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Abstract—Flow Shop Scheduling (FSS) is scheduled to involve n jobs and m machines in the same process sequence, where each machine 

processes precisely one job in a certain period. In FSS, when a machine is doing work, other machines cannot do the same job 

simultaneously. The solution to this problem is the job sequence with minimal total processing time.  Many algorithms can be used to 

determine the order in which the job is performed. In this paper, the algorithm used to solve the flow shop scheduling problem is the 

bee colony algorithm. The bee colony algorithm is an algorithm that applies the metaheuristic method and performs optimization 

according to the workings of the bee colony. To measure the performance of this algorithm, we conducted some experiments by using 

Taillard's Benchmark as problem instances. Based on experiments that have been carried out by changing the existing parameter 

values, the size of the bee population, the number of iterations, and the limit number of bees can affect the candidate solutions obtained. 

The limit is a control parameter for a bee when looking for new food sources. The more the number of bees, the more iterations, and 

the limit used, the better the final time of the sequence of work. The bee colony algorithm can reach the upper limit of the Taillard case 

in some cases in the number of machines 5 and 20 jobs. The more the number of machines and jobs to optimize, the worse the total 

processing time.  
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I. INTRODUCTION 

Scheduling is the arrangement of several activities, where 

these activities have several operations, and each of them is 

arranged in such a way as to become a schedule. One of the 

main goals of scheduling is to minimize the total time to 

complete the entire activity. Scheduling problems are found 

in the real world, for example, course scheduling, lecturer 
scheduling, and many more. The scheduling problem is also 

essential in the industrial world.  

In the industrial world, there is a term known as shop 

scheduling. Shop scheduling is a scheduling problem in which 

there are several jobs, each of which has several processes or 

operations carried out by a machine. One type of workshop 

scheduling is flow shop scheduling (FSS). FSS involves n 

jobs and m machines, where each job will be processed by all 

the machines with the same sequence. 

The textile industry, an industry that processes raw 

materials such as cotton into cloth, is included in the 
manufacturing industry. This industry uses machines in its 

production process. The production process, which uses a lot 

of this machine, needs to be arranged in such a way so that it 

can run optimally. One type of optimality commonly used is 

“makespan,” which is the time needed to process the entire 

job. The production process of the textile industry usually 

belongs to FSS. 

The production process of the textile industry usually 

belongs to FSS. Scheduling of jobs in FSS is an NP-hard 

problem that is generally solved using heuristic and 

metaheuristic algorithms [1]–[3]. These heuristics include 

dispatching rules such as FCFS (First Come First Serve) and 

SPT (Shortest Processing Time), NEH algorithm, Gupta 
algorithm, Palmer algorithm, and other algorithms [4]–[6].  

Another heuristics group is metaheuristics, such as genetic 

algorithms, simulated annealing, and particle swarm 

optimization [1]–[3], [8]–[13]. The difference between 

heuristics and metaheuristics is in the way the machine 

sequences are generated [14]. 

In this work, we developed a solver program for solving 

FSS. This solver is based on a metaheuristic, namely the bee 

colony algorithm. Karaboga developed the bee colony 

algorithm in 2005 to solve numerical optimization problems. 

Nowadays, the bee colony algorithm has become more 
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popular and applied to solve problems in the industry [15]–

[21]. The bee colony algorithm is a search algorithm inspired 

by honeybees' behavior searching for food sources. These 

algorithm results are locations that have a good number and 

yield of food for the bee colony.  

We are interested in developing a computer program, a 

solver, which can be used to solve FSS by applying the bee 

colony algorithm. The research questions that arise are how 

to model FSS and how the performance of the solver. Thus, 

this work aims to develop a bee colony algorithm-based 

solver for FSSP and measure its performance. The rest of the 
paper is organized as follows. Section II presents the materials 

and methods, including Flow Shop Scheduling and the Bee 

Colony Algorithm. Section III discusses the development of 

the solver and the performance measurement as well. The 

conclusion is given in Section IV. 

II. MATERIAL AND METHOD 

This section presents the Flow Shop Scheduling Problem 
and describes the algorithm used to solve the problem, namely 

the Bee Colony Algorithm.  

A. Flow Shop Scheduling 

The flow shop scheduling problem is the problem of 

arranging the sequence of a set of jobs with a certain number 

of processes on several series of machines. The work will be 

done on existing machines in the selected order. Each process 

will be carried out systematically and sequentially. In the flow 

shop scheduling, the order of the work will be arranged so that 
the total time of all work can be minimized. 

Here are some terms used in scheduling: [2] 

 Processing time: the time needed for a machine to do 

an operation. 

 Delay time: the time lag from a machine complete 

doing a job to starting a new job. 

 Total time: the amount of time it takes for a machine to 

complete all operations in one job. 

 “makespan”: the amount of time it takes for all 

machines to complete all jobs. 

The input data required in running a flow shop scheduling 
are number of work, number of machines, and detailed 

processing time for each process for each job. Every job has 

a different processing time on each machine. Variation 

different processing sequences usually result in different 

“makespan.” 

Let us use a small FSS as an illustration. Assume there are 

three jobs (J1, J2, J3) and five machines (M1, M2, M3, M4, 

M5) for processing those jobs. Table I shows all the time 

needed for each machine for processing each job. 

TABLE I 

PROCESSING TIME 

Jobs 
Machines 

M1 M2 M3 M4 M5 

J1 6 5 3 9 5 
J2 8 1 8 5 6 
J3 2 1 3 8 6 

 

This is an FSSP, aiming to find the ordering with the 

shortest total processing time or “makespan”. If we use the 

First Come First Serve principle, then the ordering is J1-J2-J3, 

and the total time needed to complete (or “makespan”) is 42-

time units. Fig.1 depicts the Gantt Chart for this solution.  

 

 
Fig. 1 Gantt Chart for First Come First Serve principle. 

 

It can be seen on the Gantt Chart in Fig. 1 that after M1 

finishes working on J1, M2 immediately works on J1. When 
M2 finishes working on J1, M2 does not immediately work 

on J2; this is because M1 is still working on J2, causing a 

delay on M2. M2 has to wait for M1 to finish working on J2 

before M2 can start working on J2.  

Let take another job order. If we use the Shortest 

Processing Time principle, then the job ordering becomes J3-

J2-J1, and the “makespan” is 38-time units. Fig.2 depicts the 

Gantt Chart for this solution.  

 

 
Fig. 2 Gantt Chart for Shortest Processing Time principle. 

B. Bee Colony Algorithm 

1) Analogy: According to Karaboga [5], the bee colony 
algorithm was created based on bees' behavior while foraging. 

Bee communicates with one another through the dance they 

make. The bees that collect food share information about the 

flowers' direction and distance and the amount of nectar in 

flower with their hive partners by performing this dance. Bee 

colonies can also quickly adjust their search patterns. This 

process can be seen as an optimization process.  

There are three essential components of foraging behavior. 

The first component is a food source. A food source's value 

depends on many factors, such as proximity hive, food 

concentration, and how to extract food efficiently. The second 

component is employed bee. Employed bees share 

information on food sources and the fertility of these food 

sources with other worker bees. The last component is the 

unemployed foragers. There are two types of unemployed 
bees, namely, onlooker bees and scout bees. Onlooker bees 

wait in the hive and select a food source after receiving 

information from the worker bees. Onlooker bee decides to 

choose a food source. Food sources that have good fertility 

have a greater chance of being chosen by onlooker bees. The 

bee scout's responsibility is to find new food sources 

randomly. 

In this model, a bee colony has three groups of bees, as 

listed above. Half of the bee colonies are employed bees, and 

the other half are onlooker bees. For every food source, there 

is one employed bee. In other words, the number of employed 

bees is the same as the number of food sources around the 
hive. Employed bees whose food sources have run out will 

become scout bees. 
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2) Algorithm: The working principle of the bee colony 

algorithm is given in Fig 3. Each search cycle consists of three 

steps: 

 The employed bee moves to the food source and 

calculates the amount of its nectar. 
 Onlooker bee movement to select a food source. 

 Assign the bee scouts to possible food sources.  

In this model, a bee colony has three groups of bees, as 

listed above. Half of the bee colonies are employed bees, and 

the other half are onlooker bees. For every food source, there 

is one employed bee. In other words, the number of employed 

bees is the same as the number of food sources around the 

hive. Employed bees whose food sources have run out will 

become scout bees. 

 

 
Fig. 3 The bee colony algorithm. 

 
The position of the food source represents the solution to 

the problem to be optimized. The amount of nectar from a 

food source corresponds to the quality of the food source's 

solution. Bee’s onlookers are placed on the food source using 

a probability-based selection process. As the number of nectar 

increases, the probability value where the onlooker bee 

prefers the food source will also increase. Each bee colony 

has a scout bee, which is an explorer of that colony. Scout bee 

does not have any guidance when it comes to finding food. 

They look for all kinds of food sources. As a result of this 

behavior, bee scouts are characterized by low search costs and 

the average low in the food source's quality. Now and then, a 
scout bee can accidentally find a good food source [21]. 

In the bee colony algorithm, scout bees can find candidate 

solutions quickly. In this task, one of the employed bees is 

selected and defined as the scout bee. This selection is 

controlled by a control parameter called limit. If a 

predetermined number of trials cannot improve the solution 

representing food sources, then the food source is abandoned 

by him, and the employed bee will become a scout bee. The 

number of attempts to remove food sources is equal to the 

limit value, which is the algorithm's control parameter. In an 

intense search process, the exploration and exploitation 
processes must be carried out together. In the bee colony 

algorithm, when onlooker bee and employed bee perform the 

search space's exploitation process, scout bee regulates the 

exploration process. 

Employed bees are assigned to a source. The number of 

food sources equals the number of working bees. Bees have 

calculated a new solution by flying to food sources closest and 

maintain the best solution when it reaches the source. 

Onlooker bees wait in the hive and make the decision to 

choose a food source based on the information of the 

employed bees. The number of onlooker bees is the same as 

employed bees, and they allocate food sources based on their 

probability. 

Scout bees are responsible for randomly looking for new 

food sources. Scout bees randomly search for new solutions 

when food sources do not improve after several iterations. The 

source found by scout bees will replace the existing solution 

if the nectar found is better than the previous one. 

3) Fitness Value: The fitness value of each food source is 

calculated by the formula below [22]: 

 ��� �
�

����
 (1) 

where, Fi is the “makespan” value for solution i. This fitness 

value will be used to determine the probability value of a 

solution. 

4) Employed Bee Stage: The second stage is when the 

employed bee exploits food sources. Before an employed bee 

sends information to the onlooker bee, an employed bee will 

look for new food sources around the food sources obtained 

from previous scout bees. This stage means generating a 

candidate for a new solution or solution. Operations that can 
be used to insert and swap operations. Later on, this new 

solution will be chosen again by onlooker bee to compare the 

fertility value of these food sources. 

5) Insert and Swap: According to this algorithm, 
employee bees generate food sources around their current 

position. Operators commonly used to produce this solution 

are insert and swap processes. The insert operator generates a 

food source by removing a job from its original position and 

inserting it into another position. In contrast, the swap 

operator generates a food source by swapping two random 

jobs. An example of using the swap and insert operators can 

be seen in Fig. 4. There are two food sources represented as 
the order of the job carried out. 

 
Fig. 4 The bee colony algorithm. 

 

Six jobs are done sequentially. The first row of Fig. 4 

shows the use of the swap operator. Job 2 is exchanged with 

job 5. When this operation is executed, the position of the 
other jobs does not change. In the second row of Fig. 2 is the 

use of the insert operator. In the insert operation, job 2 will be 

inserted between job 6 and job 5. After this operation is 

executed, the position of the other job also changes. 

6) Determining Probability Value: The probability value 

will be calculated by taking one food source that the employed 

bee has worked on. The food source's fitness value will be 

divided by the total fitness value of all food sources. Onlooker 

bee chooses a food source depending on the probability value 

of food source pi. Below is a formula to calculate the 

probability value for a food source [22]. 

1. Initial food source positions. 
2. Calculate the nectar amounts. 
3. Determined the new food positions for the employed bees. 
4. Calculate nectar amounts.  
5. If all onlookers are distributed, go to 9; otherwise, go to 6.  

6. Select a food source for the onlooker. 
7. Determine a neighbor food source position for the 

onlooker. 
8. Go to 4. 
9. Memorize the position of best food source. 
10. Find the abandoned food source. 
11. Produce new position for the exhausted food source. 
12. If the termination criterion is satisfied, go to 13; otherwise, 

go to 3. 
13. Final food position. 
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where fiti is the value of the fitness solution i, which is 

evaluated by the employed bee, and SN is the number of food 
sources, which is the same as the number of solutions. 

7) Onlooker Bee Stage: After a solution has been selected, 

the onlooker bee will go to the food source, and then its 

performance is compared to the old food source. If the new 

food source is the same or better than the old food source, then 

the food source is replaced with a new food source; otherwise, 

it is not replaced. 

8) Scout Bee Stage: At this stage, if the solution cannot 

be further increased through a predetermined number of limits, 

the solution will be abandoned, and the employed bee will 

become a scout bee. Scout bees will search for food sources 
randomly in the same way as initial population initialization. 

After bee's scouts work, bee's scouts are back to being 

employed bee. The probability value will be calculated by 

taking one food source that the employed bee has worked on. 

The food source's fitness value will be divided by the total 

fitness value. 

III. RESULTS AND DISCUSSION 

This section describes the modeling of the solver and the 
experiments conducted for measuring the solver's 

performance.   

A. FSS Modelling 

The bee colony algorithm will receive input data from a 

flow shop case, and then it will look for the optimal order of 

jobs or the solution from that case. The bee colony algorithm 

will find a sequence of processes that produce a minimum 

“makespan.” 

This algorithm represents a selection of existing solutions 
as the best food source for bees with the help of the fitness 

value as a guide to the fertility value. With these guidelines, 

the bees are assumed to be able to choose the most optimal 

path. The optimization process using the bee colony algorithm 

needs to pay attention to several things. The bee colony 

algorithm needs to know how to represent a solution as a food 

source, get a neighbor's solution, get the chance to choose a 

solution, and many other things. This procedure can influence 

the optimization results of the bee colony algorithm. 

During the optimization process, the bee colony algorithm 

performs a search process repeatedly. In each search process, 
the bee colony algorithm distributes some bees that will work 

on the flow shop case according to the solution chosen by each 

bee. The best solution that a bee has chosen will be saved and 

compared with the previous search process's best solution. 

The algorithm is given in Fig. 5. 

Fig 5 presents a bee colony algorithm that has been adapted 

for FSSP problems. We add this input parameter setting for 

giving the algorithm all the parameters needed, namely 

number of machines, number of jobs, processing times, 

number of bees, maximum iteration, limit. The number of 

bees entered can be modeled as a candidate solution because 

each bee will carry one food source in which the food source 
is modeled as a job sequence. The operation time of each job 

is needed to find the “makespan” of a given sequence of jobs. 

In this scheduling problem, we want to look for the order of 

the best work and its “makespan”. Each work sequence, 

which can be made from the data processing time, is a 

candidate solution. 

 

 
Fig. 5 The bee colony algorithm for FSS. 

 

The bee colony algorithm will help determine the optimal 

job-taking order. Therefore, this algorithm will represent the 

preferred order of taking that is available as a food source. 
The bee colony algorithm does not have a guide when 

selecting initial food sources; therefore, the bee colony 

algorithm randomly selects the initial food source. 

The food source is a collection of food sources that the bees 

will select in a colony. As an example, it can be seen in Fig. 

6, suppose there are three jobs and three bees, then a random 

number search process will be carried out for each bee, and a 

sequence of workings and their “makespan” will be obtained, 

for example (2,1,3), (3,1, 2), (1,2,3). The order of work 

obtained can be represented as an initial source of food or the 

initial position, knowing that there is a food source in the job 
sequence. Each sequence of this process will have a different 

“makespan” depending on the order in which it is done. It 

should also be noted that this initial search for food sources 

can be in the same order as other bees. 
 

 
Fig. 6 Food source and job ordering mapping. 
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1. Input parameters setting. 
a. Number of machines, number of jobs, processing 

times 
b. Number of bees, maximum iteration, limit 

2. Initial solution. 
a. Initial solution generation. 
b. Schedule generation 

3. Employee bee stage. 
a. Neighbor solution finding 
b. Schedule generation 

4. Onlooker bee stage.  
a. Probability calculation 
b. Neighbor solution finding. 
c. Schedule generation and “makespan” calculation. 

5. Scout bee stage.  
a. New solution finding 
b. Schedule generation 

6. If new solution has better “makespan” then go to 7; 

otherwise go to 8.  
7. Replace current solution with new solution.  
8. If maximum iteration is reached, then go to 11; otherwise 

go to 9. 
9. Iteration incrementation. 
10. Go to 3. 

11. Finish. 
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The bee colony algorithm generates new food sources 

around their current position. In this way, the operations that 

can be used are the swap and insert operations as described in 

the previous chapter. In this process, each worker bee already 

has an initial position of the food source, carried out by the 

scout bees. The worker bee will search for new food sources 

around the food source position it knows, meaning that the 

worker bee will get a new sequence of jobs obtained from the 

swap or insert operation. 

In Fig. 7, bee one will perform a neighbor solution search 

and perform a swap operation on job 2 and job 3. In this way, 
the bee gets a new food source position or a new work 

sequence. As already said previously, processing one bee may 

have the same order of processing as another. This new food 

source will be compared to its “makespan” with the previous 

food source. If the “makespan” of the new food source is 

smaller than the previous one, then the food source will 

become a new position for the bee. 

 

 

Fig. 7 The result of neighbor solution finding. 

 

After the neighbor solution search process is completed, 

the odds of each solution will be calculated. Keep in mind that 

the bee colony algorithm will always provide a chance for a 
solution to be chosen. Even though the solution can be 

considered a less than optimal solution, it can still be selected. 

The way to get the chance for a solution is obtained by 

dividing the solution's fitness value by the total fitness value 

obtained for all food sources described in Section II.  

During the optimization process, the bee colony algorithm 

will continuously perform a search phase. At each search 

phase, a solution will be formed in the form of a food source 

based on its fitness value. After a search phase is complete, 

changes to the fitness value will be made based on each bee's 

food source. The optimization process will be terminated if a 
condition is met. Various parameters can determine the time 

to stop a search process. The search process can be considered 

complete if it has passed a predetermined number of iterations. 

The more iterations that are done will produce more optimal 

results, but it will take more processing time. 

B. Experimental Results 

This experimental test aims to look for factors that can 

affect the results of the solver. This test is done by conducting 

experiments using solver with different input parameters. 
First experiment is to know the effect of the number of bees 

on the “makespan”. We run two experiments, first experiment 

with 5 bees and the second experiments with 50 bees. Second 

experiment is to know the effect of the maximum iteration on 

the “makespan”. We run two experiments, first experiment 

with 250 iteration and the second experiments with 2500 

iteration. Third experiment is to know the effect of the limit 

number on the “makespan”. We run two experiments, first 

experiment with 10 and the second experiments with 100.   

The parameters tested in this experimental test were the 

number of bees, the number of iterations carried out, and the 

limits on bees. If there are differences in the experimental 

results, differences in input parameters will undoubtedly 

affect the results. The results obtained will be compared with 

the upper limit of Eric Taillard's website, and the order of 

work that is not changed is the order of the work, which is 

named with a simple “makespan” [7], [20]. Experimental 

testing was carried out in each case. Other parameters that are 

not tested will use the Karaboga program's parameters: The 

number of bees is 10, the number of iterations is 2500, and the 

limit is 100.  

Experimental testing to be carried out will use the Taillard 
case in some jobs, namely: 20 jobs 20 machines, 50 jobs on 

20 machines, 100 jobs on 20 machines, 200 jobs on 20 

machines, and 500 jobs on 20 machines. 

1) Fitness Value: Food sources are candidate solutions to 

be selected. In the bee colony algorithm, each bee will have 

precisely one food source, which means the bee itself is a 

candidate solution. The number of bees used in each 

experiment is different. It aims to see a (relatively) significant 

difference in the results of the software. In this experiment, 

the number of bees will be worth 10% of the number of bees 

in the 2nd experiment. The number of iterations is 2500, 
which is obtained from the Karaboga parameter and the limit 

is 100. The result is given in Fig. 8. 

 

 
Fig. 8 The correlation of the number of bees with “makespan”.. 

2) Maximum iteration: The number of iterations used in 

experiments is varied. It aims to see differences in software 

results. In this experiment, the number of iterations will be 10% 

of the number of iterations of the 2nd experiment. The number 

of bees is 10, which is obtained from the Karaboga parameter 

and the limit is 100. The result is given in Fig. 9. 

 

 
Fig. 9 The correlation of maximum iteration with “makespan”. 

2 1 3

3 1 2
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3) Limit: The number of limits used in the experiment is 

different. It aims to see differences in software results. In this 

experiment, the limit amount will be 10% of the many limits 

of the second experiment. The number of bees is 10, which is 

obtained from the Karaboga parameter, and the number of 

iterations is 2500. 

 

 
Fig. 10 The correlation of limit with “makespan”. 

 

From the results of three experiments, namely the number 

of bees, the number of iterations, and the number of limits, we 

can see that the greater the parameters used, the better the 

results. However, the more the number of bees and iterations, 

the time it takes to get a solution is also getting longer. The 

number of known limits does not affect the time to find a 

solution. 

IV. CONCLUSION 

We have successfully built a solver program to solve flow 

shop scheduling problems using the Bee Colony algorithm. 

Functional testing has been carried out for this solver to 

guarantee its functionality. Moreover, we conducted some 

experiments to measure the performance of the Bee Colony 

algorithm by using this program. From the experimental 

results, the parameter has significant effects on the solver's 

performance. The number of bees and the maximum iteration 

are directly proportional to the “makespan” produced. 

In general, the “makespan” produced by the solver is no 
better than benchmarks. However, in the case of 20 job 5 

machines, the resulting “makespan” is close to the 

benchmark's upper limit. We are now working on combining 

two metaheuristics, namely genetics algorithm and firefly 

algorithm, for solving flow shop scheduling problems. We are 

also considering applying this approach for solving another 

variant of FSS, namely Flexible FSS [22]. 
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