACM International Conference on Distributed 

and Event-based Systems (pp. 280-285). 

 

 

 

 

 

 

 

 

 

 

 

[38] Li, F., Wang, N., Gu, Y. and Chen, Z., 2016, September. Effective 

Privacy Preservation over Composite Events with Markov 

Correlations. In 2016 13th Web Information Systems and Applications 

Conference (WISA) (pp. 215-220). IEEE. 

[39] Alevizos, E., Artikis, A., Katzouris, N., Michelioudakis, E., Paliouras, 

G. and Paliouras, G., 2018. The Complex Event Recognition Group. 

ACM SIGMOD Record, 47(2), pp.61-66. 

[40] Wang, J., Liu, J., Lan, Y. and Cheng, L., 2018. An Efficient Complex 

Event Detection Algorithm based on NFA_HTS for Massive RFID 

Event Stream. Journal of Electrical Engineering and Technology, 

13(2), pp.989-997. 

[41] Wang, J., Lu, S., Lan, Y. and Cheng, L., 2018. An Efficient Complex 

Event Processing Algorithm Based on NFA-HTBTS for Massive 

RFID Event Stream. International Journal of Information 

Technologies and Systems Approach (IJITSA), 11(2), pp.18-30. 

[42] Bok, K., Kim, D. and Yoo, J., 2018. Complex event processing for 

sensor stream data. Sensors, 18(9), p.3084. 

[43] Kolchinsky, I. and Schuster, A., 2018. Efficient adaptive detection of 

complex event patterns. arXiv preprint arXiv:1801.08588. 

[44] K. Tawsif, J. Hossen, J. Emerson Raja, M. Z. H. Jesmeen, and E. M. 

H. Arif, “A Review on Complex Event Processing Systems for Big 

Data,” in Proceedings - 2018 4th International Conference on 

Information Retrieval and Knowledge Management: Diving into Data 

Sciences, CAMP 2018, Mar. 2018, pp. 2–7. 

[45] Yin, S.N., Kang, H.S., Chen, Z.G. and Kim, S.R., 2016, October. 

Intrusion detection system based on complex event processing in 

RFID middleware. In Proceedings of the International Conference on 

Research in Adaptive and Convergent Systems (pp. 125-129). 

[46] Rinne, M. and Nuutila, E., 2014, October. Constructing event 

processing systems of layered and heterogeneous events with 

SPARQL. In OTM Confederated International Conferences" On the 

Move to Meaningful Internet Systems" (pp. 682-699). Springer, 

Berlin, Heidelberg. 

[47] Arbuzin, D., 2017. Real-time detection of moving crowds using 

spatio-temporal data streams. 

[48] Stusek, M., Masek, P., Zeman, K., Kovac, D., Cika, P., Pokorny, J. and 

Kröpfl, F., 2016. A Novel Application of CWMP: An Operator-grade 

Management Platform for IoT. International Journal of Advances in 

Telecommunications, Electrotechnics, Signals and Systems, 5(3), 

pp.171-177. 

[49] Jantkal, B.A. and Deshpande, S.L., 2017, August. Hybridization of B-

Tree and HashMap for optimized search engine indexing. In 2017 

International Conference On Smart Technologies For Smart Nation 

(SmartTechCon) (pp. 401-404). IEEE. 

[50] Pinto, G., Torres, W., Fernandes, B., Castor, F. and Barros, R.S., 2015. 

A large-scale study on the usage of Java’s concurrent programming 

constructs. Journal of Systems and Software, 106, pp.59-81. 

[51] Debnath, B., Haghdoost, A., Kadav, A., Khatib, M.G. and Ungureanu, 

C., 2016. Revisiting hash table design for phase change memory. ACM 

SIGOPS Operating Systems Review, 49(2), pp.18-26. 

[52] Zheng, Yajie, Dongwen Zhang, Yang Zhang, Song Guo, Yanan Liang, 

Mengmeng Wei, and Xin Yu. "Comparison and reconfiguration of 

Java hash mechanisms on parallel environment." Hebei Journal of 

Industrial Science and Technology (2017): 06. 

[53] Wei, L., Wan, S., Guo, J. and Wong, K.K., 2017. A novel hierarchical 

selective ensemble classifier with bioinformatics application. 

Artificial intelligence in medicine, 83, pp.82-90. 

[54] Du, P., Ren, J., Pan, J. and Luo, A., 2014. New cross-matching 

algorithm in large-scale catalogs with ThreadPool technique. Science 

China Physics, Mechanics and Astronomy, 57(3), pp.577-583. 

[55] Bhargavi, R., 2016. Complex Event Processing Framework for Big 

Data Applications. In Data Science and Big Data Computing (pp. 41-

56). Springer, Cham. 

 

 

447




