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Abstract—A recent study from MRI has revealed that there is a minor increase in cerebral-spinal fluid (CSF) content in brain ventricles 

and sulci, along with a substantial decrease in grey matter (GM) content and brain volume among Alzheimer's disease (AD) patients. 

It has been discovered that the grey matter volume shrinkage may indicate the possible case of dementia and related diseases like AD. 

Clinicians and radiologists use imaging techniques like Magnetic Resonance Imaging (MRI), Computed Tomography (CT) scan, and 

Positron Emission Tomography (PET) to diagnose and visualize the tissue contents of the brain. Using the whole brain MRI as the 

feature is an on-going approach among machine learning researchers, however, we are interested only in grey matter content. First, we 

segment the MRI using the SPM (Statistical parameter mapping) tool and then apply the smoothing technique to get a 3D image of grey 

matter (later called as grey version) from each MRI. This image file is then fed into 3D convolutional neural network (CNN) with 

necessary pre-processing so that it can train the network, to produce a classifying model. Once trained, an untested MRI (i.e. its grey 

version) can be passed through the CNN to determine whether it is a healthy control (HC), or Mild Cognitive Impairment (MCI) due 

to AD (mAD) or AD dementia (ADD). Our validation and testing accuracy are reported here and compared with normal MRI and its 

grey version. 
 
Keywords—Alzheimer disease (AD); Magnetic resonance imaging (MRI); Statistical parameter mapping (SPM); Convolutional neural 

network (CNN). 
 

Manuscript received 29 Jan. 2021; revised 22 Mar. 2021; accepted 4 Apr. 2021. Date of publication 30 Jun. 2021. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

 
 

 

I. INTRODUCTION 

In regards to Alzheimer’s disease, it is a neurodegenerative 
disease that influences the functional and constructional parts 
related to the brain. It is one of the most familiar forms of 
dementia that develops problems with memory, behavior, 
thinking, and other intellectual abilities disturbing personal 
and socio-economic aspects as well. 

A recent study from MRI has revealed that there is a minor 
increase in CSF content in brain ventricles and sulci, along 
with a substantial decrease in GM content and brain volume 
among AD patients [1]. The segmented tissue content reveals 
the volume of each type, and as AD is a neurodegenerative 
disease, the shrinking brain volume may alarm the case of a 
possible diagnosis of brain atrophy that may cause dementia 
and finally AD.  

MRI is a magnetic-field gradient-based neuroimaging 
biomarker technique that provides anatomic and 
physiological information for diagnosis [11] of different parts 
of the body including the brain. It uses a strong magnetic field 

and radio-wave to generate a higher-quality picture of the 
structure and volume of the brain. The high quality and 
greater contrast image of the anatomical structures along with 
functional images of various organs helps the medical 
professionals to obtain maximum data and information 
without any physical operation of the participant [12].  

Formerly Convolutional Neural Network (CNN) was 
designed for object recognition and later found its use in 
image classification, signal prediction, image-segmentation, 
pattern recognition etc. Due to its autonomous functioning 
nature, it has been exploring as an important deep learning 
tool in the field of artificial intelligence (AI) and advanced 
computer vision. In 2012 A. Krizhevsky et al. [2] were able 
to successfully engage CNN was in the larger database 
classification of natural images with the lowest top 5 error rate 
i.e. 15.3% in the ImageNet database with one thousand classes 
of image types. Later various advanced variants of CNN were 
proposed by deep learning researchers for object recognition 
and image classification including the one of residual network 
Resnet50 [3], inception network GoogLeNet [4], and regional 
boundary box-based r-CNN [5]. Regarding AD detection 
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using imaging modalities various architectures have been 
proposed. Payan et al. [18] proposed a patch-based sparse 
auto-encoder (SAE-CNN) to classify the MRI scans 
employing dataset partitioning. Hosseini-Asl et al. [19] used 
a deeply supervised and adaptable 3D CNN (DSA-3D-CNN) 
for s-MRI classification. Oh et al. [20] proposed a 
convolutional auto-encoder (CAE) constructed as 3D 
volumetric CNN for AD vs. normal older control (NC) and 
also proposed sMCI vs. pMCI classification using supervised 
learning transfer. Later Liu et al. in 2018 [21] proposed a 
modest CNN architecture with concatenation done in the 
convolution layer. In our recent work, we have proposed 
diverging architecture-based CNN for proper feature 
extraction and classification of s-MRI [14]. 

The goal of this paper is to prove that the tissue segmented 
MRI can be effective than a normal MRI with diverse pixel 
value for CNN-based. Our finding on a limited dataset to 
some extent supports our hypothesis. More study in the larger 
dataset is still under study.  

II. MATERIAL AND METHODS  

SPM was used to perform the segmentation of the brain 
into 3 tissue types so a separate 3D image file is obtained in 
Nifti format for Grey, White, and CSF parts. Being Grey 
matter most suspicious part of our study. The training and 
testing MRI files were obtained from National Research 
Centre for dementia (NRCD) Korea [6] now also known as 
Gwangju Alzheimer’s disease and Related Dementias 
(GARD) center. From the total dataset pool, only a few were 
selected for our experiment. The dataset consists of 42 
Alzheimer's disease dementia (ADD), 42 NC, and 39 MCI 
due to AD (mAD). ADD consists of 24 males and 18 females 
of mean ages 76.25 ± 3.33 and 75.03 ± 6.29, respectively. NC 
consists of 24 males and 18 females of mean age’s 76.26 ± 
4.57 and 69.66 ± 3.09, respectively. mAD consists of 24 males 
and 15 females of mean ages 74.75 ± 3.588 and 72.06 ± 2.89, 
respectively. The reason behind using fewer datasets is to test 
the implementation of our idea i.e. grey version may work 
better than processed MRI, in a simpler way as much as 
possible.  

Firstly, the raw MRI file is pre-processed using the co-
registration function available in the same SPM, then skull 
stripped and segmented following the segmentation pipeline 
of bias correction and spatial normalization using TPM (tissue 
probability map) from ICBN brain template [7] [8]. The 
obtained grey version is transformed as shown in Figs. 1 and 
2. 

 
Fig. 1  MRI scan of a normal subject as obtained from the NRCD dataset. The 
figure shows the MRI in the x-y plane as the 2D image in coronal, sagittal, 
and axial plane, respectively. 

 
Fig. 2   MRI Smooth grey version after pre-processing steps in SPM for MRI 
input of Fig. 5. The figure shows the processed, segmented, and smooth MRI 
in the x-y plane as the 2D image in coronal, sagittal, and axial plane 
respectively. 

 

A. SPM based segmentation  

The major procedure in VBM includes i) spatial 
normalization and diffeomorphic anatomical registration 
through exponentiated lie algebra (DARTEL) registration, ii) 
modulation and segmentation, and iii) smoothing. Spatial 
normalization transforms all the participants’ volume to the 
identical stereotactic space for uniformity. This is achieved by 
registering each of the images to its identical template image, 
by reducing the residual sum of squared differences amongst 
them using affine transformation [13] and nonlinear 
registration for the global brain shape difference. 
Consequently, modulation is performed to compensate for 
volume changes owing to spatial normalization. 

DARTEL [13] registration template is used to perform 
spatial registration. DARTEL template was created from 555 
IXI participants between the ages of 20–80 years. It provides 
an SPM12 extension tool for achieving a more precise inter-
participant registration of brain images. The extension tool 
uses default tissue probability maps (TPMs) as a reference 
map to perform the initial spatial registration steps and later 
tissue wise segmentation of brain. This TPM is a reformed 
version of the ICBM Tissue probabilistic Atlases (from 452 
T1 weighted Human brain scans) provided by the 
International Consortium for Brain Mapping [8]. Moreover, 
an optimized shooting approach was used for the adaptive 
threshold and lower initial resolutions to acquire a good trade-
off between accuracy and calculation. The segmented tissue 
was smoothened to suppress noise and effects due to the 
residual difference in functional and gyral-related anatomies 
during inter-participant averaging. The final image was 
smoothened using [8 8 8] the Gaussian smoothing kernel. 
Hence, the normalized-modulated-segmented smooth image 
of voxel 1.5 mm and dimensions 121 × 145 × 121 was finally 
formed for each tissue volume, i.e., GM, white matter (WM), 
and CSF. We have considered the GM and WM volume as the 
major input for the further mapping process.   
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Fig. 3  Convolutional layer architecture in CNN. The block shows the basic 
layers used in CNN i.e. convolution operation followed by a batch or channel 
normalization layer which is followed by an activation layer and finally a 
pooling layer for feature down-sampling.  

B. CNN design for classification 

Conventionally CNN contains many convolutional layers 
that transform their input with convolution filters initialized 
differently with various size and stride of a small extent that 
runs over each image to pass the extracted feature vector to 
the succeeding layers. CNN is a supervised training 
phenomenon as it requires user-defined target values 
generally called a label, ground truth, or target value. Based 
on the error between the predicted value and target value, the 
loss function performs the iterative-training for different 
epochs using backward propagation until the parameters of all 
layers participating in training remain constant or almost 
constant with the minimum error between the predicted value 
and target value. Here it is to be noticed that, training a CNN 
is directly affected by the number of training materials and the 
quality of label or ground truth. The network performs 
accordingly how it is trained hence called supervised network. 
But firstly before going into detail into the work, it will be 
helpful if we go through some major layer-wise mathematical 
operations used inside the CNN network as shown in Fig. 3. 

 

1) Convolutional layer: This is a learnable layer with multi-
dimensional filters (kernels) of a specified size that runs 
across the input signal (image). Mathematically kernel is a 2D 
or 3D square matrix to be operated with the input signal. The 
hyper-parameter step or stride controls the area of reception 
for the filter to convolve through the input signal by sliding 
the window with each stride size. The convolution operation 
of the input signals with the kernel follows equation (1) 
 

�� � ∑ ������	�
�     (1) 

 
The convolution operation follows as above equation: where 

�� is the signal input for layer l , �� is its filter weight, and 

‘n’ is the number of elements in x. For the next preceding 

layer input, the output vector  ��  becomes the input. The 
subscripts represent the nth element of the feature vector.  
The output of the convolution is a reduced version of the 

input image known as the feature map or feature vector. Here, 
one important consideration is the initial constituent of the 
filter also known as filter-weight, which is normally a random 
value however different initialization techniques have been 
proposed to enhance the convergence process of the network. 
 
2) Pooling layer: The feature vector or feature map obtained 

from convolution is bulkier in dimension due to the larger 

number of filters used hence pooling operation is performed 
to select a representative feature map. The pooling layer 
works as the down-sampling layer, eventually decreases the 
size of output of feature vectors from the convolutional layer 
which may cause extra memory-hardware consumption and 
overfitting. Various types of pooling action may be average 
pooling, max-pooling, min-pooling which selects the average, 
maximum and minimum value from the selected pool size 
filter respectively. The generally used pooling is the max-
pooling function which forwards the maximum value from its 
selected window, for generating a feature map [15]. 
 
3) Activation layer: It a common practice to uses various 

activation functions to transform the feature between each 
layer so that the convolution process gets smoother and faster 
without losing important information. Mostly used is: 
(a) Rectified linear activation unit (ReLu): Rectifier linear 

units [16] add non-linearity during training the network and 
select only the non-negative numbers as activated features as 
shown in equation (2).  
 


��� � max �0: ��                    (2) 
 
As the equation suggests it misses the negative weights to 

maintain a range of [0, x] but a slightly different ReLu called 
leaky rectifier linear unit (LeakyRelu) [26] proved better than 
the original ReLu itself. This may be due to its characteristics 
which add nonlinearity, sparsity in the convolutional network 
resulting in network robustness to minor fluctuations such as 
noise present along with the input. Similarly, exponential 
linear unit (ELU) also keeps a minimum threshold for 
negative inputs. All activation functions shown as graph in 
Fig. 4. Equation (3) represents the single input LeakyRelu 
function.  
 


��� � � � �
 � � 0
 0.01� ��ℎ������     (3) 

 

 
Fig. 4  Activation function graph for ELU, Leaky ReLU and ReLU. 

 

4) Softmax: This function or classifier is a class-based 
prediction operation to find the probability distribution (PD) 
scores of the ‘k’ targets i.e. the number of output classes. 
Hence the final classification layer uses the softmax function 

to predict the final class of the input MRI image. For i=1, 
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2…k number of classes with an input feature vector xi, the 
ith probability score pi  is shown in Equation (4) 

   ! � "#$
∑ "#%%&

    (4) 

Here, pi being a value between 0 to 1; hence the ith class 
with maximum probability score wins the race [17]. One of 
the problems using the 2D CNN is in the selection of the 
appropriate slice/slices along with its orientation as training 
inputs i.e. to select in the axial, sagittal, or coronal axis. 
Recent literature proposes the ‘best scan’ or the ‘best multiple 
slices’ [22]-[25] for an effectual performance however, this 
makes the region of interest (ROI) area and patch selection 
process more indeterminate. It becomes difficult and 
unfeasible every time. We might lose some important 
information if we emphasize only specific scans or the 
orientation. Therefore, the safest and the best tactic to 
accommodate all the pixel information can be using the all 
brain slices or whole MRI volume. This comes with 3D values 
(i.e. pixel values for the x, y, and z dimensions in a planar 
geometry). Furthermore, the process of choice of slice/slices 
is still ambiguous. In comparison to 2D, 3D CNN has an extra 
depth feature extraction capability because of its 3rd 
dimension, which makes the convolution operation more 
computation. The addition of the depth or channel in the 3rd 
dimension helps to accumulate the feature along the x, y, and 
z dimensions. The used equation is as shown in (5). 

�'
� � ('

� + ∑ *�+,.- ��!'
��
, �!

��
�	./&
!0
               (5) 

where *�+,.- is a fixed 3-D convolution i.e. N×N×N without 
zero paddings on the edges. In reference to equation (5), �' 

� is 
the input ('

�  is the bias of the kth neuron at layer l, and �!
��
 is 

the output of the ith neuron at layer l–1. �!'
��
 is the kernel 

(weight) from the ith neuron at layer l–1 to the kth neuron at 
layer l.  

TABLE I 
CNN ARCHITECTURE LAYERS 

Layers Specification 

Image Input 
64×64×64×1 images with 
'zerocenter' normalization 

Convolution 

16 3×3×3×1 convolutions with 
stride [1  1  1] and padding 
'same' 
 

Batch Normalisation 
Batch normalization layer for 16 
channels 

Activation  
ReLU 
 

Pooling 
2×2×2 max pooling with stride [2  
2  2] and padding [0  0  0; 0  0  0] 

Convolution 
32 3×3×3×16 convolutions with 
stride [1  1  1] and padding 'same' 

Activation  
Batch normalization with 32 
channels 

Pooling 
2×2×2 max pooling with stride [2  
2  2] and padding [0  0  0; 0  0  0] 

Convolution 
32 3×3×3×32 convolutions with 
stride [1  1  1] and padding 'same' 

Batch Normalisation 
Batch normalization layer for 32 
channels 

 
Activation  ReLU 

Pooling 
2×2×2 max pooling with stride 
[ 3 3 3] and padding [0  0  0; 0  0  
0] 

Convolution 
64 3×3×3×32 convolutions with 
stride [1  1  1] and padding 'same' 

Activation  ReLU                     

Pooling 

2×2×2 max pooling with stride 
[ 3 3 3] and padding [0  0  0; 0  0  
0] 
 

Fully connected  1000 fully connected layer 

Dropout 
50% dropout 
 

Fully connected  
1000 fully connected layer 
 

Activation ReLU 

Fully connected  
3 fully connected layer 
 

Softmax softmax 

Classification output 
crossentropy with 'ADD', ‘mAD’ 
and ‘HC’ classes 

III. RESULT AND DISCUSSION  

CNN was designed with architecture resemblance to U-net 
[9] encoder architecture with necessary modification as listed 
layer-wise with details in Table I. Only 2 layers of encoder 
were used, to obtain the final features, supported by the fully 
connected layers (FCLs) and subsequently with a softmax 
classification layer for getting the performance result. Here, 
another important factor is in the selection of 3D max-pool 
and Batch normalization layer, in between each encoder layer 
for normalization of each weight within a fixed scale. ReLu 
has been used as an activation function to pass only non-
negative values. Once the network is trained using 50% of 
data and 20% for validation, the remaining is used for testing. 
The obtained result is reported in Table III. The result is from 
a random ratio, so we have reported the best accuracy from 5 
consecutive experiments. The low accuracy may be due to the 
use of less training MRI, as deep learning model performance 
heavily depends on the number of training material. 

TABLE II 
HYPERPARAMETER AND TRAINING CONDITION FOR CNN  

Hyperparameter and Training 

condition 
Selected  

Training optimization function Adam 

Mini-batch size 8 

Maximum epoch 100 

Gradient Threshold method l-2 normalization 

Initial Learn Rate 1e-3 

Learn Rate Drop Factor 0.95 

Validation Frequency 50 

Number of Iterations 700 

Learn Rate Drop Period 10 

Weight initializer Glorot 

Training:Validation:Test ratio 5:2:3 

Gradient decay Factor 0.9000 
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Test on other bulkier datasets like ADNI [10] is also in 
progress but not clear remarks could be found till now. And 
then we are looking more importantly to develop a general 
architecture that can work in almost all types of MRI, unlike 
its origin or obtained procedure. The used hyperparameters 
are tabulated in Table II. To test the effect of a wider 
architecture we tested our recently proposed architecture [14]. 
The experiment was re-run using the ‘divNet’ architecture as 
proposed in [14], we found out the accuracy of 
NRCD_Grey_MRI vs. NRCD_nifti_MRI to be around 42.31% 
and 40.5% respectively. All experiments were simulated on 
MATLAB R2019a academic software and the hardware is 
NVIDIA GeForce RTX 2070 GPU with 24 GB RAM. 
Network models were trained on GPU whereas the trained 
model was tested in Intel® Core™ i5-9600K CPU operating 
at @ 3.70 GHz frequency with 32 GB memory.  

 

 
 

Fig. 5.  Training loss (y-axis) is plotted against each iteration (x-axis). The 
red curve is the loss for the original MRI whereas the blue curve represents 
the loss of its grey version. 

 
TABLE III 

RESULT OF CLASSIFICATION FROM ORIGINAL MRI AGAINST ITS GREY 

VERSION 

NRCD_nifti_MRI 

Classification result 

NRCD_Grey_MRI 

Classification result 

K: 3 K: 3 

N: 37 N: 38 

Degrees of freedom: 4 Degrees of freedom: 4 

Random Accuracy: 
0.4054 

Random Accuracy: 
0.4211 

Fall: 0.4235 Fall: 0.3933 

Gall: 0.4967 Gall: 0.4248 

Cohen-Kappa: 0.0915 Cohen-Kappa: 0.1264 

Informedness: 0.1737 Informedness: 0.1147 

Markedness: 0.0988 Markedness: 0.1617 

correlation: 0.1310 correlation: 0.1362 

Loglikelihood: 1.4425 Loglikelihood: 2.4423 

Mutual-Information: 
0.0390 

Mutual-Information: 
0.0643 

pearsonXsq: 1.2315 pearsonXsq: 1.6216 

IV. CONCLUSION 

 To conclude, we have performed an initial test of whether 
grey matter content MRI volume is the efficient training 
material for deep layered CNN or not? Detail feature 
extraction and analysis are still under the subject of study. 
Although the overall classification result is not very high 
which may be due to the use of limited training materials. As 
deep learning networks are data-hungry network, which 
highly depends on the quantity and quality of its training 
material for good performance. However, from Table III, it is 
clear that the accuracy from the Grey version is increased by 
almost 2-3% than its MRI version when we conduct the test 
in a similar environment. Besides, other performance metrics 
like Cohen-Kappa, Informedness, Mutual information, etc. 
are also included in Table III. The training loss is relatively 
shown between the two versions in Fig. 5. 

The obtained result supports our idea, of using the grey 
version for a better classification result. Although during 
random test sometimes the result is not supporting, however 
in average, the result supports our idea. One of the drawbacks 
of our proposed method is we need to perform a manual 
segmentation task of each MRI using an additional tool of 
SPM. Extra effort and time are required for the segmentation 
process, so in general, this idea is quite a tedious process. 
However, if we can combine the segmentation and smoothing 
algorithm along with the classification task in a single CNN, 
this might be helpful in a more sophisticated way. As of now, 
we are only showing the grey matter version is helpful in 
classification tasks between ADD, mAD, and HC.  

Regarding future works, we are working to develop better 
and optimized CNN models for MRI classification with a 
higher performance ratio. Deep neural networks have certain 
limitations and weaknesses. Like it is easily prone to 
overfitting and lacks generalization. It means the ratio of 
correct classification of images with different features like 
orientation, color difference, contrast difference is 
comparatively low so we are working to reduce this 
generalization problem. Besides, the used dataset in this study 
is limited, so we plan to test our idea in a bigger sample size 
and other multiple sources available for public use. 
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