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Abstract— One of the problems in the clustering process is that the objects under inquiry are multivariate measures containing 

geometrical information that requires shape clustering. Because Procrustes is a technique to obtaining the similarity measure of two 

shapes, it can become the solution. Therefore, this paper tried to use Procrustes as the main process in the clustering method. Several 

algorithms proposed for the shape clustering process using Procrustes were namely hierarchical the goodness-of-fit of Procrustes 

(HGoFP), k-means the goodness-of-fit of Procrustes (KMGoFP), hierarchical ordinary Procrustes analysis (HOPA), and k-means 

ordinary Procrustes analysis (KMOPA). Those algorithms were evaluated using Rand index, Jaccard index, F-measure, and Purity. 

Data used was the line drawing dataset that consisted of 180 drawings classified into six clusters. The results showed that the HGoFP, 

KMGoFP, HOPA and KMOPA algorithms were good enough in Rand index, F-measure, and Purity with 0.697 as a minimum value. 

Meanwhile, the good clustering results in the Jaccard index were only the HGoFP, KMGoFP, and HOPA algorithms with 0.561 as a 

minimum value. KMGoFP has the worst result in the Jaccard index that is about 0.300. In the time complexity, the fastest algorithm is 

the HGoFP algorithm; the time complexity is 4.733. Based on the results, the algorithms proposed in this paper particularly deserve to 

be proposed as new algorithms to cluster the objects in the line drawing dataset. Then, the HGoFP is suggested clustering the objects 

in the dataset used. 
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I. INTRODUCTION 

Today is the big data era where various activity about 
anything is mostly saved as a data. Not only does the data 
become evidence of events that occurred, but it also can be 
utilized to get more information about the description or 
prediction of a particular phenomenon. That information is 
certainly able to be used for deciding. To obtain those, we 
need the data analysis methods; one of them is the clustering 
method. Clustering is part of data mining techniques where it 
is quite popular. In clustering, objects are grouped by 
maximizing similarity measures among objects in the same 
group and minimizing similarity among objects in the 
different groups [1]. The procedure of clustering is divided 
into two, namely hierarchy and non-hierarchy. The examples 
of hierarchical clustering are single linkage, complete linkage, 
average linkage, and ward linkage. Whereas for non-
hierarchical clustering, K-means algorithm is the most 
popular example. Until now, clustering has been widely used 

in various fields; for instance, it has been used in 
education[2]–[6], environment [7], [8], health [9], and 
technology fields [10], [11]. 

Sometimes the objects under inquiry are observed by 
features which are angular measures such as degree and 
direction. Furthermore, there are certain conditions in which 
the gathered data are multivariate measures containing 
geometrical information. These all are instances of the shape 
dataset. Therefore, it is needed shape analyses to get 
information on the data. The analyses are performed by taking 
a finite number of object points that can represent the shape 
of that object. A finite number of object points are called 
landmarks [12]. Two shapes of objects have the same shape 
if, after their landmarks are translated, rotated, and dilated to 
each other, that shapes match exactly. Procrustes is one of the 
tools used to obtain dissimilarity measures of that landmark 
in statistical shape analysis. 

Procrustes refers to a procedure of matching two landmarks 
and producing a measure of the dissimilarity. Supposed that X  and Y  are the matrices of landmarks, to measure the 
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difference between those landmarks, Procrustes utilize the 
sum of the squared distance � given by ��X, Y� = ‖Y − X‖
� . 
Geometrically, Procrustes will minimize ��Y, X�  by using 
series of Euclidean similarity transformations, i.e., translation, 
rotation, and dilation[13]. The first formula of Procrustes was 
the ordinary Procrustes analysis (OPA). Then, Procrustes had 
been developed into the generalized Procrustes analysis 
(GPA)[12] and the Goodness-of-fit of Procrustes (GoFP)[14]. 

GoFP is the Procrustes procedure to measure the similarity 
of X  and Y  by using optimal translation-normalization-
rotation-dilation, denoted by ����X, Y� . The value of ����X, Y� is in [0,1]. If ����X, Y� ≈ 1, then it means that X  and Y  have an excellent match. Conversely, if ����X, Y� ≈ 1, then X and Y have the poor match. One of 
the advantages of GoFP is that it has the symmetrical property, ����X, Y� = ����Y, X�. Today, ����X, Y� not only has 
been utilized to measure the match of two configurations but 
also evaluate the performance of biplot analysis[15], [16], 
process the variables selection algorithm[17], measure the 
quality of imputation data[18], [19], and detect outliers[20].  

Based on the description above, we want to try using GoFP 
in the shape clustering process on shape data. As a result, we 
propose a shape clustering algorithm by using GoFP. Results 
of the proposed algorithm are then compared with the shape 
clustering algorithm by using OPA[21]. Datasets of line 
drawings are used in this paper to see the performance of the 
algorithm proposed. 

This paper provides a brief review of Procrustes analysis in 
section 2. The basic idea of the shape clustering algorithm by 
using GoFP and the validity measures are provided in section 
3. Then, the brief description of data used, simulation study, 
and discussion are given in section 4. In the last section, we 
provide the conclusion of the result in this paper. 

II. MATERIAL AND METHOD 

A. The Goodness-of-fit of Procrustes 

In ancient Greek, Procrustes was a bandit who offered inn 
on an iron bed to any traveler on the road from Eleusis to 
Athens. If the traveler did not fit Procrustes’s bed, he would 
torture that guest to make a perfect fit with his bed by 
stretching their limbs or cutting them off. In mathematics, 
Procrustes was a technique of matching two shapes and 
producing a measure of the match. Those shapes were 
provided as configuration matrices of the same size. Suppose X  and Y  are n-by-p and m-by-p configuration matrices, 
respectively. If � > � then Y needs to be optimally matched 
to X by adding l-by-p matrix where � = � − � . Procrustes 
utilizes the squared of the Euclidean norm �  between the 
points in Y and the corresponding points in X, also known as 
Procrustes distance, provided by Equation 1. 

��Y, X� = ‖Y − X‖
�  (1) 

Geometrically, Procrustes works to minimize ��Y, X� by 
using series of Euclidean similarity transformations, namely 
translation, rotation, and dilation. The optimal translation of X  and Y  are X� = X − �

� 1�1�� X  and Y� = Y − �
� 1�1�� Y , 

where � and 1�  are the number of rows and n-by-1 vector 
having each component equal to 1, respectively. The optimal 
rotation is derived by using the complete form of singular 

value decomposition (CFSVD) of X′Y, i.e., X′Y = UΣV′, we 
get the orthogonal matrix Q = VU′ that is utilized to achieve 
optimal rotation. Optimal dilation is provided by scalar � =
 !"#$%&'()*
!"#$%�)()� [13]. 

Suppose that there are two configurations X and Y in �-by-+ . The goodness-of-fit of Procrustes between X  and Y  is 
obtained using Equation 2. 

 

GoFP�X, Y� = GoFP�Y, X� = 01 233
"

34�
5

�
 (2) 

where 6 and 233 are rank and singular value of X7�� Y7�  or Y7�� X7�  

with X7  and Y7  are matrices after normalization process by 

using formula X7 = '
‖'‖8  and Y7 = )

‖)‖8 . The value of 

GoFP�X, Y� belongs to the interval [0,1]. If GoFP�X, Y� ≈ 1 
then the configurations have the excellent match. Conversely 
if that value approximate 0 then those have the poor match. 
Illustration of the GoFP is shown in Fig 1. 

 

 
(a) 

 
(b) 

 
(c) 
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(e) 

Fig. 1  Procrustes process include: (a) before transformation, (b) translation, 
(c) translation-normalization, (d) translation-normalization-rotation, and (e) 
translation-normalization-rotation-dilation.    

B. Ordinary Procrustes Analysis 

The procedure of ordinary Procrustes analysis (OPA) 
implicates the least squares matching of two configurations, 
suppose X and Y, using the similarity transformations. 
Parameter Q and c is exploited to minimize the OPA that is 
given by Equation 3. 

�9:;�Y, X� = ‖X� − �Y�Q‖
�  (3) 

Where Q = VU′  from Y�� X� =  ‖X�‖‖Y�‖USV′  by using 

the procedure of CFSVD, whereas � =  =>?@AB)C( 'C DE
=>?@AB'C( 'C E  and X�  

and Y�  are gained using the optimal translation procedure [12]. 

C. Generalized Procrustes Analysis 

The generalized Procrustes analysis (GPA) of shape is the 
calculation of the average shape of all similar shapes to obtain 
one shape that can represent all those shapes. Suppose that F = GX�, X�, … , X�I  is a set of configuration matrices of 
similar shapes. An algorithm to compute the GPA for F is as 
follows: 

 Translation. Match the centroid of all configurations 
using Equation 4. 

X73 = X3 − 1� 1�1�� X3 (4) 

 Initialize W using W = �
� ∑ X73�34� . 

 Rotations and Dilation. For the M th configuration 
(∀M = 1,2, … , � ), rotate and dilate the configuration 
using Equation 5. 

X73∗ = �3X73Q3 (5) 

where Q3  and �3  are defined as Q3 = V3U3�  and c3 ==>?@A&R('7SDS*
=>?@A&'7S('7S* . And U and V are given by Equation 6. 

W′X73 = ‖X73‖‖W‖U3S3V3� (6) 

 Modify W using Equation 7. 

W = 1� 1 X73∗
�

34�
. (7) 

 Repeat steps 3 and 4 until the Procrustes’ sum of 
squares cannot be reduced further. The calculation 
uses Equation 8. 

1‖W − �3X73Q3‖
�
�

34�
, (8) 

 W is the result of GPA[12].  

D. Hierarchical Procrustes Clustering 

The basic idea of the hierarchical Procrustes clustering is 
the capability of GoFP to measure the similarity of two 
configurations. Using that capability, we can collect those 
configurations with the highest similarity measure into one 
cluster. It shows that GoFP has the potential to carry out the 
shape clustering process on shape data. So, we intend to 
utilize GoFP optimally in the shape clustering procedure 
where it has not been addressed in previous works. The 
algorithm that we propose is the hierarchical Procrustes 
clustering. The procedure of that algorithm is described in the 
following steps: 

 Suppose that F = GX�, X�, … , X�I  is a set of � 
configurations in which these configurations are the 
initial cluster. We get n clusters. 

 ∀M ∈ G1,2, … , � − 1I  and ∀U ∈ GM + 1, M + 2, … , �I , the GoFP&X3 , XW* is determined using Equation 8, where 6 
and 233 are rank and singular value of X73�� X7W� or X7W�� X73� 

with X73 and Y7W  are matrices after normalization process. 
 Choosing the optimal GoFP by using Equation 9. 

max3,W GoFP&X3 , XW* (9) 

 Combining X3  and XW   into one cluster. If X3  or XW   has 
entered a certain cluster with some other configurations, 
then those configurations are also included in that new 
cluster.  

 Repeating procedures 3 and 4 until the desired number 
of clusters is formed. 

E. K-means Procrustes Clustering 

The idea of k-means Procrustes clustering appeared when 
we tried to utilize GPA and GoFP in the shape clustering 
process simultaneously. In our assumptions, the procedure of 
the GoFP can be utilized to gain the distance between the two 
configurations. At the same time, the GPA is possible to 
correct the centroid for each k-means iteration. Based on those 
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assumptions, we propose a shape clustering algorithm by 
using GoFP and GPA, which have not been addressed in 
previous works. The procedure of that algorithm is described 
in the following steps: 

 Suppose that F = GX�, X�, … , X�I  is a set of � 
configurations. Partitioning those configurations into [ 
initial clusters arbitrarily. 

 Computing centroid each cluster by using GPA.  
 Assigning a configuration to the cluster whose centroid 

is nearest by using GoFP. 
 Recalculate the centroid for the cluster receiving the 

new configuration and for the cluster losing the 
configuration. 

 Repeating the second step until no more cluster 
member changes. 

Based on the two algorithms previously proposed, we also 
try to implement the ordinary Procrustes analysis (OPA) 
algorithm for the shape clustering process. We will perform 
hierarchical clustering and k-means clustering on shape data 
using the previous procedure, where the GoFP algorithm is 
replaced with OPA. 

F. Clustering validity 

Cluster validity is a technique that provides a quantitative 
measure that can be utilized to evaluate certain clustering 
algorithms [22]. There are two types of cluster validity, 
namely internal and external cluster validity. This paper uses 
external cluster validity because there is information of the 
initial cluster in the shape data used, where four cluster 
validity measures are considered here. There are Rand index, 
Jaccard coefficient, F-measure, and Purity[23], [24]. A brief 
mathematical representation of these cluster validity used is 
given in the next paragraph. 

Suppose that a dataset with n objects had been clustered 
using a certain algorithm where the result of the clustering 
process was �  clusters collected in � =  G��, �� , … , �\I . 
Think that � =  G��, ��, … , ��I  was the set of the initial 
cluster structure of the data. Then, it is defined constants a, b, 

c, and d whose values are gained based on a comparison of 
the cluster of each pair of objects in �  and �  with the 
following conditions. 

 ] is the number of pairs of objects in the dataset that 
belongs to the same cluster in �, as well as in �. 

 ^ is the number of pairs of objects in the dataset that 
belongs to the same cluster in � but different cluster in �. 

 � is the number of pairs of objects in the dataset that 
belongs to the different cluster in � but the same cluster 
in �. 

 _ is the number of pairs of objects in the dataset that 
belongs to the different cluster in �, as well as in �. 

Based on those values, the definition of the rand index is 
given in Equation 10. 

Rand Index = 
#`a

#`b`$`a. (10) 

Rand index provides weight to those objects that were 
simultaneously clustered in the two clustering results[25]. The 
Jaccard coefficient is defined by Equation 11. 

Jaccard coefficient = 
#

#`b`$. (11) 

Jaccard coefficient differs from Rand index by deleting _ 
from both the numerator and denominator, placing the 
importance on ]. However, because ^ or � must be increasing 
when _ decreases, then _ is implicitly in Equation 11[26]. As 
for F-measure and Purity, their calculations do not utilize the 
constants above. Suppose that �3W  is the number of objects 
that belong to cluster M in the initial cluster structure � and 
cluster U  in the results of clustering process � . �3  is the 
number of objects that belong to cluster M in � and �W  is the 
number of objects that belong to cluster U in �. By using those 
definition, we can calculate the recall and precision of pairs 
of � and � clusters by using Equations 12 and 13. 

Recall �M, U� = 
�Sc
�S . (12) 

and 

Precision �M, U� = 
�Sc
�c . (13) 

Then, the F-measure of pairs of � and � clusters is given by 
Equation 14. 

F�M, U� = 
�.dA@?ee�3,W�.f>A@ghgij�3,W�
f>A@ghgij�3,W�`>A@?ee�3,W� . (14) 

F-measure is got from the average of all F�M, U� obtained. 
Similar to the F-measure, in the first step, a purity measure is 
got by calculating the purity value of each cluster in � by 
using Equation 15. 

�W  = 
�

�c max3 �3W . (15) 

Then, the overall Purity of the clustering is obtained as a 
weighted sum of each cluster purities and given as Equation 
16. 

Purity =∑ �c
� �W\W4� . (16) 

Where �W  is the number of objects that belong to cluster U 
in �. � is the number of clusters, and � is the total number of 
objects in dataset used. For all cluster validities used in this 
paper, the larger values of each cluster validity indicate better 
clustering quality. 

III. RESULT AND DISCUSSION 

A. The Shape Dataset 

The shape dataset used in this research is a line drawing 
dataset that consists of 180 drawings classified into six 
clusters[21]. In full, the line drawing dataset contains 
Bluetooth, fish, Japanese postal mark, root in mathematics, 
alphabet T, and alphabet X shapes. Each of those shapes totals 
thirty. The visualization of the dataset is given in Fig 2. Those 
figures also provide information about a landmark that is used 
in this paper. That landmark is gained from the corner points 
of each data. The number of points on the Bluetooth, fish, 
Japanese postal mark, root in mathematics, alphabet T, and 
alphabet X landmark is 8, 8, 5, 4, 4, and 5. Because the 
number of landmark points for each shape is not the same, one 
landmark needs to be optimally matched to another by adding 
the centroid of the landmark. The additions are done before 
the GoFP, OPA, or GPA calculation and are not made 
permanent. 
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(d) 

 
(e) 

 
(f) 

Fig. 2  Example of line drawings: (a) Bluetooth, (b) fish, (c) Japanese postal 
mark, (d) root in mathematics, (e) alphabet T, and (f) X. 
 

B. The Clustering Results 

In this paper, the shape clustering process is carried out 200 
times for each algorithm. It is done to see the convergence of 
the cluster quality and time complexity by using Equation 17. 

] =  lim�→n ]�  (17) 

Where ]� is the particular value in �th iteration, and ] is the 
convergence of the particular value[27]. The graph of the 
cluster quality results for each algorithm using the 
convergence concept is shown in Figure 3-6. 

 
Fig. 3  The convergence of the cluster qualities by using Rand index. 
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Fig 3 shows the graph of cluster qualities from hierarchical 
goodness-of-fit of Procrustes (HGoFP), k-means goodness-
of-fit of Procrustes (KMGoFP), hierarchical ordinary 
Procrustes analysis (HOPA), and k-means ordinary 
Procrustes analysis (KMOPA) by using Rand index as cluster 
validity. In Rand index, the average values for HGoFP, 
KMGoFP, HOPA, and KMOPA are 0.956, 0.894, 0.941, and 
0.803, respectively. Based on the values, we know that the 
shape clustering results are satisfactory based on Rand index. 
We also know that the best results are obtained by the HGoFP 
algorithm. The second-best algorithm is HOPA, and then 
KMGoFP and KMOPA are the third and the last, respectively. 

 
Fig. 4  The convergence of the cluster quality by using the Jaccard index. 

 
Fig 4 shows the cluster qualities based on the Jaccard index. 

As can be seen, the convergence of the cluster quality from 
KMOPA is not satisfactory because its value is about 0.300, 
which is 0.326 precisely. In comparison, other algorithms are 
good enough because the convergence values are above 0.500. 
The best algorithm in the Jaccard coefficient is obtained by 
using HGoFP algorithm, whose cluster quality is 0.772. The 
second and the third best algorithms are HOPA and KMGoFP, 
whose values are 0.728 and 0.561, respectively. 

 
Fig. 5  The convergence of the cluster quality by using the F-measure index. 

 

Fig 5 shows the graph of the F-measure value of each 
algorithm. The graph shows that each algorithm used gives a 
satisfactory result where their values are above 0.880. The 
best algorithms in F-measure are HGoFP and HOPA, which 
the value is same at about 1. The second-best algorithm is 

KMGoFP, whose value is 0.986, and then the third-best 
algorithm is KMOPA, whose value is 0.893. 

 
Fig. 6  The convergence of the cluster quality by using a purity index. 

 
The graph in Fig 6 shows that the shape clustering results 

of each algorithm in Purity validity are good enough because 
of their Purity value of more than 0.500. The best algorithms 
in Purity validity are HGoFP, whose value is 0.942. The 
second, third, and fourth are HOPA, KMGoFP, and KMOPA, 
whose values are 0.917, 0.847, and 0.697. 

Based on the description above, we can conclude that 
HGoFP is the best algorithm in each cluster validity used. The 
second-best algorithm is HOPA, then KMGoFP and KMOPA, 
respectively. The values of HGoFP and HOPA are quite 
similar in Rand Index, Jaccard coefficient, and Purity. In F-
measure, their values are the same. So, the quality of the 
HGoFP and HOPA is not much different. While the lowest 
quality is gained by KMOPA generally. 

 
Fig. 7  Graph’s visualization of time complexity each algorithm in 200 times 
iteration 
 

Fig 7 shows the chart of time complexity of each algorithm 
in 200 times iteration. One of the principal pieces of 
information from the chart is that the lowest time complexity 
is achieved by HGoFP whose average of time complexity is 
4.733. It means that the HGoFP finishes the shape clustering 
process faster than other algorithms. The second-lowest time 
complexity is achieved by HOPA, which the average of time 
complexity is 8.679. The third and fourth are KMGoFP and 
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KMOPA. We know that hierarchical shape clustering 
algorithms are more rapidly than k-means shape clustering 
based on the results. It can be clarified by the results of 
HGoFP and KMGoFP or HOPA and KMOPA. We also know 
that the shape clustering using the GoFP is more rapidly than 
OPA. It can be clarified by the results of HGoFP and HOPA 
or KMGoFP and KMOPA. 

IV. CONCLUSION 

In the paper, we have discussed shape clustering by using 
Procrustes analysis. The Procrustes algorithms used in this 
paper were GoFP, GPA, and OPA. The shape clustering 
algorithms proposed in this research were HGoFP, KMGoFP, 
HOPA, and KMOPA. And then, the cluster validities used to 
evaluate the cluster results were Rand index, Jaccard 
coefficient, F-measure, and Purity. The clustering process of 
each algorithm was repeated 200 times to obtain the 
convergence of each algorithm's clustering quality. This 
research found that the results of all algorithms used are good 
enough in Rand index, F-measure, and Purity validities. In 
Jaccard coefficient, the good clustering results were only from 
HGoFP, HOPA, and HOPA, whereas the KMOPA algorithm 
got the low cluster quality. In the time complexity, the HGoFP 
process is the fastest. Based on the cluster validity used and 
the time complexity, the algorithms proposed in this paper 
particularly deserve to be proposed as a new algorithm to 
cluster the objects in the line drawing dataset. Then, the 
HGoFP is suggested clustering the objects in the dataset used. 
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