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Abstract— In this paper, a programming language for describing trajectories of the Mover 4 educational robot is discussed. The goal 

is to overcome the limitations of the programming tools provided by the manufacturer. Object-oriented structures of trajectories in 

the joint space and three-dimensional space are formulated. The model of the trajectory in the joint space is represented by the value 

of the joint, its velocity and acceleration, and the inertial tensor of the configuration from the respective joint to the end-effector. The 

inertia tensor is necessary to calculate joint forces and moments. A point from the trajectory in three-dimensional space is defined by 

the Cartesian coordinates of the end-effector, its orientation with the Euler angles and its velocity. Language offers spatial primitives 

to describe trajectories formed by segments, circle arcs, and cubic splines. Each primitive has a method of generating intermediate 

points. The language will allow the study of kinematic and dynamic capabilities in tracking trajectories. 

 
Keywords— kinematics, robotics, robot language, robot path, simulation 

 

 

I. INTRODUCTION 

 

The Robot Mover4, Commonplace Robotics GmbH, is a 

four joint robot for use in education, entertainment and 

research environments [1]. The accompanying CPRog 

software allows to control the robot. CPRog offers two 

editors to program the movement of the robot. The first is a 

graphical editor 'GraphEdit'. It is a puzzle-oriented 

programming language. It is addressed at users who have no 

basic knowledge of programming languages and 

programming. The second option is ‘TextEdit’. This is a 

tabular programming language. Regardless which of the two 

programming tools is selected, the options for motion 

generation are equivalent. The advantage of TextEdit is that 

it allows the creation of larger programs than GraphEdit. The 

programs are saved on an HDD in an XML file. With the 

language the following operators can be set: 

✓ Straight line motion from the current position to the 

target point. The end-effector velocity is defined in 

mm/sec. 

✓ Interpolation of the axes from the current position to 

the target position in joint coordinates. Velocity is 

defined as percentage of the maximum joint 

rotational velocity.  

 

These options are too poor because they restrict the 

robotics training process - it is not possible to demonstrate 

fully kinematic and dynamic robot control. Control functions 

can be enhanced by creating a language for describing the 

robot trajectories. Many programming languages are known 

- specifically designed for this purpose or as an upgrade of 

an existing procedural language [2], [3]. The use of a 

universal programming language and its upgrading with 

appropriate data structures and methods is the easiest way, 

as there is no need to create a language compiler. 

The purpose of this work is to formulate a language for 

describing a limited class of trajectory paths on a MOVER 4 

robot. The object-oriented graphics upgrade of Borland 

Delphi will be used [4], and the graphics primitives 

expanded with data structures specific of the robot trajectory. 

The generated motion program will be interpreted in an 

XML file to be read and executed by the robot. Such 

language will allow the study of kinematic and dynamic 

capabilities in tracking trajectories. 

 

II. METHODS AND ALGORITHMS 

 

A. Kinematic Model of Robot 

The robot manipulation system (MS) consists of 

successively connected kinematic pairs which form an open 

kinematics chain (OKC) with a first link fixed to a selected 

coordinate system and the last link, end-effector (EE) that 

performs the desired target movements. Kinematic pairs are 

the independent parameters that uniquely define the position 

of MS in space. They are called generalized coordinates and 

define the vector: 
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  T

nqqqq ,...., 21 ,n-number of joints  (1) 

 

q is called configuration of the MS.  

The vector of the generalized velocities is: 

 

  T

nqqqqq  ,...,,, 321    (2) 

 

The generalized accelerations are: 

 

  T

nqqqqq  ,...,,, 321    (3) 

 

The change of generalized coordinates q in accordance 

with the constructive limits determines the range of 

permissible configurations: 
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Equations (1) - (4) define the kinematic model of the robot. 

The kinematic model is necessary to solve the inverse 

kinematics and to control the movement of the manipulation 

system to perform the technological operation. The 

coordinates M of the end-effector characteristic point are 

given by the equation: 

 

   qFzyxM  ,,,,,   (5) 

 

where:  

F - continuous nonlinear function; 

 zyx ,,  - the position in Cartesian coordinates of 

the end-effector; 

  ,,  - the orientation in Euler angles of the 

end-effector. 

Equation (5) defines the forward kinematics of the robot. 

The solution of forward kinematics for the continuous set Q0 

defines workspace D of the EE: 

 

    ,: 0QqqFMMD   (6) 

 

The inverse kinematics problem consists of determining 

the generalized coordinates qG where the end-effector will 

reach goal coordinates G in D: 

 

    DzyxGGFqG    ,,,,,    ,1
  (7) 

 

In general, the inverse kinematics has no unique solution. 

For MOVER 4, the solution is implemented in the 

accompanying CProg software and therefore will not be the 

subject of the current work. 

B. Trajectory Model in Joint Space 

The instantaneous configuration of the MS is determined 

by the following data: 

- Values q of joint coordinates - determine the Cartesian 

position of the EE in D - Eq.(5); 

- Joint velocities and accelerations ),( qq  - determine the 

velocity and acceleration of the EE. They are 

necessary element in the planning and execution of 

technological operations.  

- Inertial tensor - needed to calculate joint forces and 

moments [5], [6].  

For the current configuration, a class is defined with data 

for the four joints of MOVER 4:  

TConfiguration = class(TObject) 

Value, 

Velocity, 

Acceleration  : real [1..4] 

InertiaTenzor : real [1..4][1..4] 

NextConfiguration : ^TConfiguration  

еnd; 

 

// joint values 

// joint velocities 

// joint accelerations 

// mass parameters 

// pointer to the next 

configuration 

ConfigurationList: List of TConfiguration; // dynamic list of 

configurations 

 

This structure defines a limitation for modeling OKC up 

to 4 degrees of freedom. It can be overcome by increasing 

the size of the arrays used or by applying dynamic structures 

to represent the kinematic chain [7], [8]. Consecutive 

configurations representing the trajectory of motion in joint 

coordinates are organized into a dynamic list 

ConfigurationList. When generating a robot motion control 

program, the configuration list is created either off-line or 

during on-line task execution. In both cases, EE should 

follow strictly defined points in the space in order to realize 

the purpose of the movement. Therefore, it is necessary to 

formulate tools for describing trajectories in the three-

dimensional space (3D). 

C. Trajectory Model in Cartesian Space 

Trajectory Г in the workspace D, consisting of r base 

points numbered in sequential order is: 

 

  DГГГГГ r  ,...,,, 210    (8) 

 

where:  

Г0  is a starting point; 

Г1, Г2,...Гr-1 are intermediate points; 

Гr - target  endpoint. 

Each point Гi of the trajectory is described by the vector: 

 

i

i

i

i

v

p

Г     (9) 

 

where:  
T

iiii zyxp   are the Cartesian coordinates; 

T

iiii    is the orientation in Euler 

angles of the EE; 

vi  - the velocity in the i-th trajectory  point. 
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The new class that define the trajectory points is 

descendants of geometric classes of object oriented two-

dimensional graphics Pascal_2D [4]. Base point Гi of the 

trajectory is defined as the successor of the KPoint class:  

 

TPathPoint =class(KPoint) 

private 

AX,AY,AZ 

Velocity : real; 

NextPoint : ^TPathPoint  

public 

Create; 

GET; 

SET; 

еnd; 

// descendant of KPoint 

     // 3D-coordinates 

     // Euler angles 

     // joint velocity 

//  pointer to the next point 

// methods 

     // Creates new point 

     // Get point coordinates 

     // Set point coordinates 

TrajectoryList: List of TPathPoint  // dynamic list of path points 

 

The Cartesian coordinates of the point are inherited 

element of the ancestor class KPoint. The class TPathPoint is 

complemented by the Euler angles and joint velocities. A 

pointer to the next element allows the creation of the 

dynamic path list. GET-methods, according to the 

requirements of the object-oriented programming realize the 

class interface, providing data encapsulation. They ensure 

access to the parameters of the concrete object in the 

program. SET methods give a possibility to modify the 

properties of generated point exemplars.  

D. Cartesian Trajectory Primitives 

The sequence (8) can contain a significant number of 

points. If each one of them must be explicitly entered, this 

would create problems for the operator. A possible approach 

is the choice of several trajectory primitives, each of which is 

defined by the required minimum number of base points. 

With appropriate interpolation, intermediate points can be 

generated. Complex trajectories can be created by combining 

primitives. 

The formulation of the classes is determined by the 

number of points defining a segment of the trajectory. 

1) Two base points (ГS, ГЕ): They define a straight-

line segment in 3D. The new class is the successor to 

TPathPoint : 

 

TPathLine =class(TPathPoint ) 

Private 

EndPoint : TPathPoint;  

NP : integer; 

public 

LinePath(var TrajectoryList); 

.  .  .  .  .  .  .   

еnd; 

 

 

// last point 

// number of points 

 

// creates list of points 

 

 

The LinePath method generates a number of NP 

intermediate points that are added to the TrajectoryList 

queue. Intermediate points are obtained by linear-spacing 

interpolation. At start point ГS : 

 
T

SSSS vpГ   

 

 

 

And end point ГЕ 

 

T

EEEE vpГ   

 

intermediate coordinates Гi , are calculated by: 

 

  ri
r

i
SESi ,...,2,1  ,    (10) 

 

Where r is the number of intermediate intervals. 

2) Three base points (ГS, ГМ, ГЕ): They define a 

circle in 3D. The generated trajectory starts from the first 

point and ends with the third set point. The class definition 

is: 

 

TPathCircle = class(TPathPoint ) 

Private 

MidPoint, EndPoint :TPathPoint; 

NP : integer; 

public 

CirclePath(var TrajectoryList); 

.  .  .  .  .  .  .   

еnd; 

 

 

// middle, last point 

// number of points 

 

// create list of points 

 

The task of generating circle points lying in a plane xOy 

is trivial. If these points are in three-dimensional space, the 

problem becomes much more complex. In literature, the task 

of circular interpolation is encountered in CNC 

programming [9], [10]. One of the possible ways is to use 

the Newton-Raphson method to solve the nonlinear 

equations describing the trajectory [11]. Other algorithms 

are based on the assumption that the rotation axis is known 

for the three base points using the Rodrigues' rotation 

formula [12]. In the present work, an algorithm based on the 

matrix data presentation and using the already developed 

matrix operations in the CINDY system will be proposed [8]. 

The basic idea of the algorithm is to find spatial 

transformations with which the three points are translated in 

the xOy plane, and the center of the circle they define 

coincides with the origin. So intermediate points can be 

generated, which in the plane is trivial. By applying the 

inverse transformations the spatial coordinates of the points 

from the desired trajectory will be obtained. 

The algorithm for generating the intermediate points 

consists of the next steps. 

Step 1. Calculation the normal vector 
n


 to the plane μ, 

determined by points (pS,pM,pE) -Figure 1: 
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Fig. 1. Normal vector to the plane μ(pS,pM,pE) 

 

Step 2. Two rotations are determined using the normal 

vector n


. The first rotation is around axis Ox at angle α to 

parallelism of μ and Oy (Figure 2). The projection d of the 

normal vector n


 on a plane yOz is: 

 

   222 
ZY nnd


    (12) 

 

 

The angle α is defined by the trigonometric functions:  

 

d

n

d

n YZ






 sin     ; cos   (13) 

 

 

Fig. 2. Rotations necessary to coincide the vector n


with the Z axis  

 

The transformation matrix RX  describing the rotation is: 

 

1000

0cossin0

0sincos0

0001



 
XR  

 

The substitution of trigonometric functions with their 

equivalent expressions from (13) gives: 

1000

00

00

0001

  
dndn

dndn
R

ZY

YZ
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  (14) 

 

After this rotation, the normal vector will lie in the xOz 

plane and its coordinates are  dnX ,0,
. 

The second rotation is about the axis Oy at the angle β:  

 
 Xnd


 sin     ; cos   (15) 

 

The transformation matrix RY  is: 

 

1000

0cos0sin

0010

0sin0cos



 

YR  

 

We again replace trigonometric functions with their 

equivalent metric expressions from (15): 
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   (16) 

 

With these two transformations, plane μ becomes parallel 

with xOy. As shown, the values of the trigonometric 

functions are not calculated, but the projections of the 

normal vector are used, which leads to the acceleration of 

the computational algorithm. The projections 
EMS ppp ~,~,~  

in complex form of the three base points on xOy are already 

known.  

Step 3. The center C(cx,cy,0) of the circle passing through 

them is calculated by the formula [13]: 
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ccC    (17) 

 

Where 
EMS ppp ~,~,~  are the corresponding complex-

conjugated forms of the coordinates. 

Step 4. With ТXY - translation the center is placed in the 

coordinate origin: 
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    (18) 

 

Step 5. Thus, after the transformations the coordinates 

of the point p(x,y,z) in 3D will be obtained in the xOy plane 

and the new coordinates p*(x*,y*,0) are calculated with: 
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Step 6. The start point and the end point define the 

angle of rotation φ around the origin: 
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In a selected number of r intermediate points, the 

sampling angle is r/  , and the transformation matrix 

is: 

1000

0100

00cossin

00sincos









R  

 

Step 7. The coordinates of the intermediate points in the 

space will be obtained by the inverse transformation: 
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Due to the uniform curvature of the circular trajectory, it 

is appropriate to apply a proportional law to set the velocity 

and orientation of EE and Eq.10 is applied. 

3) Four and more base points: At four and more 

points the interpolation between each base point is a cubic 

spline: 

43

2

2

3

1 ...)( atatatatc   

 

The presence of four parameters in the equation requires 

to have at least four base points [14]. The class definition is: 

 

TPathSpline = class(KPoint) 

private 

BasePoints: TrajectoryList;  

NP : integer; 

public 

SplinePath(var TrajectoryList); 

.  .  .  .  .  .  .   

еnd; 

 

 

// list with base points 

// number of intermediate 

// points 

 

     

For i-th interval titi+1 (i=1,...,r-1) the piece-wise cubic 

polynomial spline is: 
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Where: ci = [pi, θi, vi ]; 

hi+1 = ti+1 - ti ; 

 )(),(),( iiii tctctfS  - solution of the linear 

system that satisfies the continuity requirements for 

spline function.  

The formula (24) is applied to each of the coordinate (9).  

Spline interpolation is very well suited to describe robot 

trajectories because it provides position, velocity and 

acceleration as smooth functions of time. Spline 

interpolation is unsuitable when base points are located 

approximately in a straight line because oscillations are 

generated. 
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E. Generation of XML file 

The syntax requirements that the XML-file must meet are 

described in the manual [1]. The motion trajectory created by 

the language is in a TrajectoryList dynamic list.  

The header of the XML-file is in Figure 3. 
 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- values in mm and degree --> 
<Program> 
        <Header ProgramName="program name"  
          Kinematic="CPRFour" LastChangeDate="date2" 
          SetUpDate="date1" Author="author names" /> 
</Program> 
 

Fig. 3. The header of the XML-file 
 

Another important element in the syntax of XML-

language is the command for straight-line motion from the 

current position to the (x,y,z) coordinate with velocity v 

(Fig.4). 
 

<Linear Nr="integer" x="float" y="float" z="float"  
vel="integer" acc="integer" smooth="bool" Descr=""/>  

Fig. 4. Syntax of the linear motion command 
 

The algorithm for generating the XML trajectory consists 

of sequential scan the structure TrajectoryList and creating a 

string according to the XML-syntax. The pseudo-Pascal 

representation of the algorithm is shown on Fig.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

procedure PathInXML(const TrajectoryList ); 
var PathItem : TPathPoint ; // current path point 

SX,SY,SZ,SV : string;     // string presentations 
Command : string;          // generated command line 

I : integer;                        //   counter of the points 

begin 
PathItem:=TrajectoryList ; 

repeat 
Inc(I); 
with PathItem do 
begin 

SX:=floattostr(Get(X)); 
SY:=floattostr(Get(Y)); 
SZ:=floattostr(Get(Z)); 
SV:=floattostr(Get(Velocity )); 

end; 
Command:=concat( ‘<LinearNr=’,inttostr(I), 
 ’x=’,SX, ’y=’,SY, ’z=’,SZ,’vel=’,SV, 
smooth="true" Descr=""/> ) 
Writeln(‘’Splinepath.xml’, Command ); 
PathItem :=PathItem.^NextPoint ; 

until (PathItem = nil); 
end; // PathInXML 

 

Fig. 5. Algorithm for generation the XML file 

III. RESULTS AND DISCUSSION 

 

CINDY system is used to create the robot path and to 

check its validity. A trajectory of five base points is given 

(Table I). Spline interpolation has been applied to generate 

the EE trajectory. Between each two base points, 100 

intermediate ones are generated. Due to a large number of 

generated commands, only a part of the program in XML 

format is shown in Fig. 6.  

 

Fig.7 Some configurations of MOVER 4 during the spline path motion 

 

file:///E:/MyDocuments_E/_Publications/_1%20Робот%20-%20Language/Траектории%20на%20Mover%204/XML_Header%20Standard.xml
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TABLE I. 

BASE POINTS FOR SPLINE GENERATION 

t X Y Z 
Velocity 

[mm/s] 

0 -43.8 152.7 57.5 0 

10 238.4 255.8 308.8 45 

20 260.0 -72.4 583.3 70 

30 155.2 -276.6 45.4 40 

40 -76.0 -326.1 195.3 0 

 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- values in sm and degree --> 
<Program> 
     <Header ProgramName="Spline path"  
   Kinematic="CPRFour" LastChangeDate="2017-07-21" 
   SetUpDate="2017-03-13" Author="Kaloyan Yankov"/> 
<Linear Nr="1" x="-43.8" y="152.7" z="57.5" a="" b="" 

c="" vel="0" acc="0" smooth="true" Descr=""/>  
<Linear Nr="2" x="-40.35" y="155.83" z="59.25"  

vel="0.47" acc="0.118" smooth="true" Descr=""/>  
<Linear Nr="3" x="-36.89" y="158.94" z="60.59" 

vel="0.93" acc="0.235" smooth="true" Descr=""/>  
<Linear Nr="4" x="-333.44" y="162.01" z="62.74"  

vel="1.39" acc="0.353" smooth="true" Descr=""/>  
<Linear Nr="5" x="-29.99" y="165.04" z="64.49"  

vel="1.86" acc="0.470" smooth="true" Descr=""/>  
<Linear Nr="6" x="-26.55" y="168.05" z="66.25"  

vel="2.33" acc="0.588" smooth="true" Descr=""/>  
.  .  .  .  .  .  .  .   
<Linear Nr="399" x="-73.39" y="-325.86" z="191.37" 

vel="0.391" acc="-0.099" smooth="true" Descr=""/>  
<Linear Nr="400" x="-76.00" y="-326.10" z="195.30"  

vel="0" acc="0" smooth="true" Descr=""/>  
</Program> 
 

Fig.6. Robot program in XML format 

 

Fig. 7 shows the simulation of the movement of MOVER 

4 with program CINDY, tracking part of the trajectory. 

CINDY allows visualizing the graphs of change of the 

kinematic parameters of MS both in Cartesian coordinates 

and in the space of the generalized coordinates.  

On Fig. 8 are the graphs of the change of the coordinate of 

the end-effector respectively in X, Y and Z axis.  
  

 

Fig. 8. Cartesian coordinates of the robot path 

 

Fig. 9 represents the variation of the velocity of EE 

decomposed on the coordinate axes. 

The changes of the four generalized coordinates are in 

Fig. 10, and in Fig. 11 are their velocities. 

 

 

Fig. 9. Cartesian velocities of the end-effector 

 

 

Fig. 10. Joint coordinates 

 

 

Fig. 11. Joint velocities 

 

IV. CONCLUSIONS 

 

In this paper  a simple language for describing a robot 

technology paths is presented. Two kinds of trajectory 

model are formulated. The first is an object-oriented model 

in the joint space. The model includes values, velocities and 

accelerations of joint coordinates and inertia tensor of the 

configuration. The inertia tensor is necessary for calculating 

joint forces and moments and thus to model the dynamics of 

the robot.  

The second trajectory model is in three-dimensional 

space. A point from the trajectory is defined by the 

Cartesian coordinates of the end-effector, its orientation 

file:///E:/MyDocuments_E/_Publications/_1%20Робот%20-%20Language/Траектории%20на%20Mover%204/XML_Header%20Standard.xml
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with the Euler angles and its speed. The means for trajectory 

description are three spatial primitives: segments, circle arcs, 

and cubic splines. Each primitive has a method of generating 

the intermediate points. Complex paths can be created with 

an arbitrary combination of primitives. For creating, tuning 

and analyzing the programmed trajectories, the CINDY 

simulation system is used. 

The language will be used to explore the kinematics and 

dynamics of a MOVER 4 robot following different paths. 
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