
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Autonomous Agents in 3D Crowd Simulation Through BDI

Architecture

Sim Keng Waia, Cheah WaiShianga,*, Muhammad Asyraf bin Khairuddina, Yanti Rosmunie Binti Bujanga,

Rahmat Hidayatb, Celine Haren Paschala
aFaculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300, Malaysia

bDepartment of Information Technology, Politeknik Negeri Padang, Sumatera Barat, Indonesia

Corresponding author: *wscheah@unimas.my

Abstract— Agent based simulation (ABS) is a paradigm to modelling systems included of autonomous and interacting agents. ABS has

been tremendous growth and used by researchers in the social sciences to study socio-environmental complex systems. To date, various

platforms have been introduced for agent-based social simulation. They are rule based in any logic, python based in SPADE and etc.

Although those platforms have been introduced, there is still an insufficient to develop a crowd simulation in 3D platform. Having a 3D

platform is needed to enabling the crowd simulation for training purposes. However, the current tools and platform still lack features

to develop and simulate autonomous agents in the 3D world. This paper introduced a BDI plug in at Unity3D for crowd simulation.

BDI is an intelligent agent architecture and it is able to develop autonomous agents in crowd environment. In this paper, we present the

BDI plug with a case study of Australia bush fire and discuss a method to support autonomous agents' development in 3D crowd

simulation. The tool allows the modeller to develop autonomous agents in 3D world by taking the advantages of Unity3D.

Keywords— Autonomous agents; BDI architecture; unity 3D; crowd simulation.

Manuscript received 15 Dec. 2020; revised 29 Jan. 2021; accepted 3 Mar. 2021. Date of publication 31 Mar. 2021.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The agent is a piece of software that mimics human

intelligence. Agents perceive and influence aspects of their

environments, and they can learn. An agent is a computer

entity located in an environment to achieve its goals flexibly

and autonomously. The agents are in an environment called

‘worlds’ which can be from simple to complex according to

the needs. The agent will also present, derived with human

behavior in an organization, to control and structure the
constructed model. The agents will interact to transfer

information among the agents and the environment in several

ways, such as communication, perception, concurrence,

cooperation, coordination, and negotiation.

To date, agent technology is widely used in simulation to

understand human behavior and emerging behavior. Also

known as agent-based simulation or agent-based social

simulation, it consists of an organized set of agents that can

interact with each other in a virtual world [1].

Various platforms have been introduced for agent-based

social simulation. They are rule-based in any logic, python-

based in SPADE, etc. Although those platforms have been

introduced, there is still insufficient to develop a crowd
simulation in a 3D platform. Having a 3D platform is needed

to enabling crowd simulation for training purposes. However,

the current tools and platforms still lack features to develop

and simulate autonomous agents in the 3D world. This paper

introduced a BDI plug-in at Unity3D for crowd simulation.

BDI is an intelligent agent architecture, and it can develop

autonomous agents in a crowded environment. In this paper,

we present the BDI plug with a case study of Australia bush

fire and discuss a method to support autonomous agents'

development in 3D crowd simulation. The tool allows the

modeler to develop autonomous agents in 3D world by taking
advantage of Unity3D.

A. Related Work

The development of BDI into agent-based simulation has

to receive much attention [2]. Three approaches are

introduced to implement BDI into agent-based simulation [2].

They are extending the agent BDI programming platform with

the features and properties of agent-based simulation. On the

other hand, works have been to extend the agent-based

1

JOIV : Int. J. Inform. Visualization, 5(1) - March 2021 1-7

simulation platform like Gama, Analogic, and BDI

capabilities. Finally, researchers work on integrating BDI

programming platform with agent-based simulation. The

summary of the related works in developing BDI into agent-

based simulation is shown in Table I.

TABLE I

ACTORS AND ROLE DESCRIPTIONS

Work has been done to develop 3D simulation platform to

study the problem faced by disabilities in the workplace [3].

The JADE multi-agent platform is adopted with simulation

capabilities to enable the modeler to generate 3D models of
the workplace. JADE is a multi-agent programming platform.

Although JADE supports behavior-based agent development,

the author claimed it is a BDI platform.

Taillandier [4] introduced simple reactive models like BDI

for GAMA simulation. In this case, GAMA language is

adopted to develop BDI architecture when the modeling agent

in GAMA simulation platform. On the other hand, [5] has

adopted the AnyLogic language to develop BDI agent when

simulating an intelligent agent in the AnyLogic simulation

platform [5].

Work has been done to integrate JADEX BDI agent into
the unreal games engine [6]. The integration of BDI agent

platform into game engines is important to model a more

realistic computer game character. JADEX [6] is a rational

agent development platform where the JADEX system

realized on belief, desire, intention (BDI) model at the design

and implementation layer. The agents' beliefs, goals, and

plans are defined in XML files, and the plan bodies are written

in Java.

JADEX BDI reasoning framework is integrated and

extended with learning component to Unity3D games engine

to control self learning agents in 3D virtual words. The

integration of JADEX BDI agent platform to FiVES 3D
environment [7]. Finally, GOAL programming is integrated

into unreal games engine to develop an intelligent agent for

3D virtual worlds simulation. The same objective was also

investigated by the work [8] to connect or integrate BDI

JASON into a games engine to simulate a virtual classroom.

Jason is a platform for the development of BDI agent systems

through AgentSpeak. The AgentSpeak has been one of the

most influential abstract languages based on the BDI

architecture.

Our experience in integrating BDI platform with games

engines has revealed the middleware's complexity when

developing BDI agent to control NPC in the virtual worlds.

This has been highlighted that cognitive agent development is

challenging and there is a need to reduce the complexity of

field-expert modeler when adopting BDI agent and reduce the

computational cost in deploying cognitive agent architectures

[4]. Meanwhile, most agent-based simulations like SWARM,

Dollie, Grant, and Hooper [10] provided limited support for

the simulation to develop involved cognitive agents and case

studies. Based on our experience, some of the platforms are
lacking detailed documentation, it ends up implementing the

BDI into agent-based simulation or extending the agent-based

simulation platform with BDI is a trivial task. Besides, some

of the libraries are up to date and it is a challenge to refer to

the programmer for further clarification. On the other hand,

most of the agent platforms do not have the option to make

the simulation in 3D view except for NetLogo but limited.

Our work is in line with Ni et al [13] and Sudkhot and

Sombattheera [14] that introduced a BDI script at Unity3D to

design and develop the virtual world environment at Unity3d.

Meanwhile, our ultimate goal is to allow the extensibility and
modifiability of the BDI plug among the developer.

II. MATERIAL AND METHOD

Unity3D is a real-time 3D development platform consisting

of a rendering and physics engine and a graphical user

interface called the Unity Editor [15]. It is a powerful tool for

the simulation of visually realistic worlds with sophisticated

physics and complex interactions between agents with

varying capacities. Unity3D enables real-time simulation in
interactive mode and can simulate frames even faster than

real-time in offline mode. By developing projects in Unity3D

that represent real-world environments, they can holistically

understand complex systems to inform key policy or design

decisions.

As mentioned before, Unity3D has been used by

researchers in modeling and simulating spatial environments.

However, Unity3D does not support developing BDI agents.

Although there is a BDI tool introduced by Poli [15], there are

some limitations. It does not support rules with more than ten

subgoals. For example, if you plan to write a complex rule to
define a human behaviour with many goals, the user needs to

break down the rule into sub-rules of no more than ten

subgoals each. Therefore, we built a BDI tool for Unity3D to

showcase our proposed method for modeling human decision-

making in fire evacuation simulation.

In this paper, our BDI plug in is built using the standard

programming language provided by Unity3D. The

requirements to develop BDI simulation model in Unity3D

are following:

 Create an agent object, attach the “Field of View”

Script into it.
 The “Agent” script is the template file for defining the

desire and setting up an agent's attribute. User may

rename the script name to the role of the agent and set

the goals, for example, SubGoal s1 = new

SubGoal("belief" ,1 ,true), goals.Add(s1, 1). Then

attach it to agent object.

 The “Action” script is the template file for setting up

the desire. User may rename the script to the desire of

Approaches Works

Extending the BDI
platform with
simulation
capabilities

[9]

Extending the agent
simulation platform
with BDI
capabilities

[4], [5]

Integrating BDI

platform with agent
simulation platform

[6], [7], [8], [10], [11], [12]

Developing BDI
scripting for

Unity3D platform

[13], [14]

2

the agent. Then attach it to agent object.

The main concept behind the tool is the “Field of View”

and “Action” scripts. The “Field of View” script is used to

perceive the surrounding of an agent and to update its belief.

The “Action” script is used to describe the action of an agent.

Each of the “Action” scripts represents an agent's action and

starts to perform it if the condition or belief is met. All the

action will be added to the action list. If the latter evaluates to

true, the action is removed from the list, and the next action is

executed. If the action list is empty, then the agent does

nothing.
To ease using BDI plug in, a method is introduced to

systematically model the BDI agent at a higher level of

abstraction and transform it into BDI coding through

proposed guideline.

Fig. 1 BDI methodology for human cognition modeling

Fig. 1 shows the modeling of human cognition through the

extended AOM. Agent-oriented methodology or modeling is

the methodology compliant with model-driven architecture

for complex socio-critical system modeling. It has been

adopted in games [16], ICT4D [17], mobile application

development [18], chemistry simulation [19], smart

application [20].

fThe extended AOM covered four phases: user cognitive

understanding/ elicitation, analysis/conceptual domain

modeling, design/platform independent design, and

implementation/platform-specific design. The extended

AOM begins with the user cognitive understanding/elicitation

phase. This involves identifying actors, the role of actors, and

the relationship among actors. After gathering all the

information from the first phase, it is then followed by

analysis/conceptual domain modeling. It involves
understanding the actor's goal, the action, and the plan needed

to achieve the goal. It represents the problem domain at an

abstract level. After that, the information from the analysis is

transformed into design/platform independent design. The

design/platform independent design covered the actors'

knowledge and the deliberation to achieve the goal. After the

design is done, it then transforms the agent models into coding

by using the transformation guideline we provided.

In supporting each phase, agent models have been adopted.

Table II shows the summarize of the agent models regarding

human cognition modeling in each phase. The details of the
modeling are presented in [21].

TABLE II

HUMAN COGNITIVE MODELLING THROUGH EXTENDED AOM

Phase 1: User Cognition

Understanding/Elicitation

Human cognition

processes

Agent

models

Actor identification

(Whose cognition we need
to capture?)

Understand
problem-solving

behaviour of
individual
regarding the
problem at hand.
In other words,

Organizatio
n model

Role model

Phase 2:

Analysis/Conceptual
Domain Modelling

(What is the human belief,
desire/goal, shared

desire/shared goal? How to
achieve the human desire
analytically?)

Analyze human

cognition

- belief
representation

- desire

representation
- desire intention

representation
- shared goal

representation/s
ocial goal

Domain

model

ROADMAP
goal
modelling

i* goal
modelling

- i* goal

modelling

-interaction
model

Phase 3: Design/Platform

independent design

(How to achieve human
desire at design level?)

Human cognition

design

-belief
representation

-deliberation

Knowledge

model

Scenario
model

Behaviour
model

Phase 4:

Simulation/Platform
specific design

(How to achieve human
desire at programming

level?)

Transforming the

human cognition
model into
Netlogo
simulation model
and Unity3D
simulation model

Netlogo

human
cognition
construct

Unity3D

human
cognition
construct

3

Table III shows the mapping of the scenario model and

behavior model into Unity3D construct. This includes agent

belief and agent attribute. The agent belief is mapped into

Unity3D function ModifyState(string key, int value) and the

agent attribute is mapped into Unity3D function Start().

TABLE III

MAPPING OF KNOWLEDGE MODEL INTO UNITY3D CONSTRUCT

Knowledge Model

Model

contexts
Unity3D construct

Example of

Unity3D syntax

Agent
belief

public void
ModifyState(string key, int
value)

{
 if (HasState(key))
 {
 states[key] += value;
 if (states[key] <= 0)
 {
RemoveState(key);
 }

 } else
 {

 AddState(key,
value);
 }
}

beliefs.ModifyState
("<belief>", 1);

Agent
attribute

void Start() {}

void Start() {
 //set attribute here
 health = 100

}

Table IV shows the mapping of scenario model and

behaviour model into Unity3D construct. This includes agent

desire and intention type, agent interaction activity and rules

and condition (deliberation). The agent desire and intention

type are mapped into Unity3D procedure. The agent

interaction activity is mapped into Unity3D function

OnTriggerEnter(Collider other). The rule and condition

(deliberation) are mapped into “if” or “ifelse” control flow

and logic operator.

TABLE IV

MAPPING OF BEHAVIOUR MODEL INTO UNITY3D CONSTRUCT

Behaviour and Scenario Model

Model

contexts
Unity3D construct

Example of Unity3D

syntax

Agent desire

and intention

type

Procedure

void perceive_fires()

{

 //do something

}

Agent

interaction

activity

void

OnTriggerEnter(Collider

other)

private void

OnTriggerEnter(Collider

other)

{

 //do something

}

Rule and

condition

(deliberation)

The “if” or “ifelse”

control flow and logic

operator

if condition {

 //do something

}

III. RESULTS AND DISCUSSION

This section elaborates the BDI tool's usage through a case

study of fire evacuation during a bushfire. We replicated the

case study from Adam and Gaudou [22] to showcase the

proposed methodology and tool's feasibility. The scenario is

described as following: There are 100 houses in a residential

area surrounding the forest. Each house contains of 1

occupant. There are two shelters located at the upper right and

bottom left. The occupants are doing their daily routine.

Suddenly, there is a bushfire and started to spread over the

residential area. The occupants will start to react by defending

their home or evacuate to a safe place.

Fig. 2 shows the interface of fire evacuation simulation in
Unity. The script “Fire Spawn” is the simulation settings such

as general settings, fire settings, building settings and agent

settings. Figure 3 shows the parameters we used in our

simulation. To replicate the simulation model in [22], we

adopted the same parameters, formulas, and calculation.

Fig. 2 The interface of the fire evacuation simulation in Unity

Fig. 3 Parameters used in our simulation.

4

The purpose of this model is to simulate real human

behavior during bushfire. The goal is to raise awareness of the

population's real behaviors in crises based on the distinction

between objective (capabilities, danger) and subjective

(confident, risk aversion) attributes and on individual

motivations.

As agents, we defined the occupants randomly distributed

in a residential area surrounding by a forest containing 2

shelters. Attributes are randomly initialized (health and

resistance between 100 and 200; capabilities and motivations

between 0 and 1). There are 3 categories of parameters
concerning: fires (probability to grow or propagate, initial

intensity, damage factor, etc); buildings (resistance,

protection factor, etc); and occupants (confidence bias,

perception and action radius, etc).

Six types of human behaviors defined by different colours:

dark blue (unaware), pink (indecision), orange (preparing to

defend), red (defending), yellow (preparing to escape), light

blue (escaping).

Figure 4 shows the perception of the occupant. If there is a

fire within the agents’ vision, the occupants will update their

belief ‘hasFire’ to true. If the audiences have the belief

‘hasFire’ = true, then the occupants will start to achieve their
goal and plan their actions based on the motivations.

Fig. 4 Unity3D construct that shows part of BDI decision in fire evacuation

Fig. 5 Unity3D construct that shows deliberation

5

Fig. 5 shows how deliberation works. If the fire is near to

the occupant during achieving the goal “Defend Home”, the

occupant needs to reconsider the goal and replicate the

actions.

Fig. 6 Causes of death in our simulation

Upon the runtime, the output of the simulation is shown in
Fig. 6. With the parameters we used in Fig. 3, we obtained the

following distribution of causes of death: 47% of the

occupants died while still passive (indecisive); 21% died

while escaping; 5% died while defending; the others died

while preparing to escape (10%) or preparing to defend

(15%), taking by surprised before they could react. From Fig.

6, we found that most of the death is caused by indecisive.

The occupant is aware of some fires but unable to decide

about how to react. This means that the occupants do not have

awareness and knowledge on firebush.

In this case study, we demonstrate how to systematically

model a more complex fire evacuation simulation and
transform the models into Unity. The methodology can reflect

the modeling of human cognition and transform the higher-

level model into a simulation model in a systematic manner.

IV. CONCLUSION

Agent-based social simulation is important to understand

real worlds and complex problems. A believable agent in

simulation can derive from simple rules based on complex
and realistic human cognition like BDI. Although many BDI

frameworks of severe games and the integration mechanism

of BDI platform into Unity3D have been introduced,

exploring adopting agent method into games engines like

Unity3D has yet to be explored. In this paper, a BDI plug in

is introduced for agent-based social simulation. The BDI plug

in is complemented with BDI methodology to bridge the

modeling complexity of BDI through a higher-level

abstraction and model transformation. In future, more case

studies are needed to investigate the usage of the proposed

BDI methodology in various domain. In addition, the

extensible of the BDI tool from higher level models to low
level BDI implementation is worth to explore. We adopt a

model driven architecture in this research direction. This is

different from middleware introduced in the works [6], [23]

With middleware, it is a framework that supports the

integration of BDI platform across different agent simulation

platforms. On the other hand, there is a need to study the

performance cost of the BDI plug in into thousands of agents

during simulation to understand the efficiency of the BDI

plug-in. The replication of the work [6] for performance

study is worth exploring.

ACKNOWLEDGMENT

This project's funding is made possible through the

research grant obtained from UNIMAS under the Special
MyRA 2018 Cycle [Grant No: F08/SpMYRA/1659/2018].

REFERENCES

[1] M. Naili, M. Bourahla, and M. Naili, “Stability-based model for

evacuation system using agent-based social simulation and Monte

Carlo method,” International Journal of Simulation and Process

Modelling, vol. 14, no. 1, pp. 1–16, 2019, doi:

10.1504/IJSPM.2019.097702.
[2] C. Adam and B. Gaudou, “BDI agents in social simulations: A

survey,” Knowledge Engineering Review, vol. 31, no. 3, pp. 207–238,

Jun. 2016, doi: 10.1017/S0269888916000096.

[3] D. Singh and L. Padgham, “OpenSim: A framework for integrating

agent-based models and simulation components,” in Frontiers in

Artificial Intelligence and Applications, 2014, vol. 263, pp. 837–842,

doi: 10.3233/978-1-61499-419-0-837.
[4] P. Taillandier, M. Bourgais, P. Caillou, C. Adam, and B. Gaudou, “A

BDI agent architecture for the GAMA modeling and simulation

platform,” in International Workshop on Multi-Agent Systems and

Agent-Based Simulation, 2016, pp. 3–23.
[5] A. Shendarkar, K. Vasudevan, S. Lee, and Y.-J. Son, “Crowd

Simulation for Emergency Response Using BDI Agent Based on

Virtual Reality,” in Proceedings of the 38th Conference on Winter

Simulation, 2006, pp. 545–553.
[6] L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex: A BDI-Agent

System Combining Middleware and Reasoning.” [Online]. Available:

http://www.agentcities.net.
[7] A. Antakli, I. Zinnikus, and M. Klusch, “ASP-driven BDI-planning

agents in virtual 3D environments,” in Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), 2016, vol. 9872 LNAI, pp. 198–

214, doi: 10.1007/978-3-319-45889-2_15.
[8] J. Nilsson and F. Klügl, “Human-in-the-Loop Simulation of a Virtual

Classroom,” in Multi-Agent Systems and Agreement Technologies,

Springer, 2015, pp. 379–394.
[9] A. Barriuso, F. de la Prieta, and T. Li, “An Agent-Based social

simulation platform with 3D representation for labor integration of

disabled people,” in Advances in Intelligent Systems and Computing,

2015, vol. 372, pp. 55–64, doi: 10.1007/978-3-319-19629-9_7.
[10] Y. Dollie, W. Grant, and J. Hooper, “Autonomous self-learning agents

in 3D virtual worlds.”
[11] K. v. Hindriks et al., “Unreal goal bots: Conceptual design of a

reusable interface,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 2011, vol. 6525 LNAI, pp. 1–18, doi: 10.1007/978-3-

642-18181-8_1.
[12] D. Singh, L. Padgham, and B. Logan, “Integrating BDI Agents with

Agent-Based Simulation Platforms,” Autonomous Agents and Multi-

Agent Systems, vol. 30, no. 6, pp. 1050–1071, Nov. 2016, doi:

10.1007/s10458-016-9332-x.
[13] L. Ni, V. Gonzalez, J. Liu, A. Rahouti, L. Zhang, and B. P. Taing, “An

agent-based approach to simulate post-earthquake indoor crowd

evacuation,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), Oct. 2018, vol. 11224 LNAI, pp. 568–575, doi:

10.1007/978-3-030-03098-8_43.
[14] P. Sudkhot and C. Sombattheera, “A Crowd Simulation in Large Space

Urban,” Dec. 2018, doi: 10.23919/INCIT.2018.8584878.
[15] N. Poli, “Game Engines and MAS: BDI & Artifacts in Unity,” 2018.

[Online]. Available: https://amslaurea.unibo.it/15657/.
[16] G. L. C. Wyai, C. WaiShiang, and N. Jali, “Agent-Oriented

Methodology for Designing 3D Animated Characters,” Journal of

Telecommunication, Electronic and Computer Engineering (JTEC),

vol. 9, no. 3–3, pp. 153–158, 2017.
[17] C. WaiShiang, N. Jali, M. A. Khairuddin, and H. Sharbini,

“Understanding Technology Changes for ICT4D Projects through

6

Modelling,” Journal of Telecommunication, Electronic and Computer

Engineering (JTEC), vol. 9, no. 3–3, pp. 147–151, 2017.
[18] W. Cheah, P. ChinHong, A. A. Halim, and others, “Agent-Oriented

Requirement Engineering for Mobile Application Development.,”

International Journal of Interactive Mobile Technologies, vol. 11, no.

6, 2017.
[19] C. W. Shiang, S. Nissom, N. Jali, and S. YeeWai, “Adopting Agent

Oriented Methodology (AOM) For Modelling and Simulation in

Epidemiology and Ecological Studies,” Journal of

Telecommunication, Electronic and Computer Engineering (JTEC),

vol. 9, no. 2–11, pp. 151–158, 2017.
[20] C. Wai Shiang, B. Tien Onn, F. Swee Tee, M. A. bin Khairuddin, and

M. Mahunnah, “Developing agent-oriented video surveillance system

through agent-oriented methodology (AOM),” Journal of computing

and information technology, vol. 24, no. 4, pp. 349–368, 2016.
[21] G. L. C. Wyai, S. K. Wai, C. W. Shiang, and M. A. Khairuddin,

“Modelling Human Decision in Fire Evacuation Simulation through

BDI Based Cognitive Architecture.,” Solid State Technology, pp.

2766–2799, 2020.
[22] C. Adam and B. Gaudou, “Modelling human behaviours in disasters

from interviews: Application to Melbourne bushfires,” JASSS, vol. 20,

no. 3, Jun. 2017, doi: 10.18564/jasss.3395.
[23] J. van Oijen, L. Vanhée, and F. Dignum, “CIGA: A middleware for

intelligent agents in virtual environments,” in International Workshop

on Agents for Educational Games and Simulations, 2011, pp. 22–37.

7

