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Abstract— Reinforcement learning (RL) is a new propitious research space that is well-known nowadays on the internet of things 

(IoT), media and social sensing computing are addressing a broad and pertinent task through making  decisions sequentially by 

deterministic and stochastic evolutions. The IoTs extend world connectivity to physical devices like electronic devices network by use 

interconnect with others over the Internet with the possibility of remotely being supervised and meticulous. In this paper, we 

comprehensively survey an in-depth assessment of RL techniques in IoT systems focusing on the main known RL techniques like 

artificial neural network (ANN), Q-learning, Markov Decision Process (MDP), Learning Automata (LA). This study examines and 

analyses learning technique with focusing on challenges, models performance, similarities and the differences in IoTs accomplish with 

most correlated proposed state of the art models. The results obtained can be used as a foundation for designing, a model 

implementation based on the bottlenecks currently assessed with an evaluation of the most fashionable hands-on utility of current 

methods for reinforcement learning. 
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I. INTRODUCTION 

Reinforcement Learning (RL) is a category of the 
Machine Learning (ML) techniques that are decided, 
supervised, semi- supervised and unsupervised besides that 
is also a division of Artificial Intelligence (AI). It consents 
machines and software agents to automatically determine the 
ideal behavior within a specific context, with an attempt to 
maximize performance [1]. Unassertive return is vital for the 
agent to learn its behavior is referred to as the reinforcement 
signal. Social media platforms that embedded on IoT devices 
utilize RL for instance automatically tags people and identify 
common objects like landmarks in uploaded pictures among 
more. Different numbers of the algorithm that tackle this 
applicability and automatic recovery of data are considered 
with the time of learning and are now available [2]. 

RL examines and evaluates a detailed sort of problem, 
with all its resolutions are referred to as RL algorithms. It is 
applied in many categories of technology phenomena like 
detecting the premature onset of an infection, fraud detection, 
resource optimization, programmed or self-driving cars, 
facial recognition, high volume trading among more with 
real-valued function [3]. Computing categorized as dynamic 

programming that trains algorithms by means of a system of  
return and penalty. The learning holds some studying 
patterns to the approach of data detection including 
categorization, prediction, and identification. This kind of 
automated learning scheme indicates that there is little 
requirement for a human expert who knows about the 
domain [4]. 

RL is challenged with memory extensively to store values 
of each state, since the problems are a times complex, 
solving this involves observing value approximation 
techniques, like neural networks [5]. There are many 
connotations of introducing these imperfect value 
estimations and research tries to minimize their influence on 
the quality and the authentication enhancement where IoT is 
managed and maintained using this RL entity as illustrated 
in figure1 depicting approaches, challenges with applications. 
We observed that it is a sign to carry out the survey and 
provide the researcher with a piece of summarized 
information about for RL in IoT so that in case there is a 
need to create algorithms and models, there is an easy 
approach. We mainly categorized RL techniques. This paper 
uniquely focuses on the following areas as summarized: 
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Fig. 1 Approaches, Challenges, and Applications of Reinforcement Learning 

• Present a comprehensive and in-depth systematic 
survey of the main reinforcement learning 
techniques in IoTs. 

• Describe current state-of-the-art results solution on 
IoT networks with a close focus on the 
reinforcement learning techniques in the IoTs. 

• Examine and describe the relationship between IoTs 
and the reinforcement learning techniques based on 
application, issues, and resolutions.  

• Present an in-depth review of existing studies 
solutions and models to the challenges identified 
related to IoT application and enlighten on internet 
connectivity. 

• Afford summarized tables that categorize these 
reinforcement learning techniques in different 
phenomena that cut across in resemblance, 
identified independent challenges. 

Due to the limited perception, regularly impossibilities 
to determine the current state is the problem in this area of 
research, this affects the performance of the set of rules. 
Issues like applicable rules might be intuited, but are not 

easily designated by unpretentious logical rules, potential 
outputs are defined but which action to take is dependent 
on diverse circumstances which cannot be predicted, 
accuracy is supplementary significant than interpretation or 
interpretability [6, 7]. 

The rest of this paper is structured as follows; in section 
2 provides related work. In section 3, illuminates RL in 
general availing brief information about techniques. In 
section 4, explicates the classification of the RL in IoT in 
table 1 with state of the earth solutions in table 2. Finally, 
sections 5 have the conclusion the article and 
indistinguishably depict our future work 

II. RELATED WORK  

In this section, we discuss different areas where RL 
techniques have been applied with the ability of the 
machines to practice and learning is recognized as 
algorithms. 

Within the security phenomena and its associated 
challenges including attacks [8], confidentiality and 
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integrity, physical access within the IoTs analysis on the 
standard and natural policy gradients on actor-critics [9], 
huge or big data processing in learning [10], user 
simulation techniques for RL example dialogue 
management strategies [11], robotic systems during 
learning, node discovery within IoTs scenarios [12], 
content-aware computing with a close focus on the learning 
and data screening analytics [13]. In appreciation to the 
existing works, they have not summarised the existing 
solutions to the challenges as this study avails in the 
summarized tables and figures involved. 

 
Fig. 2 Expressive Reinforcement Learning Procedure 

Within the security phenomena and its associated 
challenges including attacks [8], confidentiality and 
integrity, physical access within the IoTs analysis on the 
standard and natural policy gradients on actor-critics [9], 
huge or big data processing in learning [10], user 
simulation techniques for RL example dialogue 
management strategies [11], robotic systems during 
learning, node discovery within IoTs scenarios [12], 
content-aware computing with a close focus on the learning 
and data screening analytics [13]. In appreciation to the 
existing works, they have not summarised the existing 
solutions to the challenges as this study avails in the 
summarized tables and figures involved.   

III. REINFORCEMENT LEARNING TECHNIQUES 

In this section, RL techniques are presented and 
summarized in figure 2. The machine is provided with a set 
of acceptable actions, rules, and potential end states. By 
smearing the rules, exploring different actions and 
detecting resulting reactions the machine learns to 
adventure the rules to generate the desired result. 
Accordingly, determining what sequence of actions, in 
what surroundings, resolves to an optimized result. 
Mathematical algorithms and programming in space search, 
statistical and dynamic programming to estimate the utility 
of different learning aspects. 

RL necessitated a lot of data, consequently, it is relevant 
in domains where simulated data is readily available 
identical to gameplay, robotics [14], [116]. Other areas 
include text mining or text summarization engines, 
dialogue agent trade transaction, health care, and 

navigations. Therefore, the four major techniques of RL is 
briefly explained below: 

A. Artificial Neural Networks (ANN) 

Neural networks are sometimes called connectionist 
systems that use computational algorithms and capable of 
pattern    recognition.    RL    is    accessible   as   systems 
of interconnected “neurons” which can compute values 
from inputs. It is based on a collection of connected nodes 
called artificial neurons that loosely model the neurons in a 
biological brain [15], [117]. 

ANN is currently used including feedforward neural 
network, radial basis function neural network, Recurrent 
Neural Network (RNN) Long Short-Term Memory, 
Convolutional neural networks, and Modular Neural 
Networks. Some of the advantages of these techniques 
include the ability to work with incomplete knowledge, 
fault tolerance, having a distributed memory, Parallel 
processing capability, ability to make machine learning 
[16]. 

B. Learning Automata 

Early learning techniques that use adaptive decision- 
making with unit situated in a random environment that 
absorbs the optimal action over frequent relations. 

The arrangements are selected according to an explicit 
probability distribution which is efficiently constructed on 
the situation response on the automation obtains by 
execution a specific accomplishment [17], [118]. LA 
managed a multipart, highly non-linear, indefinite and half-
finished have to delicate and interactive exchange with the 
environment where they operate [18]. 

C. Markov Decision Processes (MDP) 

MDP has an isolated time stochastic control procedure 
providing a mathematical framework for modelling verdict 
creation in situations where outcomes are partly random 
and partly under the control of a result maker. The 
resolution for an MDP is a policy that designates the 
superlative action for each state in the MDP called the 
optimal policy found through a variety of methods, like 
dynamic programming. The difference between LA and Q-
learning (QL) is that the former technique neglects the 
memory of Q-values, but updates the action possibility 
straight to find the learning result. LA is a learning scheme 
with a rigorous proof of convergence [19], [119]. 

D. Q-Learning 

The penalty area of QL is to absorb a policy, which 
expresses an agent pardon's action to take under what 
surroundings does not even necessitate a model of the 
environment and it can grip difficulties with stochastic 
transitions and plunders, deprived of necessitating 
adaptations [20]. The penalty area of QL is to absorb a 
policy, which expresses an agent pardons action to take 
under what surroundings that does not even necessitate a 
model of the environment and it can grip difficulties with 
stochastic transitions and plunders, deprived from 
necessitating adaptations [20], [120]. 
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TABLE I 
TECHNIQUES CLASSIFICATION BASED ON THE APPLICATION 

 

Technique 

classification 

Classification 

IoT Issue-Based Application Based 

 

 

 

 

ANN 

Intrusion prediction [23] 

IoT representation annotation [24] 

Data-driven management [25] 

Data and Feedback validation [26] 

Visualization and understanding [27] 

Learning environment detection [28] 

Fraud detection [29] 

Prediction of the performance [50] 

Classification of capability [51] 

Tolerance related acquisition [52] 

IoT crime forensics [53] 

Fraud detection in IoT application [54] 

IoT decision process and making [55] 

 

 

 

LA 

Intrusion prediction [30] 

IoT representation annotation [31] 

Data-driven management [32] Data 

and Feedback validation [33] 

Visualization and understanding [34] 

Learning environment detection [35] 

Fraud detection [36] 

Predicting Software Defects on IoTs [56] 

Prediction of behavioral changes [57] 

Signature verification [58] 

Analysis and decisions [59] 

Auto-selection of IoT task [60] 

Traffic incident detection [61] 

Telecommunication [62] 

Internet networks [63] 

 

 

 

MDP 

Intrusion prediction [37] 

IoT representation annotation [38] 

Data-driven management [39] Data 

and Feedback validation [40] 

Visualization and understanding [41] 

Learning environment detection [42] 

Fraud detection [43] 

Reinforcement Recognition [64] 

Short-term traffic forecasting [65] 

long-term traffic flow forecasting [66] 

Face recognition [67] 

Speech and text recognition [68] 

Data classification [69] 

 

 

 

QL 

Intrusion prediction [44] 

IoT representation annotation [45] 

Data-driven management [46] Data 

and Feedback validation [47] 

Visualization and understanding [48] 

Learning environment detection [49] 

IoT decision and processing division [70] 

IoT Induction detection [71] 

Navigational IoT detection [72] 

IoT fault diagnosis [73] 

 

 TABLE II  
CLASSIFICATION BASED ON THE CURRENT STATE OF THE ART SOLUTIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Technique Some Identified issue State of the art Solution Reference 

ANN Intrusion prediction 

IoT representation annotation 

Data-driven management Data 

and Feedback validation 

Visualization and understanding 

Learning environment detection 

Fraud detection 

Tolerance related acquisition 

Precognitive ANN algorithm 

Hybrid NN for document 

classification 

Management models based on 

Biases 

A neural-fuzzy model Design 

Deep generating 

[76] 

[77] 

[78] 

[79] 

[80] 

[81] 

[82] 

[83] 

LA Intrusion prediction 

IoT representation annotation 

Data-driven management Data 

and Feedback validation 

Visualization and understanding 

Learning environment detection 

Fraud detection 

Development of the LA 

modes 

Wave font cellar LA 

Computation and data-driven 

modeling  

IPTV viewer modeling 

Probabilistic methodologies 

[84] 

[85] 

[86] 

[87] 

[88] 

[89] 

[90] 
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MDP Intrusion prediction 

IoT representation annotation 

Data-driven management Data 

and Feedback validation 

Visualization and understanding 

Learning environment detection 

Fraud detection 

Filter models Code 

retrieval 

Multi-period decision-making 

models 

AI integration with 

Neurodegenerative 

A Self-supervised Approach 

[91] 

[92] 

[93] 

[94] 

[95] 

[96] 

[97] 

QL Intrusion prediction 

IoT representation annotation 

Data-driven management Data 

and Feedback validation 

Visualization and understanding 

Learning environment detection 

Fraud detection 

Deep computation model Distant 

supervision relation Extractor 

Fault data management ReNeg 

and backseat driver Human-

level control  

[98] 

[99] 

[100] 

[101] 

[102] 

[103] 

[104] 

 
QL holds different variants including deep Q-learning, 

double Q-learning, delayed Q-learning and the greedy Q-
learning used in the combination with function 
approximation and convergence is guaranteed even when 
function approximation is used to estimate the action 
values is an advantage [21]. 

A dynamic decision-making unit positioned in an 
arbitrary environment that acquires the optimal action 
through repetitive connections with its environment [74]. 
The activities are chosen to render specific probability 
circulation which is updated based on the environment 
response the automation attained by execution with a 
particular action. LA is presently applied in most irregular 
patterns including photo, snap, or image dispensation, 
graph complexion, social modeling, collecting and sensor 
network corresponding to the channel obligation routing 
among others [75]. 

IV. CLASSIFICATION OF REINFORCEMENT LEARNING  

In this section, elementary applications, issues, and 
solutions for most current models are discussed. These 
types include positive reinforcement, negative 
reinforcement, punishment, and extinction. Below are some 
of the issues associated with RL techniques which are 
arranged according to the impact during the learning 
process.  

A. Reinforcement Learning Applicability 

    An ANN is constructed for an explicit application, like 
pattern recognition or data classification, over a learning 
process. Learning largely involves adjustments to the 
synaptic connections that exist between the neurons with 
entities including Interconnections, learning rules [21]. 
ANN holds five basic categories of neuron connection that 
include a single-layer feed-forward network, a multilayer 
feed-forward network is a single node with its own 
feedback, a single-layer recurrent network, and lastly 
multilayer recurrent network [22]. In table 1, we present a 
summarized classification of the IoT aspects based on the 
IoT issues and application. 

V. STATE OF THE ART SOLUTION 

Within this section, we presented some merits of RL in 
everyday activities such as holding a comprehensive 
conversation below in table 2, we provide the classification 
of the techniques based on the IoT issues. IoT applications 
and ANN in the smart world including smart houses, smart 
card and smart city among others. IoT is receiving 
countless attention due to its probable strength and ability 
to be integrated into any complex structures and it is 
becoming a great tool to acquire data from a particular 
environment to the cloud [105]. In smart transportation, 
today, covers route optimization, parking, street lights, 
accident anticipation/detection, road anomalies, and 
infrastructure IoT applications in Intelligent Transportation 
Systems (ITS) and obtain a clear view of the trends in the 
aforementioned fields and spot thinkable attention requests 
[106], [121]. 

A. Physical Data Entry 

Availed erroneousness and duplication of data are 
major IoT organization- based underprovided to automate 
its processes [107], [115]. RL set of rules and extrapolative 
modeling algorithms can expressively improve this 
situation. 
RL uses the exposed data to progress the process as more 
multiplication is made. Accordingly, now devices can 
acquire to accomplish time-intensive certification and data 
access responsibilities, familiarity workers can now devote 
more time on higher-value problem-solving responsibilities 
[108]. 

B. Detecting Junks 

For instance, email capability providers used pre-
existing rule-based presentations to remove junk. 
Nevertheless, now the junk filters create new rules 
themselves using RL were junk sometimes direct mail 
detection is the earliest problem solved by neural networks 
techniques in its junk filters [109]. It is noted that like 
Google now a day boasted the proportion of junk rates 
since now recognition of this junk mail and phishing 
messages by analyzing rules across an enormous collection 
of computers is possible [110]. 
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C. Merchandise Approval 

       RL has permitted today a merchandise-based 
endorsement system since models can identify those 
products in which that purchaser drives be attentive and 
perspective to acquisitions. The RL algorithm recognizes 
hidden patterns amongst substances and emphases on an 
alliance of similar products into bands [111]. The RL 
model of this decision procedure would permit a program 
to brand approval to a purchaser and motivate product 
purchases sideways with section detail is used by social 
media to commendation users to connect with other 
operators [112]. 

VI. CONCLUSION 

In this paper, various prevalent classification techniques 
of RL have been discussed with their elementary 
approaches to application, challenges, and state-of-the-
solution. Classification procedures were based on the 
application, challenge, and state of the art solutions that are 
implemented be implemented on the different type of data 
sets like in IoT setups synchronization, resource 
optimization, consumption efficiency among more.The 
study discovered that all RL technique is much superior to 
it comes to IoT systems and usage since separate 
techniques hold their own compensations, downsides and 
execution issues [113,114]. The selection of classification 
techniques depends on user problematic field of approach 
to usage. This research provides an opening approach to 
challenges affecting RL in IoT and denoting unapproached 
solutions. Through this, we got interested in extending this 
study more deeply towards IoT systems by designing a 
model to handle the dynamics of the next wireless 
generation (fifth generation computation). 
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