
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Problem-Frame-Oriented Requirements Traceability to Enhance

Requirements Management

Xiao ShengWen a,*, Sa'adah Hassan a, Noraini Che Pa a

a Department of Software Engineering and Information Systems, Faculty of Computer Science and Information Technology,
Universiti Putra Malaysia, Serdang, Selangor, Malaysia

Corresponding author: *gs64797@student.upm.edu.my

Abstract—Managing software requirements is a challenge in software development and maintenance. Requirements changes are

inevitable, particularly in a rapid iterative development approach that leads to occasional changes in software requirements. Unable to

manage this properly will impact the overall quality of the software. Thus, requirements traceability is essential because it ensures that

all requirements are adequately addressed, changes are managed effectively, and that there's a clear linkage between business

requirements and the system's functionality. Inadequate traceability mechanisms can make changing the requirements and detecting

their impact difficult. Thus, it is crucial to establish precise requirements traceability and maintain clear links to manage the

requirement changes effectively. Our research explores using a problem frames modeling approach to address this issue. It starts by

representing requirements as problems, creating a requirements relationship diagram, and generating a corresponding relationship

matrix. The values in the traceability matrix help identify which elements are most affected by requirement changes, allowing

developers to prioritize changes that minimize overall system impact. Furthermore, using problem frame modeling, complex problems

can be broken down into manageable sub-problems, providing a clear structure for understanding the requirements. Additionally, a

tool has been created to streamline the process, and a case study is used to demonstrate the functionalities. An evaluation has been

conducted to assess the usability of the proposed work. The requirements relationship diagrams and relationship matrices visually and

quantitatively map the links between requirements, enabling traceability and identifying the impact of changes in requirements.

Keywords— Requirements traceability; traceability matrix; problem-frame; requirements engineering.

Manuscript received 15 Mar. 2024; revised 7 Jun. 2024; accepted 12 Sep. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In software development, requirements must often be

adjusted due to changing user needs, technological

advancements, and market trends. To manage these changes,
traceability links connect different artifacts and ensure that

updates in one are reflected in others. However, maintaining

requirements traceability in software development can be

challenging, impacting the overall quality of the software and

the development process. Ineffective traceability can lead to

inconsistencies, misunderstood requirements, increased

development costs, and uncontrolled project scaling.

Various methods and tools have been suggested to tackle

these issues, but they persist, particularly in large-scale

software projects and more complex software environments.

Manual tracing requirements are both labor-intensive and
error-prone. In addition, some of the proposed tools could be

more complex and costly. For instance, tools like IBM

DOORS and Jama Connect need help to keep up with the

frequent changes in requirements in agile development. While

traceability methods, such as Natural Language Processing

(NLP), aim to overcome these limitations. A study by

Laliberte et al. [1] suggests that NLP is likely not a practical

approach to requirements traceability.

This paper presents a framework for enhancing the

effectiveness of requirements traceability in software
development projects. It utilizes problem-framing and

advanced modeling techniques to automate traceability and

provide a structured framework for identifying and resolving

requirements conflicts. The proposed framework aims to

improve the software product's requirements management and

overall quality. Initially, the requirements are structured using

the problem frames, and corresponding tracing relationship

diagrams are created to show the correlations clearly. Matrix

operations are then used to trace the requirements.

This paper is organized as follows: Section II explores the

existing related work in the field and thoroughly explains the

1849

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1849-1860

proposed framework. Section III presents a developed tool as

proof-of-concept and uses a case study to demonstrate its

functionalities. The usability of the tool is also evaluated and

discussed. Finally, the paper is concluded in Section IV.

II. MATERIALS AND METHOD

This section aims to provide a comprehensive review of
key areas of research in this research: evolving practices and

challenges in requirements traceability, requirements

management in software development, requirements

modeling and application based on problem framing, and

previous attempts and approaches in requirements

management and traceability tools. This review synthesizes

these interrelated areas, providing insights into current trends

and future research directions while also defining essential

terms and concepts related to these areas.

A. Requirements Traceability

Requirements traceability is critical to the successful

development and management of complex projects, and

current practice is dominated by manual traceability methods

supplemented by tools such as IBM DOORS and Jama

Connect, which provide user-friendly interfaces for managing

requirements. Although these manual methods are widely

used, they can be labor-intensive and error-prone, especially

in large projects. According to Jayatilleke et al. [3], most of

the automation techniques for the traceability process use

information retrieval (IR) techniques, which are mainly based
on natural language processing (NLP) such as term

frequency-inverse document frequency (TF-IDF) and latent

semantic indexing (LSI). However, these automated NLP

methods have limitations in capturing the deeper meaning

behind the requirements, resulting in high errors.

In web application development, tight schedules and

complex designs often accompany requirements. Due to the

dynamic nature of web applications, which change rapidly,

traceability becomes even more complicated, according to

Lyu et al. [4]. Comprehensive development guidelines and

tools are often needed to manage requirements traceability
effectively in web development. This usually leads to

difficulties for developers in understanding the impact of

changed requirements and the backward and forward

relationships between different requirements. Forward

traceability involves tracing from requirements to system

design and beyond. Backward traceability focuses on tracing

back elements, such as system design, to the original

requirements.

The study highlights that in a global software development

(GSD) environment [5], managing and keeping requirements

traceability effectively becomes more challenging due to

geographic dispersion and diverse stakeholder backgrounds.
These factors may lead to ambiguous and incomplete

requirements documentation, affecting the overall quality of

the software. Traditional approaches often rely on manual

methods or semi-automated systems, which, while beneficial

for smaller projects, become increasingly impractical in more

extensive and complex GSD environments. Managing and

maintaining various software artifacts such as requirements

specifications, design specifications, source code, and test

cases takes a lot of work. These artifacts evolve independently

at different rates, leading to inconsistency and disjointedness.

Kamalabalan et al. [6] state that the current practice utilizes

traceability links to connect these different artifacts, thus

ensuring that changes in one artifact are reflected in the others.

However, creating these links manually is both labor-

intensive and error-prone. Mezghani et al. [7] state that

traceability is transferred to tool support to address these

shortcomings. These include Application Lifecycle

Management (ALM) tools, which provide a holistic

management approach that covers the entire system

development lifecycle, facilitating the management and
analysis of artifacts. Requirements management tools are then

used, which integrate management system requirements for

more effective traceability.

For the automated requirement traceability aspect, work by

Kchaou et al. [8] pointed out that semantic models can be

utilized with advanced natural language processing

techniques. The model transcends language barriers and can

analyze the semantics in a sentence, automate the comparison

of similarities between words that serve the same purpose as

the requirement changes, and provide a more efficient

approach.
Automated traceability of requirements can be achieved

through a requirements traceability matrix. However,

traditional requirement traceability matrices are usually static

and inflexible and need to be more suitable for the dynamic

and iterative nature of requirements in agile development. The

Agile Requirement Traceability Matrix (ARTM) proposed by

Jeong et al. [2] solves this problem. Traceability mapping

between artifacts is managed through a spreadsheet format,

which automatically generates an up-to-date Requirement

Traceability Matrix to automate the tracing of requirements.

Automatic requirement traceability through matrix
operations. Yinghui et al. [9] proposed using the reachability

matrix in the evolution of software architecture, creating a

software architecture model through semantic relationships

and a relationship matrix and reachability matrix based on the

SA model. Yinghui et al. [10] used the relationship matrix

multiplication operation for software requirement traceability.

Requirements traceability is diverse, and standardization

and diversification of traceability practices become

particularly important, as some organizations may rely on

manual methods using spreadsheets. In contrast, others may

use more automated systems. This difference in approach

hinders the uniformity of requirements traceability in
software development and the migration of requirements

across organizations. Marques et al. [11] propose a

standardized approach to RT processes, particularly in

defining critical aspects of these processes and establishing

clear roles and responsibilities in traceability development.

Several studies have explored the application of different

requirement-tracing techniques in real-world environments.

Rajbhoj et al. [12] applied a demand management approach

and traceability tool to the context of railway operations in

formal system modeling. The proposed VisualisierbaR tool

integrates interactive visualization and requirements
traceability. The tool helps to bridge the gap between formal

modeling and its practical application. Requirements

elicitation and scoping are particularly important in this

process, where the implicit knowledge and assumptions of the

domain of interest are transformed into explicit

representations, and the model's scope is clearly defined.

1850

Requirements traceability links parts of the formal system

model to the target system. This process involves forward

tracing (linking requirements to model components) and

backward tracing (determining the origin of model

components in requirements). This bi-directional traceability

ensures the accuracy of every model aspect and helps validate

the model's structure and behavior against the expected

requirements. Moreover, VisualisierbaR's interactive

visualization capabilities allow dynamic exploration and

validation of the model through user interaction. This
integrated approach to requirements management and

traceability significantly reduces the cognitive burden on the

user and makes the validation process more efficient.

B. Requirements Modeling based on Problem Frames

Problem frames focus on splitting complex problems

encountered in real life into several suitable sub-problems. It

focuses on real-world problems from which the user's needs

are understood, revealing the real-world issues that software
can solve. Lavazza et al. [13] highlight conceptual clarity

between User Needs, User Requirements, and Business

Objectives; there needs to be more clarity between these

concepts. User needs are distinct from user requirements,

although the two are interrelated. Kannan [14] proposes a

methodology for establishing hierarchical relationships

between these elements, using problem framing to model and

analyze them effectively. He also shows how requirements

can be represented at different levels of abstraction and how

these levels can be aligned with the problem framework

model.

The efficiency of requirements engineering depends
heavily on the analyst's experience and educational

background. The DRAP-PF methodology [14] combines the

problem framing (PF) concept with an analysis model to

simplify eliciting, analyzing, and specifying software

requirements. By decomposing the environment into different

problem domains, stakeholders can identify requirements

more clearly. The traditional PF approach focuses on viewing

software as a means of solving real-world problems. This

approach emphasizes understanding the constraints and

context of the issue at hand.

However, the ability to dynamically adapt to changing
requirements still exists. In the work by Liu and Jin [15], the

goal-oriented approach, represented by the I* framework,

starts from an understanding of the high-level goals of

stakeholders and captures the social and organizational

aspects critical to software design. The problem framework

lacks the granularity to express detailed data descriptions,

essential to understanding complex system requirements. Xie,

Xiao, and Li [33] propose the integration of ChatGPT with the

PF. This integration enhances the details of the data by

allowing the description of shared phenomena in problem

diagrams. The approach consists of creating a table of causes
through interaction with ChatGPT to identify causal

relationships in these phenomena. Subsequently, these causes

are ranked and used to extend the fuzzy phenomena in the

problem diagram. Tekutov and Smirnova [29] proposed work

using a problem domain model for enhancing and assessing

system requirements in a computing education context. Their

work emphasizes stakeholder involvement in problem

modeling.

C. Requirements Change and Conflict Management in

Software Development

Influenced by innovative systems such as cloud computing

and microservices architectures, software application
development has high scalability and flexibility [17].

Changing requirements are inherent to software development

and are usually driven by changing user needs, technological

advances, or shifts in market trends. These changes are

dynamic and require developers to adopt a flexible and agile

approach to adapt to these changes without severely

impacting project schedules or increasing costs. Conflict

management stems from stakeholders' differing perspectives,

priorities, and understanding of project goals. This requires

effective communication strategies and collaborative

decision-making processes to resolve conflicts.
Dynamic changes in requirements in agile software

development environments often stem from changing user

needs, technological advances, and regulatory updates [18].

Conflicts regarding requirements arise when integrating

various resources and may affect other non-functional

requirements. It is also mentioned that Agile methodologies

and continuous integration practices are used to respond to

changes in requirements and ensure that software applications

remain relevant and functional in a rapidly evolving digital

environment [19]. In addition, a comprehensive testing

regime ensures that changes do not adversely affect the

application's performance or the user experience. Work by
Mustafa et al. [20] highlights that distributed teams using a

hybrid Scrum-XP methodology can better deal with changes

in requirements and conflicting requirements. The iterative

nature of Scrum, combined with XP's emphasis on continual

feedback and adaptation The iterative nature of Scrum,

combined with XP's emphasis on continuous feedback and

adaptability, helps to effectively manage changing

requirements and ensure that the final product meets

stakeholder expectations and market needs.

Bukhari et al. [21] propose a structured approach to

requirements prioritization and conflict management in Web
development. The framework uses value-oriented

prioritization (VOP) principles to manage and prioritize

requirements effectively. These requirements are then

assigned weights, and a prioritization matrix is constructed.

Finally, the matrix is used as a decision-making tool to help

resolve conflicts. Changes in requirements in Web

development can lead to disputes in project scope, schedule,

and resource allocation, which can affect the management and

delivery of the overall project. The Web Complexity Factor

(WCF) model proposed by Saif & Wahid [22] addresses this

challenge by providing a more nuanced and comprehensive

scale measure. Focusing on GSD environments, changes in
requirements, and conflict management in web application

development have become more complex. Alsanad et al. [23]

proposed a system domain ontology for requirements change

management (RCM), which employs a hybrid approach

combining methodology and 101 methodologies and is

represented using web ontology language (OWL). While

larger organizations with more resources tend to develop

more structured processes to manage requirement changes

and conflicts using formal methods and tools [24].

Conversely, smaller companies tend to rely on more agile and

flexible approaches. This dichotomy reflects that

1851

organizations of different sizes have different needs and

capabilities in dealing with the fluidity of web application

development.

D. Requirements Management and Traceability Tools

A study conducted by Tian et al. [25] highlights 13

approaches to requirements management and traceability

tools. These include information retrieval (IR)-based
approaches, feature model-based approaches, scenario-based

approaches, tactic and decision-based approaches, and

constraint-based approaches. These approaches address

different aspects of requirements traceability, ranging from

automatic generation of traceability links to improved

understanding and management of software system changes.

However, there are significant gaps in the integration and

effectiveness of these tools in industrial environments, and

further validation in real-world software development

scenarios is required. In addition, a study by Tufail et al. [26]

identified 33 relevant studies, thus identifying seven
requirements traceability models, ten challenges, and 14 tools

in the field. Among the tools mentioned are ECOLABOR,

TOOR, RESAT, POIROT, CREWS-EVE, ProR, Trace

Analyzer, TRIC, ADAMS, SCOTCH+, Trace Maintainer,

DOORS, RequisitePro, and RETRO. These tools use various

methods to maintain traceability links between software

development artifacts, with DOORS being particularly

effective.

Applications in complex systems development

environments. To address the difficulties posed by manual

traceability, by integrating model-based systems engineering

(MBSE) tools to automate traceability by creating digital
threads, thus providing dynamic requirements management

for stakeholders to manage requirements more

comprehensively and integrated. For example, Escalona et al.

[27] provide integration of requirements management

methodologies and traceability tools within a Model Driven

Engineering (MDE) framework. This approach utilizes

automated processes to facilitate requirements traceability,

maintain quality, and manage change. Wang et al. [28] To

reduce the gap between Requirements Analysis and Design

Language (AADL) models, an intermediate model, RAInterM

(RM-RNL to AADL Intermediate Model), was introduced.
This strategy simplifies the conversion process, ensures

compatibility, and reduces complexity.

In addition, SAT-Analyzer, a semi-automatic tool,

enhances the creation and visualization of traceability links of

artifacts. The tool utilizes advanced technologies such as

Neo4j for graphical database management, allowing efficient

handling of large datasets and relationships. Besides, it

combines NLP and machine learning (ML) techniques to

extract and analyze information in artifacts to facilitate the

semi-automatic identification of traceability links. DizSpec

[12] is an automated methodology that transforms
requirements specification documents into a modeled form to

facilitate traceability and impact analysis in the IT services

industry. The methodology integrates techniques such as

meta-modeling, model extraction, and dependency extraction

and is based on the application of artificial intelligence in the

software development life cycle (SDLC) and NLP. The tool

transforms documents into machine-processable models to

more effectively manage and analyze product functions,

processes, activities, rules, parameters, and

interdependencies.

Zhang et al. [34] introduced the Information Retrieval

Based Requirements Traceability (IRRT) tool. The tool

generates requirements traceability links using the Vector

Space Model (VSM), a recognized model in the field of

information retrieval for converting software artifacts, such as

requirements documents and source code, into a vector form

to compute the similarity of the documents. In addition, the

tool refines these links using the Traceability
Recommendation Code Class Structure (TRCCS) to improve

the accuracy of traceability links. The Capra tool [30]

addresses the variability and specificity of traceability

requirements in different projects and organizations. It can

create traceability links for any artifact. In addition, Capra

allows project managers to customize traceability link types

to meet the unique needs of each project.
This section outlines our proposed framework based on the

problem-framing approach. Fig. 1 illustrates the steps

involved in the problem-frame-oriented requirement

traceability framework. In brief, problem-frame modeling
breaks down a complex problem into simpler sub-problems,

then modeled individually. Once the modeling is complete,

the results are matched to the requirement correlation matrix.

Matrix operations are then performed, and the traceability of

the requirement correlation matrix is carried out. Finally, the

impact of any changes can be assessed based on the matrix.

Fig. 1 The proposed framework

E. Module for Modeling Requirements

This study bases requirements modeling on problem

frames. Problem framing mainly involves splitting complex

problems encountered in real life into several suitable sub-

problems [31]. The work primarily starts from the perspective

of real-world problems, from which the user's needs are

understood, and the real-world problems that the software can

solve are revealed. Unlike traditional object-oriented
modeling ideas, the problem frame is problem-oriented.

Therefore, we use problem diagrams to model requirements,

1852

as shown in Fig. 2. A problem diagram consists of domains,

machines, and problems connected by cause-and-effect

relationships, which allow for a more comprehensive

description of the problem.

Fig. 2 Structure of the problem diagram

The problem diagram is structured as follows.

 Problem: A problem that needs to be solved in a

particular context. Problems and domains are

connected by dotted lines and act as constraints on the

connected domains in a given situation.

 Domain: The problem framework uses the domain as
one of the central representations of the real world. A

rectangle in the problem graph represents it. It refers to

a set of devices or people associated with a software

system.

 Machine: a device that implements software-related

functions in the real world. A rectangle with double

vertical lines in the problem diagram represents it.

In problem-based requirements modeling, the process

begins with identifying a complex real-world problem and

then documenting its requirements. Since real-life problems

are often not simple, the problem at hand can combine

multiple simple problems. Therefore, it is beneficial to create
a problem diagram by breaking down the complex problem

into simpler ones. This approach makes it easier for the

analyst to analyze the problem. Once relevant sub-problem

diagrams are created, corresponding problem diagram

modeling is conducted. The key step involves abstracting

real-world entities into domains and establishing connections

between the domains and the software to be developed.

Finally, a requirements traceability route diagram is

generated, as depicted in Fig. 3.

Fig. 3 Sample Requirements Traceability Route Diagram

As shown in Fig. 3, Requirement R1 corresponds to two

Problem Diagrams, P1 and P3, and Requirement R2

corresponds to two Problem Diagrams, P2 and P3. Problem

Diagram P1 corresponds to three domains, D1, D2, D4, and

Problem Diagram P2 corresponds to three domains, D2, D3,

and D5, and Problem Diagram P3 corresponds to three

domains, D1, D3, and D5, respectively. The final realization
of the program set response is the goal to be achieved.

Domains D1, D2, and D5 correspond to program set S1,

domains D2, D3, and D5 correspond to program set S2, and

domains D1, D3, and D4 correspond to program set S3.

The corresponding requirement traceability route can be

found in the requirement traceability relationship diagram,

such as from R1→P1→D2→S2 or R1→P3→D1→S1, etc.

However, if a requirement traceability relationship diagram is

large and complex enough, it is hard for the software

developer or requirements engineer to understand the

relationship clearly. Thus, the relationship in the diagram can

be quantized by creating a relationship matrix.

F. Requirements Traceability Module

To ensure that software products and requirements are

consistent in software development, it is necessary to conduct

two-way requirements traceability, i.e., forward traceability

and backward traceability. Forward tracing allows the

developer involved in requirements tracing to clearly

understand each stage of the requirements and the correlations

in the development process. Firstly, the requirements are

traced to the problem diagram, then the problem diagram is

traced to the machine domain or design domain, and finally,

the domain is traced to the program code. According to the

requirement trace case diagram, when a requirement R

changes, it is possible to know which related assembly S has
changed. Reverse tracing is knowing which requirement

changes will eventually be affected by a change in the traced

software artifact. As can be seen from the traceability

schematic, changes in requirements (R) during development

affect changes in problem (P), changes in problem P affect

changes in domain (D), and changes in domain D affect

changes in the program set (S) for that domain. Ultimately,

changes in requirements R affect changes in the target

program set.

Automated requirements traceability is performed using a

requirements traceability matrix. Firstly, the problem
framework is used to build a requirements relationship table,

a semantic representation of the relationship between

elements in each layer, where "1" marks the relationship

between elements and "0" marks no relationship between

elements. As a result, the traceability relationships of

requirement-problem, problem-domain, and domain-

assembly are obtained. Finally, a relationship matrix is built

from the traceability relationship table, and the matrix

multiplication result judges each element's relevance. The

elements are marked with "non-zero" to indicate that they are

related and "zero" to indicate that they are not related.

Based on the requirement traceability chain presented in
Fig. 3, this paper creates, by way of example, a table of

associations between a user requirement R and a problem

diagram P, a problem diagram P and a domain D, and a

domain D and a related procedure S, respectively.

TABLE I

CORRELATIONS BETWEEN REQUIREMENTS AND PROBLEM DIAGRAMS

1853

TABLE II

CORRELATIONS BETWEEN THE PROBLEM DIAGRAM AND THE DOMAINS

TABLE III

ASSOCIATIONS BETWEEN DOMAINS AND ASSEMBLIES

Creating a Requirements Traceability Matrix is based on

the Requirements Correlation Table, the basis for mapping the
relationships between different software system elements. For

example, by using Table 1, which lists the relationships

between Requirements (R) and Problem Diagrams (P), we can

construct a Requirements and Problem Diagram Relationship

Matrix (MRP). This matrix visually represents the connection

between each requirement and the various problem diagrams:

MRP=�1 0 1 0 1 1 �

The relationship matrix between need R and problem
diagram P shows which problem diagram P the need R

correlates with. If the need R changes, the problem diagram P

with the correlation will also change. Continuing from Table

2, we can derive the relationship matrix (MPD) between

Problem Diagrams (P) and Domains (D). This matrix outlines

the connections between different problem diagrams and the

specific domains they influence:

MPD=�1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 �

This matrix indicates how changes in a problem diagram

can impact the associated domains. For example, if a problem

diagram P is altered, the corresponding domain D linked to it

will also be affected. Next, we look at the relationship matrix

between Domains (D) and Program Sets (S), as outlined in

Table 3. This matrix (MDS) provides a clear view of how

domains are connected to specific program sets:

MDS=�1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 �

To achieve comprehensive traceability, we can perform

matrix multiplication to combine the insights from the MRP

and MPD matrices, resulting in the MRD matrix:

MRD=MRP×MPD =�1 0 1 0 1 1 � ×

�1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 �=

�2 1 1 1 1 1 1 2 0 2 �

The resulting MRD matrix allows us to visualize the

relationships between requirements and domains, with non-

zero values indicating a direct connection. The larger the

value in the matrix, the stronger the correlation between the

requirement and the domain. Continuing this process, we can

multiply the MRD matrix with the MDS matrix to obtain the

final Requirements and Program Sets Relationship Matrix

(MRS):

MRS = MRD×MDS =�2 1 1 1 1 1 1 2 0 2 � ×

�1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 �=�4 3 4 2 5 3 �

This matrix provides a comprehensive view of how

requirements influence specific program sets, enabling both

forward and reverse traceability. For example, from the MRS

matrix, we can see that requirement R2 has a greater impact

on the program set S2 than R1 does, guiding developers in

managing changes with minimal disruption. The correlation
matrix MRS represents the relationships between

requirements (R) and program sets (S) within a given system.

Each element Mij in the matrix denotes the strength of the

association between requirement Ri and program set Sj. The

matrix is as follows: MRS = �4 3 4 2 5 3 �.
This matrix quantitatively assesses how requirement

changes will impact various program sets. For instance,

Requirement R1 has strong relationships with Program Sets

S1 (value 4) and S3 (value 4), indicating that changes in R1

will significantly affect these program sets. In comparison,

R1's impact on S2 is slightly less but still substantial (value
3). On the other hand, Requirement R2 has a moderate

relationship with S1 (value 2), a strong relationship with S2

(value 5), and a moderate relationship with S3 (value 3). This

suggests that changes in R2 will primarily affect S2 and will

moderately impact S3 and S1. In forward traceability analysis,

the value M12 (3) is smaller than M22 (5), meaning the degree

of association between R2 and S2 is stronger than between R1

and S2, implying that changes in R2 will have a greater impact

on S2 than changes in R1.

Conversely, in reverse traceability, the value M11 (4) being

larger than M21 (2) indicates that S1 is more strongly
associated with R1 than with R2, suggesting that changes in

S1 will significantly affect R1 but less so R2. This matrix

analysis supports both forward and reverse traceability of

requirement changes, essential for effective management in

Agile Requirements Development (ARD). The ability to

visualize these relationships and quantify their strengths

ensures informed decision-making, highlighting the

importance of specific requirements and their impacts on the

overall system.

In practical terms, the values in the traceability matrix help

identify which elements are most affected by requirement

changes, allowing developers to prioritize changes that
minimize overall system impact. By choosing paths with

lower correlations, developers can implement changes more

efficiently, reducing the risk of unintended consequences.

Additionally, the traceability matrix supports both forward

and reverse traceability, ensuring that any changes in the

requirements can be traced through to their effects on program

sets and vice versa.

III. RESULTS AND DISCUSSION

This section provides a practical application of the

proposed framework using a tool developed as a proof-of-

1854

concept and a case study (e.g., a banking system) to illustrate

the tool’s functionalities. The Problem-framework-oriented

Requirements traceability Tool (PRT Tool) is implemented

using Java and SpringBoot. The persistence layer uses

MyBatis, and the database uses MySQL, while Node+Vue

develops the front end.

A. Case Study

The banking system consists of two main modules:

queuing and call service, which ensures efficient customer

service. When customers enter a bank, they typically fill out

a form stating the type of business they need to conduct. The

printer then prints a queue number or voucher for the

customer to wait in line for service. The queuing system

comprises separate queues for ordinary and VIP customers.

Ordinary customers fill out a form and receive a queue

number. VIP customers undergo identity verification before

receiving their number. VIP customers can make

appointments online. Scrolling subtitles on the screen inform

customers about their wait time, and when it's their turn, the

customer is called. The system provides queuing screen

displays and broadcast call services to serve customers,

enhancing their bank experience. Based on the above

requirements of the bank lobby service system, the functional
module diagram was first drawn to reflect the actual

requirements accurately. As shown in Fig.4, the bank lobby

service system is divided into two sub-modules: the queuing

and call service.

Fig. 4 Functional diagram of case study requirements

Fig. 5 is a problem diagram of the banking lobby service

requirements, mainly created from two functional modules:

the user queuing function and the customer service call

service function.

Fig. 5 Problem diagram of banking service requirements

B. Problem Diagram Splitting

1) Requirements for queuing (R1):

Ordinary users enter the banking lobby after the first use of

the lobby at the entrance to the business processing machine

there to choose their own relevant business and then print the

voucher; the user receives the voucher and then goes to the

lobby to wait in line for the number called for business. VIP
customers first make an appointment online; if the reservation

is successful to the bank, there will be staff to use the ID card

verifier to verify their identity; if the identity verification is

successful, it will be used to print out the voucher, and then

wait for the number called to go to the VIP room for business

transactions. A sub-problem diagram is created based on the

type of uses, as shown in Fig. 6 for ordinary users and Fig. 7

for VIP users.

Fig. 6 User queuing

Fig. 7 VIP queuing

1855

TABLE IV

THE SHARED RELATIONSHIPS

Shared

Relationship

Description

Check(info) Describes the information received by the

calling device being sent to the remote
server for inquiry.

Display(info) Describes the central controller sending
information to the display screen for
display.

Choose(business) Describes the user selecting the business
to handle, and the business selector
sending the business information to the

central controller.
Print(slip) Describes the printer receiving

information and printing the voucher.
Use(queue) Describes service staff pressing the

calling device to call numbers.

Send
(calling_info)

Sends the calling information to the
central controller.

Display(info) The central controller sends the
information to the screen for display.

Play(info) The central controller sends the

information to the broadcasting system
for playback.

2) Requirements for caller service (R2):

When a customer has finished the relevant business, the

customer service personnel will press the caller to call the

number, and then the screen in the lobby displays "Customer

No. XX goes to Service Counter No. XX for service."

Customers waiting for service in the lobby go to the service

desk according to the voucher printed in their hands. Based on

this description, create the problem diagram in Fig. 8.

Fig. 8 Caller service

In addition, the user can hear the radio broadcasting, so, a

radio broadcast sub-problem diagram is created as shown in

Fig. 9.

Fig. 9 Radio broadcast sub-problem diagram

The bank lobby service system problem diagram is divided

into four simple sub-problem diagrams, from which the

correlations from the requirements to the problem diagram

and from the problem diagram to the domain can then be

found. A problem diagram depicts various domains,

machines, and problems, which are connected by cause-and-

effect relationships. Table 4 describes the relationship.

The goal of requirements modeling is to solve the

requirements, that is, to realize the problem. The domains in
the problem diagram and the shared relationship in the

diagram are the ways to solve the problem. So, realizing the

set of programs is the goal of creating the problem diagram.

Through such correlations, a requirement traceability

relationship diagram is created.

C. Creating a Traceability Diagram

The user will use the PRT tool to draw a traceability

relationship diagram based on the problem diagrams. This
diagram outlines the relationships between requirements,

problem diagrams, and domains. PRT tool ensures that all

relevant elements and their interrelationships are visualized.

The user can define and connect these elements in the tool,

thus contributing to a detailed and accurate description of the

problem domain.

The user specifies the relationships, creating a detailed

diagram of how the various elements interact and depend on

each other. This phase is critical to establishing the foundation

data needed for practical requirements traceability and

conflict management. As shown in Fig. 10, the requirements

traceability relationship diagram was created from the case of
Fig. 6 – 9.

Fig. 10 Requirements Traceability Relationship Diagram

1856

Where R1 represents the queuing requirement, R2

represents the calling service requirement, P1 represents the

ordinary user queuing sub-problem diagram, P2 represents the

screen display sub-problem diagram, P3 represents the VIP

customer queuing sub-problem diagram, and P4 represents the

radio broadcasting sub-problem diagram. S1 represents the

implementation program set of P1, S2 represents the

implementation program set of P2, S3 represents the

implementation program set of P3, and S4 represents the

implementation program set of P4. S1 represents the
realization set of P1, S2 represents the realization set of P2, S3

represents the realization set of P3, and S4 represents the

realization set of P4. Table 5 summarizes the representation.

TABLE V

DESCRIPTION OF CASE STUDY DOMAINS

Item Description

R1 the queuing requirement
R2 the calling service requirement
P1 the ordinary user queuing sub-problem

P2 the screen displays a sub-problem
P3 the VIP customer queuing sub-problem
P4 the radio broadcasting sub-problem
D1 Business choose is used to select the type of business

operation
D2 Calling Device
D3 Audio, the speaker used to broadcast calling

information

D4 Controller
D5 The display used to show calling information
D6 A card Reader is used to retrieve the ID
D7 The printer used to print vouchers

D. Generating Traceability Matrix

In this phase, the input data (the traceability relationship

diagram) is processed to generate the requirements
traceability matrix and analyze its relationships. The

traceability matrix begins by classifying nodes into specific

categories, including requirements (R), problems (P),

domains (D), and sets of programs (S). Each node has

attributes that help distinguish its type and role in the system.

1) Frontend Processing: When a user builds a

requirements traceability diagram, the front end captures all

interactions and dynamically updates the node data and linked

data arrays. The node data array stores basic information

about each node, including its type, category, and

connections, while the linked data array captures the

relationships between nodes, showing how they are connected
in the traceability process. This data is then processed to

produce a structured JSON format representing the entire

diagram and the relationships it encodes. This JSON data is

sent to the back end for further processing, and the actual

traceability matrix is calculated. As the matrix is created, the

front-end processes the nodes and links to prepare them for

conversion into the matrix format. This includes categorizing

nodes into specific groups, such as requirements, issues,

domains, and assemblies, and determining whether they are

linked. For example, the front end identifies whether a

requirement node is connected to a problem graph node and
assigns a binary value (1 or 0) to represent this relationship in

the matrix. This initial processing ensures that the data sent to

the back end has been organized into a format that can be used

directly for matrix multiplication and analysis. The front end

allows the user to interact with the traceability matrix once

generated. After the back end has processed the data and

returned a computational matrix, the front end presents that

matrix in a tabular format, where each cell represents a

relationship between a requirement and a program set. Users

can click on matrix cells to highlight relationships, tracing

connections to the original chart. This interactive

visualization is critical to understanding the impact of

requirement changes because it allows the user to explore the

matrix dynamically.

2) Backend Processing: The backend is implemented

using Java, SpringBoot, and MyBatis to process the JSON

data received from the front end. Once the front-end nodes

(e.g., requirements, problem graphs, domains, and

assemblies) and their interconnected JSON data are

transferred to the backend, the backend parses these JSON

objects. It converts them into structured data arrays that

generate traceability matrices. The backend first categorizes

the data based on the relationships between different

elements, such as the link between a requirement and a

problem graph or between a domain and a program set.

The backend initiates the matrix generation process once

the data has been properly categorized. This involves creating

an initial relationship matrix where each element or node is

represented as a row and column. The backend then populates

the matrix based on the data received from the front end and

whether there is a relationship between the nodes. For
example, suppose a requirement node is connected to a

problem graph node. In that case, the corresponding cell in the

matrix is populated with a “1” to indicate the relationship, and

vice versa, with a “0”. This binary matrix is a fundamental

step in the traceability process, as it provides a clear,

quantitative representation of the relationships between

different elements. In addition, the backend is responsible for

ensuring the persistence of the data. Once the traceability

matrix is generated, it is stored in the MySQL database.

Basic steps to create a relationship matrix:

 Iterate through all the elements to get the elements
representing the requirements and the elements

representing the problem diagram.

 Find out if there is a line between the element

representing the requirement and the element

representing the problem diagram. 1 is used to indicate

a line, and 0 is used to indicate no line.

 Place the resulting 1s and 0s in a temporary array value.

 Place the 1s and 0s from the temp array in the temp

array.

 Place the temp array in a two-dimensional array

representing the relationship between the requirements

and the problem diagram, forming a matrix.
 Empty the temp value array and store the association

between the other elements (1 or 0).

Table 6 describes the implemented algorithm. Once the

relevant relationship matrix is obtained, it can be multiplied

to get the requirements changed to the traceability matrix. The

results of the requirements change traceability matrix can be

used to determine the degree of relationship between the

requirements and the software artifact and the ripple effect of

the requirements change. The main output of the PRT tool is

a correlation matrix that relates the criteria to the

1857

corresponding program sets. This matrix results from

multiplying multiple matrices involving relationships

between requirements, problem graphs, domains, and

program sets.

TABLE VI

 ALGORITHM FOR CREATING A RELATIONSHIP MATRIX

Begin://Algorithm begins

for (str1 in namelist){//Traverse all element names

 if(str1.contains "r")//Find elements that

represent requirements and are named starting with 'r'

 reqList.add(str1)//Place these

elements into the requirements array

 else if(str.contains"p")//Find elements that

represent problem frames and are named starting with 'p'.

 pList.add(str1)}//Place these elements

into the problem frames array.

for (i in reqList){//Traverse element names in the requirements

array (denoted as i).

 for (j in pList){//Traverse element names in the

problem frames array (denoted as j).

 if(hasLineJudge(i,j))//Check if there is a

connection between i and j.

 valueList add "1";//If there is a

connection, add the value 1 to the value array.

 else

 valueList add "0"}}//If there is no

connection, add the value 0 to the value array.

for (str2 in valueList){//Query all values in the value array.

 tempList add(str2);//Place all values into the

temp array.

 reqAndpList add templist;//Place the temp

array into the two-dimensional array that associates

requirements and problem frames.

 valueList.clear}//Clear the value array to store

other values.

End//Algorithm ends.

The matrix elements indicate the strength and existence of

the relationship between the requirement and the program set.

Non-zero values in the matrix indicate direct or indirect
connections, with larger values indicating stronger

correlations. Fig. 11 is a screenshot of the requirement

correlation matrix calculated from Fig. 10.

Fig. 11 Requirements correlation matrix

E. Analysis of the Results

The matrix forms the basis for traceability analysis and

provides a quantitative basis for understanding the impact of

requirements changes on a software system. The correlation

matrix and all intermediate data are stored in a structured

database to ensure data integrity and accessibility. The PRT

tool employs an advanced visualization module. Users can

view detailed graphs of the relationships between

requirements and assemblies, making it easier to identify key

dependencies and areas where changes to requirements may

have an impact.
In the final output, if the matrix value Mij is larger than

other values, for example, in Fig. 11, the value of M11 is larger

than that of M21 in the relationship matrix between

requirements and program sets, it means that the degree of

association between requirements R1 and S1 is stronger than

that between requirements R2 and S1 and that the impact on

program set S1 is larger when requirements R1 are changed

than that on program set S1 when requirements R2 are

changed. When requirement R1 changes, the impact on

program set S1 is greater than that on program set S1 when

requirement R2 changes. At the same time, the idea of

backtracking can be used. In the relationship matrix, the value
of M11 is larger than the value of M12; that is, the strength of

the association between requirement R1 and program set S1 is

stronger than the strength of the association between

requirement R1 and program set S2, so if we want to change

program set S1, the degree of the change in requirement R1

should be stronger than the change in requirement R1 by

changing program set S2. The problem diagram is split and

modeled using Agile Requirements methodology and tools

based on the problem framework. Ultimately, the matrix can

be used to react to the impact on the final realization of the

program set when the requirements are changed in agile
requirements development or to modify a certain piece of

program code, which will ultimately affect the change of

requirements, which satisfies the rapid development and fast-

tracking characteristics of agile requirements.

The evaluation was carried out to assess the usability of

PRT using the System Usability Scale (SUS). SUS was

developed and designed by Brooke [32] to measure the overall

usability of a product's system. The SUS is a 10-item, 5-point

Likert scale where users rate their agreement (1 strongly

disagree - 5 strongly agree) with each item. The SUS system

usability scale is calculated using odd and even-numbered
items, and the values of the scale range from 0 to 100, which

is used to assess the user's perception of the product's overall

usability.

F. The Objectives

The main objective of this experiment is to evaluate the

PRT tool's usability.

1) Participants:

There are six participants involved in this evaluation. The

participants are all postgraduate students in the Department of

Software Engineering. The participants have experience in

development. Before starting the collection of results, the

participants were briefly trained to conduct this experiment

using the PRT tool.

2) SUS Scores

The SUS scores provided by the participants for both tools

are detailed in Table 7.

TABLE VII

SUS SCORES

Participant PRT Tool SUS Score

P1 85
P2 80

P3 90
P4 75
P5 80
P6 85
Average 82.50

1858

For the calculation of the SUS score, the total SUS score =

[(Score for odd-numbered items - 1) + (5 - Score for even-

numbered items)] × 2.5, and a total SUS score of 70 or more

is considered good or acceptable. In contrast, a score of 85 or

more indicates that the product's usability is very high and that

the overall evaluation is excellent. A score of 50 or less

indicates poor or unacceptable usability. The PRT Tool

received high SUS scores, indicating good usability.

IV. CONCLUSION

Inadequate traceability mechanisms can hinder the ability

to modify requirements and comprehend their impact.

Therefore, it is necessary to establish meticulous requirements

traceability and maintain clear links to manage requirement

changes effectively. This paper indicates the efficacy of a

problem frames modeling approach in addressing issues on

requirements traceability. The proposed work aims to ensure

that a clear link between business requirements and system
functionality exists. The proposed work is a framework that

represents requirements as problems, creates a requirements

relationship diagram, and generates a corresponding

relationship matrix. Problem frame modeling allows complex

issues to be deconstructed into manageable sub-problems,

thus offering a clear structure for understanding the

requirements. The traceability matrix’ values aid in

pinpointing the elements most affected by requirement

changes, enabling developers to prioritize modifications that

minimize overall system impact. A tool, namely the PRT tool,

is developed as a proof-of-concept and to facilitate the

process.
The framework and tool proposed in this paper have room

for improvement. The splitting method is based on functional

splitting and does not achieve automated splitting. Our future

work aims to achieve automated splitting based on Jackson's

five types of basic problem frames. The paper mainly focuses

on tracing from requirement to program set. While forward

tracing of attributes effectively shows the impact of program

set changes on the problem domain, there is also a need for

reverse tracing for validation. This paper's quantitative

assessment system for demand association is based on Java

Web. However, it may have limitations when addressing very
complex problem graphs. In the future, we intend to design

complex problem graphs for unique scenarios and involve

professional testers to evaluate them.

ACKNOWLEDGMENT

We thank Universiti Putra Malaysia for all the support

given.

REFERENCES

[1] C. D. Laliberte, R. E. Giachetti and M. Kolsch, "Evaluation of Natural

Language Processing for Requirements Traceability," 2022 17th

Annual System of Systems Engineering Conference (SOSE),

Rochester, NY, USA, 2022, pp. 21-26,

doi:10.1109/sose55472.2022.9812649.
[2] S. Jeong, H. Cho and S. Lee, "Agile requirement traceability

matrix," 2018 IEEE/ACM 40th International Conference on Software

Engineering: Companion (ICSE-Companion), Gothenburg, Sweden,

pp. 187-188, 2018.
[3] S. Jayatilleke, R. J. I. Lai, “ A systematic review of requirements

change management”, 93, 163-185, 2018.

[4] Y. Lyu, H. Cho, P. Jung and S. Lee, "A Systematic Literature Review

of Issue-Based Requirement Traceability," in IEEE Access, vol. 11,

pp. 13334-13348, 2023, doi: 10.1109/access.2023.3242294.
[5] Y. Hafeez, S. Ali, M. Jawad, F. B. Ahmad and M. N. Rafi, "Improving

Requirement Prioritization and Traceability using Artificial

Intelligence Technique for Global Software Development," 2019 22nd

International Multitopic Conference (INMIC), Islamabad, Pakistan,

2019, pp. 1-8, doi: 10.1109/INMIC48123.2019.9022775.
[6] K. Kamalabalan et al., "Tool support for traceability of software

artefacts," 2015 Moratuwa Engineering Research Conference

(MERCon), Moratuwa, Sri Lanka, 2015, pp. 318-323,

doi:10.1109/mercon.2015.7112366.
[7] M. Mezghani, J. Kang, E. -B. Kang and F. Sedes, "Clustering for

Traceability Managing in System Specifications," 2019 IEEE 27th

International Requirements Engineering Conference (RE), Jeju, Korea

(South), 2019, pp. 257-264, doi: 10.1109/RE.2019.00035.
[8] D. Kchaou, N. Bouassida, M. Mefteh, and H. Ben-Abdallah,

“Recovering semantic traceability between requirements and design

for change impact analysis,” Innovations in Systems and Software

Engineering, vol. 15, no. 2, pp. 101–115, Mar. 2019,

doi:10.1007/s11334-019-00330-w.

[9] W. Yinghui, W. Lifu and Z. Shikun, "A Tracing Approach of Software

Requirement Change", Journal of Electronics, vol. 8, no. 34, pp. 1428-

1432, 2006.

[10] Y. H. Wang, S. K. Zhang, Y. Liu, et al. “Ripple-effect analysis of

software architecture evolution based on reachability matrix”. Journal

of Software, 2004, 15(8): 1107–1115. (in Chinese).

[11] A. Marques, F. Ramalho, and W. L. Andrade, “Towards a

requirements traceability process centered on the traceability model,”

Proceedings of the 30th Annual ACM Symposium on Applied

Computing, pp. 1364–1369, Apr. 2015,

doi:10.1145/2695664.2695776.

[12] A. Rajbhoj, P. Nistala, V. Kulkarni, S. Soni and A. Pathan, "DizSpec:

Digitalization of Requirements Specification Documents to Automate

Traceability and Impact Analysis," 2022 IEEE 30th International

Requirements Engineering Conference (RE), Melbourne, Australia,

2022, pp. 243-254, doi: 10.1109/RE54965.2022.00030.
[13] L. Lavazza, “Business goals, user needs, and requirements: A problem

frame‐based view,” Expert Systems, vol. 30, no. 3, pp. 215–232, Sep.

2012, doi: 10.1111/j.1468-0394.2012.00648.x.

[14] K. Kannan and Saravanaguru RA. K, "An approach for decomposing

requirements into analysis pattern using problem frames (DRAP-

PF)," 2015 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Kochi, India, 2015, pp.

2392-2396, doi: 10.1109/icacci.2015.7275976.
[15] L. Liu and Z. Jin, "Integrating Goals and Problem Frames in

Requirements Analysis," 14th IEEE International Requirements

Engineering Conference (RE'06), Minneapolis/St. Paul, MN, USA,

2006, pp. 349-350, doi: 10.1109/RE.2006.34.
[16] A. A. Madaki and W. M. N. Wan Zainon, “A visual framework for

software requirements traceability,” Bulletin of Electrical Engineering

and Informatics, vol. 11, no. 1, pp. 426–434, Feb. 2022,

doi:10.11591/eei.v11i1.3269.

[17] M. Qadir, S. Farid, M. H. N. Bin Md Nasir, and A. Akbar, “A Rigorous

Approach to Prioritizing Challenges of Web-Based Application

Systems,” Malaysian Journal of Computer Science, vol. 34, no. 2, pp.

130–150, Apr. 2021, doi: 10.22452/mjcs.vol34no2.1.

[18] D. Miranda, "A Web Accessibility Requirements Framework for Agile

Development," 2021 IEEE 29th International Requirements

Engineering Conference (RE), Notre Dame, IN, USA, 2021, pp. 474-

479, doi: 10.1109/RE51729.2021.00071.
[19] A. Ahmad, C. Feng, M. Tao, A. Yousif and S. Ge, "Challenges of

mobile applications development: Initial results," 2017 8th IEEE

International Conference on Software Engineering and Service

Science (ICSESS), Beijing, China, 2017, pp. 464-469,

doi:10.1109/icsess.2017.8342956.
[20] N. Mustafa, S. Saeed, A. Abdulhakeem and M. A. M. Ibrahim, "The

Impact of Scrum-XP Hybrid Methodology on Quality in Web

Development with Distributed Teamwork," 2023 3rd International

Conference on Emerging Smart Technologies and Applications

(eSmarTA), Taiz, Yemen, 2023, pp. 1-8,

doi:10.1109/eSmarTA59349.2023.10293401.
[21] S. S. A. Bukhari, M. Humayun, S. A. A. Shah and N. Z. Jhanjhi,

"Improving Requirement Engineering Process for Web Application

Development," 2018 12th International Conference on Mathematics,

Actuarial Science, Computer Science and Statistics (MACS), Karachi,

Pakistan, 2018, pp. 1-5, doi: 10.1109/MACS.2018.8628422.

1859

[22] S. M. Saif and A. Wahid, “Web complexity factors! A novel approach

for predicting size measures for web application development,” 2017

International Conference on Inventive Computing and Informatics

(ICICI), pp. 897–902, Nov. 2017, doi: 10.1109/icici.2017.8365266.

[23] A. A. Alsanad, A. Chikh and A. Mirza, "A Domain Ontology for

Software Requirements Change Management in Global Software

Development Environment," in IEEE Access, vol. 7, pp. 49352-49361,

2019, doi: 10.1109/access.2019.2909839.
[24] A. Oliveros, F. Napolillo and F. L. Infesta, "Requirements in Web

applications development," IEEE CACIDI 2016 - IEEE Conference on

Computer Sciences, Buenos Aires, Argentina, 2016, pp. 1-5,

doi:10.1109/cacidi.2016.7786002.
[25] F. Tian, T. Wang, P. Liang, C. Wang, A. A. Khan, and M. A. Babar,

“The impact of traceability on software maintenance and evolution: A

mapping study,” Journal of Software: Evolution and Process, vol. 33,

no. 10, Aug. 2021, doi: 10.1002/smr.2374.

[26] H. Tufail, M. F. Masood, B. Zeb, F. Azam and M. W. Anwar, "A

systematic review of requirement traceability techniques and

tools," 2017 2nd International Conference on System Reliability and

Safety (ICSRS), Milan, Italy, 2017, pp. 450-454,

doi:10.1109/ICSRS.2017.8272863.
[27] M.-J. Escalona, N. Koch, and L. Garcia-Borgoñon, “Lean

requirements traceability automation enabled by model-driven

engineering,” PeerJ Computer Science, vol. 8, p. e817, Jan. 2022,

doi:10.7717/peerj-cs.817.

[28] F. Wang et al., "An Approach to Generate the Traceability Between

Restricted Natural Language Requirements and AADL Models,"

in IEEE Transactions on Reliability, vol. 69, no. 1, pp. 154-173, March

2020, doi: 10.1109/TR.2019.2936072.
[29] J. Tekutov and J. Smirnova, “The Requirements Enhancement Based

on a Problem Domain Model,” ITM Web of Conferences, vol. 54, p.

01002, 2023, doi: 10.1051/itmconf/20235401002.

[30] S. Maro and J.-P. Steghofer, “Capra: A Configurable and Extendable

Traceability Management Tool,” 2016 IEEE 24th International

Requirements Engineering Conference (RE), pp. 407–408, Sep. 2016,

doi: 10.1109/re.2016.19.

[31] M. Jackson. Problem Frames. Addison-Wesley, 2003.

[32] J. Brooke, "SUS: A “Quick and Dirty", Usability Scale, 1986.

[33] L. Xie, H. Xiao and Z. Li, "Augmenting the Problem Frames Approach

with Explicit Data Descriptions Using ChatGPT," 2023 IEEE 31st

International Requirements Engineering Conference Workshops

(REW), Hannover, Germany, 2023, pp. 178-183,

doi:10.1109/rew57809.2023.00036.
[34] S. Zhang, H. Wan, Y. Xiao and Z. Li, "IRRT: An Automated Software

Requirements Traceability Tool based on Information Retrieval

Model," 2022 IEEE 22nd International Conference on Software

Quality, Reliability, and Security Companion (QRS-C), Guangzhou,

China, 2022, pp. 525-532, doi: 10.1109/QRS-C57518.2022.00084.

1860

