
157

Specific Language for Robot Trajectory Generation
Kaloyan Yankov #

Faculty of Technics and Technologies, Trakia University, 8600 Yambol; 38 Graf Ignatiev str., Bulgaria
E-mail: kaloyan.yankov@trakia-uni.bg

Abstract— In this paper, a programming language for describing trajectories of the Mover 4 educational robot is discussed. The goal

is to overcome the limitations of the programming tools provided by the manufacturer. Object-oriented structures of trajectories in

the joint space and three-dimensional space are formulated. The model of the trajectory in the joint space is represented by the value

of the joint, its velocity and acceleration, and the inertial tensor of the configuration from the respective joint to the end-effector. The

inertia tensor is necessary to calculate joint forces and moments. A point from the trajectory in three-dimensional space is defined by

the Cartesian coordinates of the end-effector, its orientation with the Euler angles and its velocity. Language offers spatial primitives

to describe trajectories formed by segments, circle arcs, and cubic splines. Each primitive has a method of generating intermediate

points. The language will allow the study of kinematic and dynamic capabilities in tracking trajectories.

Keywords— kinematics, robotics, robot language, robot path, simulation

I. INTRODUCTION

The Robot Mover4, Commonplace Robotics GmbH, is a

four joint robot for use in education, entertainment and

research environments [1]. The accompanying CPRog

software allows to control the robot. CPRog offers two

editors to program the movement of the robot. The first is a

graphical editor 'GraphEdit'. It is a puzzle-oriented

programming language. It is addressed at users who have no

basic knowledge of programming languages and

programming. The second option is ‘TextEdit’. This is a

tabular programming language. Regardless which of the two

programming tools is selected, the options for motion

generation are equivalent. The advantage of TextEdit is that

it allows the creation of larger programs than GraphEdit. The

programs are saved on an HDD in an XML file. With the

language the following operators can be set:

✓ Straight line motion from the current position to the

target point. The end-effector velocity is defined in

mm/sec.

✓ Interpolation of the axes from the current position to

the target position in joint coordinates. Velocity is

defined as percentage of the maximum joint

rotational velocity.

These options are too poor because they restrict the

robotics training process - it is not possible to demonstrate

fully kinematic and dynamic robot control. Control functions

can be enhanced by creating a language for describing the

robot trajectories. Many programming languages are known

- specifically designed for this purpose or as an upgrade of

an existing procedural language [2], [3]. The use of a

universal programming language and its upgrading with

appropriate data structures and methods is the easiest way,

as there is no need to create a language compiler.

The purpose of this work is to formulate a language for

describing a limited class of trajectory paths on a MOVER 4

robot. The object-oriented graphics upgrade of Borland

Delphi will be used [4], and the graphics primitives

expanded with data structures specific of the robot trajectory.

The generated motion program will be interpreted in an

XML file to be read and executed by the robot. Such

language will allow the study of kinematic and dynamic

capabilities in tracking trajectories.

II. METHODS AND ALGORITHMS

A. Kinematic Model of Robot

The robot manipulation system (MS) consists of

successively connected kinematic pairs which form an open

kinematics chain (OKC) with a first link fixed to a selected

coordinate system and the last link, end-effector (EE) that

performs the desired target movements. Kinematic pairs are

the independent parameters that uniquely define the position

of MS in space. They are called generalized coordinates and

define the vector:

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 1 (2017) NO 4

e-ISSN : 2549-9904

ISSN : 2549-9610

158

 T

nqqqq ,...., 21 ,n-number of joints (1)

q is called configuration of the MS.

The vector of the generalized velocities is:

 T

nqqqqq ,...,,, 321 (2)

The generalized accelerations are:

 T

nqqqqq ,...,,, 321 (3)

The change of generalized coordinates q in accordance

with the constructive limits determines the range of

permissible configurations:

 maxmin

2

maxmin

1

maxmin

0

:

,...,2,1 ,:

:

iii

iii

iii

qqqqQ

niqqqqQ

qqqqQ

 (4)

Equations (1) - (4) define the kinematic model of the robot.

The kinematic model is necessary to solve the inverse

kinematics and to control the movement of the manipulation

system to perform the technological operation. The

coordinates M of the end-effector characteristic point are

given by the equation:

 qFzyxM ,,,,, (5)

where:

F - continuous nonlinear function;

 zyx ,, - the position in Cartesian coordinates of

the end-effector;

 ,, - the orientation in Euler angles of the

end-effector.

Equation (5) defines the forward kinematics of the robot.

The solution of forward kinematics for the continuous set Q0

defines workspace D of the EE:

 ,: 0QqqFMMD (6)

The inverse kinematics problem consists of determining

the generalized coordinates qG where the end-effector will

reach goal coordinates G in D:

 DzyxGGFqG ,,,,, ,1
 (7)

In general, the inverse kinematics has no unique solution.

For MOVER 4, the solution is implemented in the

accompanying CProg software and therefore will not be the

subject of the current work.

B. Trajectory Model in Joint Space

The instantaneous configuration of the MS is determined

by the following data:

- Values q of joint coordinates - determine the Cartesian

position of the EE in D - Eq.(5);

- Joint velocities and accelerations),(qq - determine the

velocity and acceleration of the EE. They are

necessary element in the planning and execution of

technological operations.

- Inertial tensor - needed to calculate joint forces and

moments [5], [6].

For the current configuration, a class is defined with data

for the four joints of MOVER 4:

TConfiguration = class(TObject)

Value,

Velocity,

Acceleration : real [1..4]

InertiaTenzor : real [1..4][1..4]

NextConfiguration : ^TConfiguration

еnd;

// joint values

// joint velocities

// joint accelerations

// mass parameters

// pointer to the next

configuration

ConfigurationList: List of TConfiguration; // dynamic list of

configurations

This structure defines a limitation for modeling OKC up

to 4 degrees of freedom. It can be overcome by increasing

the size of the arrays used or by applying dynamic structures

to represent the kinematic chain [7], [8]. Consecutive

configurations representing the trajectory of motion in joint

coordinates are organized into a dynamic list

ConfigurationList. When generating a robot motion control

program, the configuration list is created either off-line or

during on-line task execution. In both cases, EE should

follow strictly defined points in the space in order to realize

the purpose of the movement. Therefore, it is necessary to

formulate tools for describing trajectories in the three-

dimensional space (3D).

C. Trajectory Model in Cartesian Space

Trajectory Г in the workspace D, consisting of r base

points numbered in sequential order is:

 DГГГГГ r ,...,,, 210 (8)

where:

Г0 is a starting point;

Г1, Г2,...Гr-1 are intermediate points;

Гr - target endpoint.

Each point Гi of the trajectory is described by the vector:

i

i

i

i

v

p

Г (9)

where:
T

iiii zyxp are the Cartesian coordinates;

T

iiii is the orientation in Euler

angles of the EE;

vi - the velocity in the i-th trajectory point.

159

The new class that define the trajectory points is

descendants of geometric classes of object oriented two-

dimensional graphics Pascal_2D [4]. Base point Гi of the

trajectory is defined as the successor of the KPoint class:

TPathPoint =class(KPoint)

private

AX,AY,AZ

Velocity : real;

NextPoint : ^TPathPoint

public

Create;

GET;

SET;

еnd;

// descendant of KPoint

 // 3D-coordinates

 // Euler angles

 // joint velocity

// pointer to the next point

// methods

 // Creates new point

 // Get point coordinates

 // Set point coordinates

TrajectoryList: List of TPathPoint // dynamic list of path points

The Cartesian coordinates of the point are inherited

element of the ancestor class KPoint. The class TPathPoint is

complemented by the Euler angles and joint velocities. A

pointer to the next element allows the creation of the

dynamic path list. GET-methods, according to the

requirements of the object-oriented programming realize the

class interface, providing data encapsulation. They ensure

access to the parameters of the concrete object in the

program. SET methods give a possibility to modify the

properties of generated point exemplars.

D. Cartesian Trajectory Primitives

The sequence (8) can contain a significant number of

points. If each one of them must be explicitly entered, this

would create problems for the operator. A possible approach

is the choice of several trajectory primitives, each of which is

defined by the required minimum number of base points.

With appropriate interpolation, intermediate points can be

generated. Complex trajectories can be created by combining

primitives.

The formulation of the classes is determined by the

number of points defining a segment of the trajectory.

1) Two base points (ГS, ГЕ): They define a straight-

line segment in 3D. The new class is the successor to

TPathPoint :

TPathLine =class(TPathPoint)

Private

EndPoint : TPathPoint;

NP : integer;

public

LinePath(var TrajectoryList);

.

еnd;

// last point

// number of points

// creates list of points

The LinePath method generates a number of NP

intermediate points that are added to the TrajectoryList

queue. Intermediate points are obtained by linear-spacing

interpolation. At start point ГS :

T

SSSS vpГ

And end point ГЕ

T

EEEE vpГ

intermediate coordinates Гi , are calculated by:

 ri
r

i
SESi ,...,2,1 , (10)

Where r is the number of intermediate intervals.

2) Three base points (ГS, ГМ, ГЕ): They define a

circle in 3D. The generated trajectory starts from the first

point and ends with the third set point. The class definition

is:

TPathCircle = class(TPathPoint)

Private

MidPoint, EndPoint :TPathPoint;

NP : integer;

public

CirclePath(var TrajectoryList);

.

еnd;

// middle, last point

// number of points

// create list of points

The task of generating circle points lying in a plane xOy

is trivial. If these points are in three-dimensional space, the

problem becomes much more complex. In literature, the task

of circular interpolation is encountered in CNC

programming [9], [10]. One of the possible ways is to use

the Newton-Raphson method to solve the nonlinear

equations describing the trajectory [11]. Other algorithms

are based on the assumption that the rotation axis is known

for the three base points using the Rodrigues' rotation

formula [12]. In the present work, an algorithm based on the

matrix data presentation and using the already developed

matrix operations in the CINDY system will be proposed [8].

The basic idea of the algorithm is to find spatial

transformations with which the three points are translated in

the xOy plane, and the center of the circle they define

coincides with the origin. So intermediate points can be

generated, which in the plane is trivial. By applying the

inverse transformations the spatial coordinates of the points

from the desired trajectory will be obtained.

The algorithm for generating the intermediate points

consists of the next steps.

Step 1. Calculation the normal vector
n

 to the plane μ,

determined by points (pS,pM,pE) -Figure 1:

 EMS ppp ,,

 bappppn EMSM

YX

YX

XZ

XZ

ZY

ZY

bb

aa

bb

aa

bb

aa
ba ,,

ZYXX nnnn ,,

(11)

160

Fig. 1. Normal vector to the plane μ(pS,pM,pE)

Step 2. Two rotations are determined using the normal

vector n

. The first rotation is around axis Ox at angle α to

parallelism of μ and Oy (Figure 2). The projection d of the

normal vector n

 on a plane yOz is:

 222
ZY nnd

 (12)

The angle α is defined by the trigonometric functions:

d

n

d

n YZ

 sin ; cos (13)

Fig. 2. Rotations necessary to coincide the vector n

with the Z axis

The transformation matrix RX describing the rotation is:

1000

0cossin0

0sincos0

0001

XR

The substitution of trigonometric functions with their

equivalent expressions from (13) gives:

1000

00

00

0001

dndn

dndn
R

ZY

YZ

X

 (14)

After this rotation, the normal vector will lie in the xOz

plane and its coordinates are dnX ,0,
.

The second rotation is about the axis Oy at the angle β:

 Xnd

 sin ; cos (15)

The transformation matrix RY is:

1000

0cos0sin

0010

0sin0cos

YR

We again replace trigonometric functions with their

equivalent metric expressions from (15):

1000

00

0010

00

 RY
dn

nd

X

X

 (16)

With these two transformations, plane μ becomes parallel

with xOy. As shown, the values of the trigonometric

functions are not calculated, but the projections of the

normal vector are used, which leads to the acceleration of

the computational algorithm. The projections
EMS ppp ~,~,~

in complex form of the three base points on xOy are already

known.

Step 3. The center C(cx,cy,0) of the circle passing through

them is calculated by the formula [13]:

1~~
1~~
1~~

1~~.~
1~~.~
1~~.~

0,,

EE

MM

SS

MEE

MMM

SSS

YX

pp

pp

pp

ppp

ppp

ppp

ccC (17)

Where
EMS ppp ~,~,~ are the corresponding complex-

conjugated forms of the coordinates.

Step 4. With ТXY - translation the center is placed in the

coordinate origin:

161

1000

0100

010

001

Y

X

XY

c

c

T

 (18)

Step 5. Thus, after the transformations the coordinates

of the point p(x,y,z) in 3D will be obtained in the xOy plane

and the new coordinates p*(x*,y*,0) are calculated with:

1

...

1

0

*

*

z

y

x

TRR
y

x

XYYX (19)

Where :

1000

0

..

d

nnc

d

nc
n

d

n

d

nn
d

nc

d

nnc
n

d

n

d

nn

dcnd

TRR
ZXXYY

Z
YZX

ZYYXX
Y

ZYX

XX

XYYX

 (20)

Step 6. The start point and the end point define the

angle of rotation φ around the origin:

.

..

.

.
cos

2*2*2*2*

**

**

EESS

ESES

ES

ES

yxyx

yyxx

pp

pp

 (21)

In a selected number of r intermediate points, the

sampling angle is r/ , and the transformation matrix

is:

1000

0100

00cossin

00sincos

R

Step 7. The coordinates of the intermediate points in the

space will be obtained by the inverse transformation:

r1,2,...,i ,

1

...

1

*

*

*

111

i

i

i

XYXY

i

i

i

z

y

x

RRTR
z

y

x

 (22)

Where:

1000

0

0111

ZYX

Y
YZ

X
ZXYX

XYXY

nnn

c
d

n

d

n

c
d

nn

d

nn
d

RRT

(23)

Due to the uniform curvature of the circular trajectory, it

is appropriate to apply a proportional law to set the velocity

and orientation of EE and Eq.10 is applied.

3) Four and more base points: At four and more

points the interpolation between each base point is a cubic

spline:

43

2

2

3

1 ...)(atatatatc

The presence of four parameters in the equation requires

to have at least four base points [14]. The class definition is:

TPathSpline = class(KPoint)

private

BasePoints: TrajectoryList;

NP : integer;

public

SplinePath(var TrajectoryList);

.

еnd;

// list with base points

// number of intermediate

// points

For i-th interval titi+1 (i=1,...,r-1) the piece-wise cubic

polynomial spline is:

i
tt

i
h

i
S

i
h

i
t

t
i

t
i

h
i

S

i
h

i
t

i
h

i
tt

i
St

i
t

i
S

t
i

c

.
6

11

1

1

1
.

6

1

11
6

3

1

3

1
)(

 (24)

Where: ci = [pi, θi, vi];

hi+1 = ti+1 - ti ;

)(),(),(iiii tctctfS - solution of the linear

system that satisfies the continuity requirements for

spline function.

The formula (24) is applied to each of the coordinate (9).

Spline interpolation is very well suited to describe robot

trajectories because it provides position, velocity and

acceleration as smooth functions of time. Spline

interpolation is unsuitable when base points are located

approximately in a straight line because oscillations are

generated.

162

E. Generation of XML file

The syntax requirements that the XML-file must meet are

described in the manual [1]. The motion trajectory created by

the language is in a TrajectoryList dynamic list.

The header of the XML-file is in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>
<!-- values in mm and degree -->
<Program>
 <Header ProgramName="program name"
 Kinematic="CPRFour" LastChangeDate="date2"
 SetUpDate="date1" Author="author names" />
</Program>

Fig. 3. The header of the XML-file

Another important element in the syntax of XML-

language is the command for straight-line motion from the

current position to the (x,y,z) coordinate with velocity v

(Fig.4).

<Linear Nr="integer" x="float" y="float" z="float"
vel="integer" acc="integer" smooth="bool" Descr=""/>

Fig. 4. Syntax of the linear motion command

The algorithm for generating the XML trajectory consists

of sequential scan the structure TrajectoryList and creating a

string according to the XML-syntax. The pseudo-Pascal

representation of the algorithm is shown on Fig.5.

procedure PathInXML(const TrajectoryList);
var PathItem : TPathPoint ; // current path point

SX,SY,SZ,SV : string; // string presentations
Command : string; // generated command line

I : integer; // counter of the points

begin
PathItem:=TrajectoryList ;

repeat
Inc(I);
with PathItem do
begin

SX:=floattostr(Get(X));
SY:=floattostr(Get(Y));
SZ:=floattostr(Get(Z));
SV:=floattostr(Get(Velocity));

end;
Command:=concat(‘<LinearNr=’,inttostr(I),
 ’x=’,SX, ’y=’,SY, ’z=’,SZ,’vel=’,SV,
smooth="true" Descr=""/>)
Writeln(‘’Splinepath.xml’, Command);
PathItem :=PathItem.^NextPoint ;

until (PathItem = nil);
end; // PathInXML

Fig. 5. Algorithm for generation the XML file

III. RESULTS AND DISCUSSION

CINDY system is used to create the robot path and to

check its validity. A trajectory of five base points is given

(Table I). Spline interpolation has been applied to generate

the EE trajectory. Between each two base points, 100

intermediate ones are generated. Due to a large number of

generated commands, only a part of the program in XML

format is shown in Fig. 6.

Fig.7 Some configurations of MOVER 4 during the spline path motion

file:///E:/MyDocuments_E/_Publications/_1%20Робот%20-%20Language/Траектории%20на%20Mover%204/XML_Header%20Standard.xml

163

TABLE I.

BASE POINTS FOR SPLINE GENERATION

t X Y Z
Velocity

[mm/s]

0 -43.8 152.7 57.5 0

10 238.4 255.8 308.8 45

20 260.0 -72.4 583.3 70

30 155.2 -276.6 45.4 40

40 -76.0 -326.1 195.3 0

<?xml version="1.0" encoding="UTF-8"?>
<!-- values in sm and degree -->
<Program>
 <Header ProgramName="Spline path"
 Kinematic="CPRFour" LastChangeDate="2017-07-21"
 SetUpDate="2017-03-13" Author="Kaloyan Yankov"/>
<Linear Nr="1" x="-43.8" y="152.7" z="57.5" a="" b=""

c="" vel="0" acc="0" smooth="true" Descr=""/>
<Linear Nr="2" x="-40.35" y="155.83" z="59.25"

vel="0.47" acc="0.118" smooth="true" Descr=""/>
<Linear Nr="3" x="-36.89" y="158.94" z="60.59"

vel="0.93" acc="0.235" smooth="true" Descr=""/>
<Linear Nr="4" x="-333.44" y="162.01" z="62.74"

vel="1.39" acc="0.353" smooth="true" Descr=""/>
<Linear Nr="5" x="-29.99" y="165.04" z="64.49"

vel="1.86" acc="0.470" smooth="true" Descr=""/>
<Linear Nr="6" x="-26.55" y="168.05" z="66.25"

vel="2.33" acc="0.588" smooth="true" Descr=""/>
.
<Linear Nr="399" x="-73.39" y="-325.86" z="191.37"

vel="0.391" acc="-0.099" smooth="true" Descr=""/>
<Linear Nr="400" x="-76.00" y="-326.10" z="195.30"

vel="0" acc="0" smooth="true" Descr=""/>
</Program>

Fig.6. Robot program in XML format

Fig. 7 shows the simulation of the movement of MOVER

4 with program CINDY, tracking part of the trajectory.

CINDY allows visualizing the graphs of change of the

kinematic parameters of MS both in Cartesian coordinates

and in the space of the generalized coordinates.

On Fig. 8 are the graphs of the change of the coordinate of

the end-effector respectively in X, Y and Z axis.

Fig. 8. Cartesian coordinates of the robot path

Fig. 9 represents the variation of the velocity of EE

decomposed on the coordinate axes.

The changes of the four generalized coordinates are in

Fig. 10, and in Fig. 11 are their velocities.

Fig. 9. Cartesian velocities of the end-effector

Fig. 10. Joint coordinates

Fig. 11. Joint velocities

IV. CONCLUSIONS

In this paper a simple language for describing a robot

technology paths is presented. Two kinds of trajectory

model are formulated. The first is an object-oriented model

in the joint space. The model includes values, velocities and

accelerations of joint coordinates and inertia tensor of the

configuration. The inertia tensor is necessary for calculating

joint forces and moments and thus to model the dynamics of

the robot.

The second trajectory model is in three-dimensional

space. A point from the trajectory is defined by the

Cartesian coordinates of the end-effector, its orientation

file:///E:/MyDocuments_E/_Publications/_1%20Робот%20-%20Language/Траектории%20на%20Mover%204/XML_Header%20Standard.xml

164

with the Euler angles and its speed. The means for trajectory

description are three spatial primitives: segments, circle arcs,

and cubic splines. Each primitive has a method of generating

the intermediate points. Complex paths can be created with

an arbitrary combination of primitives. For creating, tuning

and analyzing the programmed trajectories, the CINDY

simulation system is used.

The language will be used to explore the kinematics and

dynamics of a MOVER 4 robot following different paths.

ACKNOWLEDGMENT

This study was supported by Grant 3ФТТ/30.04.2015

“Identification and Simulation of Second-order Dynamic

Models” from the Faculty of Technics and Technologies,

Trakia University - Yambol, Bulgaria.

REFERENCES

[1] User Guide Mover4, Version (SW V902-08-008, HWE 2MV23

HWM V05 DOC V14), Commonplace Robotics GmbH, Germany,
2015.

[2] I. Pembeci and G. Hager. (2001) A Comparative Review of Robot

Programming Languages. [Online]. Available:
http://www.cs.jhu.edu/CIRL/publications/pdf/pembeci-review.pdf

[3] F. Wahl and M. Thomas, “Robot Programming - From Simple Moves

to Complex Robot Tasks,” in Proc. of First Int. Colloquium
“Collaborative Research Center 562–Robotic Systems for Modelling

and Assembly”, 2002, Braunschweig, Germany, pp.249-259.

[4] K. Yankov, “Object Oriented Two-Dimensional Graphics in a

Borland Delphi Environment,” in Proc. SAER'99, 1999, pp. 169-173.

[5] K. Yankov, “Inertial Parameters of the Robot Mover 4,” in Proc.
InfoTech-2016,sept.2016, pp.316-325.

[6] A. Dharmawan, A. Ashari and A. E. Putra, “Mathematical Modelling

of Translation and Rotation Movement in Quad Tiltrotor,”
International Journal on Advanced Science, Engineering and

Information Technology, vol.7(3), pp.1104-1113, 2017.

[7] K. Yankov, “Kinematic simulation in robotics,” Ph.D.-thesis,
Technical University, Sofia, Bulgaria, Jan. 1992.

[8] K. Yankov, “Computer Simulation of Industrial Robots,” in Proc.

ACMBUL'92 "Computer Applications", okt. 1992, paper 33.
[9] A. Lubbe, “Mathematical Basis For Three Dimensional Circular

Interpolation on CNC Machines,” The South African Journal of

Industrial Engineering, vol.8 (2), pp 47-59, 1997.
[10] H. Liang, “Minimum Error Tool Path Generation Method and an

Interpolator Design Technique for Ultra-precision Multi-axis CNC

Mashining,” Ph.D.-thesis. Concordia University, Monreal, Quebec,
Canada, July 1999.

[11] L. Maisonobe. (2007) Finding the circle that best fits a set of points.

[Online]. Available: http://www.spaceroots.org/documents/
circle/circle-fitting.pdf

[12] D. Rogers and J. A. Adams, Mathematical Elements for Computer

Graphics, 2nd ed., McGraw-Hill Publishing Company, 1990.
[13] A. Nicolae, “Determinant Identities and the Geometry of Lines and

Circles,” The Journal of "Ovidius", University of Constanta, Versita,

vol. 22 (2), pp. 37-49, 2014.
[14] I. Faux and M. Pratt, Computational Geometry for Design and

Manufacture, 2nd ed, G.M.Bell,Ed., New York, USA: Ellis

Horwood Ltd, 1981.

http://www.cs.jhu.edu/CIRL/publications/pdf/pembeci-review.pdf
http://sajie.journals.ac.za/pub/issue/view/37

