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Abstract— Extracting mentions of adverse drug events and relationships between them is crucial for effective pharmacovigilance and 

drug safety surveillance. Recently, transformer-based models have significantly improved this task through fine-tuning. However, 

traditional fine-tuning of transformer models, especially those with many parameters, is resource-intensive, memory-inefficient, and 

often leaves a gap between pre-training and downstream task-specific objectives. Soft prompting is a lightweight approach that updates 

a trainable prompt to guide task-specific fine-tuning, showing comparable performance to traditional fine-tuning for large language 

models on simple tasks. However, its effectiveness on complex tasks like token-based sequence labeling requiring multiple predictions 

for a single input sequence remains underexplored, particularly in multi-task settings. In addition, using holistic prompts in multi-task 

learning settings may be biased to other subtasks. Additionally, some prompt tokens hurt the model prediction. This study proposes a 

prefix-based multi-prompt soft tuning method with attention-driven prompt token selection for tuning transformer models on multi-

task dual sequence labelling for concept and relation extraction. We experimented with BERT and SciBERT models using frozen and 

unfrozen parameter strategies. Our approach achieved state-of-the-art performance on the n2c2 2018 and TAC 2017 datasets for 

adverse drug event extraction, with multi-prompt tuning in unfrozen models surpassing traditional fine-tuning. Moreover, it 

outperforms the largest clinical natural language processing model, GatorTron, on the n2c2 2018 dataset. This research highlights the 

potential of soft prompts in efficiently adapting large language models to complex downstream NLP tasks. 
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I. INTRODUCTION

Adverse drug events (ADEs) refer to any harmful or 

unpleasant reactions that occur due to taking a medication. 

[1]. Consequently, accurate extraction of adverse drugs is 

vital for pharmacovigilance studies. In addition, it is 

significant to the information retrieval research paradigm due 

to the dual nature of named entity recognition and relation 

reaction. In the past decade, this task has been handled at 
different stages of drug usage. The notable stages are the pre-

marketing and post-marketing. At the pre-marketing stage, 

the popular approach was through clinical trials with some 

volunteer patients, which seriously needed more volunteers. 

On the one hand, at the post-marketing stage, the spontaneous 

reporting system (SRS) was the earlier approach to collecting 

adverse drug event (ADE) cases from affected patients or 

clinicians, which suffers from underreporting, leading to 

automated approaches of natural language preprocessing 

(NLP) [2], [3].  

The dual nature of adverse drug event extractions involving 

named entity recognition [4], [5], [6], and relation extraction 

[6], [7], [8], makes it a challenging task. The earlier 

approaches were rules-based [9], [10], machine-learning [11], 

[13], and deep learning [6], [14], [15] approaches [16]. 

However, the natural language processing paradigm has 

recently experienced a rapid increase in performance due to 

the prevalence of large language models (LLM) [15], [17], 

[18]. The de facto method of adapting the LLMs was through 

model fine-tuning. This approach works similarly to the 
traditional supervised learning approach, which requires 

much-annotated data to train the model on downstream-

specific tasks. The approach is also a top-down through train-

test workflow with all model-tuned parameters saved for 

inference. Thus, it is time-consuming, memory-inefficient 

and resource-intensive compared to prompting, especially for 

models with larger parameters [19]. 
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Prompt tuning methods connect LLMs' pre-training 

objectives with specific downstream task objectives with an 

additional prompt. Prompting is a technique to adapt LLMs, 

where additional tokens guide the model for downstream 

tasks. There are two types of prompts: challenging prompts, 

which use non-trainable tokens, and soft prompts, which use 

trainable embeddings added to the input sequence. In prompt-

based learning, different strategies are employed, including 

frozen, where LLM parameters are fixed, and unfrozen, where 

LLM parameters are updated during training. 
Despite its potential, prompting remains in its early stages. 

A significant performance gap exists compared to fine-tuning, 

especially for small-size models when frozen, and has yet to 

be fully leveraged for complex natural language 

understanding tasks, such as sequence labeling tasks that 

require multiple predictions per input sequence and in multi-

task learning scenarios. 

To address these challenges, we propose a novel approach 

that utilizes multiple soft prompts, one for each task, with an 

attention-driven prompt token selection to optimize the 

prompt tokens. This multi-prompt soft prompt tuning method 
selectively highlights the most contributing prompt tokens, 

enabling more effective model adaptation to downstream 

tasks. 

Extracting ADEs from the vast amount of unstructured 

clinical notes is highly significant in real-world settings, as it 

supports drug discovery and pharmacovigilance studies. 

Various approaches have been employed to improve this task. 

These include rule-based [9], machine learning [20], and deep 

learning [18], as well as adopting large language models 

(LLMs) through fine-tuning [2]. 

Prompt learning has emerged as a preferred method for 
adapting LLMs due to the limitations of traditional fine-

tuning, which can be cumbersome, memory-intensive, and 

resource-heavy, particularly for larger models. [21]. Prompt 

learning encompasses two approaches. One is prompting, 

which uses discrete tokens to query LLMs, as seen in the 

success of models like GPT. [22], and prompt tuning, a more 

efficient method that adds trainable tokens (soft prompts) to 

the input sequence to guide the model's performance on 

specific tasks. 

Research has explored prompt tuning for both fixed and 

adaptable models. One approach proposed in [23] involves 

inserting trainable tokens into various layers of a pre-trained 
model, including encoder and decoder layers, while keeping 

the model's parameters frozen. This technique, known as 

prefix tuning, was later expanded to deep-prompt tuning, 

demonstrating its versatility across different model sizes and 

tasks. [24]. As an alternative, P-tuning was introduced, which 

involves inserting continuous prompts at various points in the 

input tokens designed by human experts in specific tasks. In 

this approach, both the prompts and initial model parameters 

are updated. Building on deep prompt tuning, [19] has 

developed a system that compares four learning strategies—

fine-tuning, hard prompting, soft prompting with a frozen 
model, and soft prompting with an unfrozen model—using 

GatorTron clinical LLMs. 

Recent research by [25] proposes hierarchical structured 

prompt pruning based on the lottery ticket hypothesis to 

identify the winning ticket and eliminate the losing ticket in 

collecting trained prompt tokens. In this research, the authors 

designated the positive prompt tokens as the winning tickets 

and the negative tokens as the losing tickets concerning the 

lottery hypothesis. The importance of soft prompt tokens is 

defined as the expected sensitivity of model outputs to the 

mask variables. A larger score implies a token with a 

significant contribution, and a lower score implies a negative 

token with little or no contribution to the model tuning. 

However, in addition to the fact that the procedure is trial 

training to obtain the optimal tokens [25], pruning the soft 

tokens to various levels (token and piece levels) repeatedly to 
get the optimal soft tokens is resource-intensive, especially 

for large pre-trained language models (PLM). 

    While soft prompt-tuning methods have shown promise 

and match fine-tuning performance, some challenges remain 

unaddressed. These approaches have mainly been tested on 

natural language generation tasks and large models using a 

single, holistic prompt, which may not be suitable for multi-

task learning with various objectives. Moreover, the impact of 

negative prompt tokens is limited, and prefix tuning is 

constrained by the fixed sequence length of LLMs, resulting 

in a limited number of trainable parameters. Deep prompt 
tuning also has limitations, requiring fixed prefix tokens at 

each layer and needing significant changes to the internal 

workings of the transformer layers. [25]. In summary, 

prompt-based learning has yet to be fully explored for multi-

task and sequence labeling tasks that require multiple 

predictions for a single input sequence. [26], highlighting the 

need for further research in this area. 

II. MATERIALS AND METHOD 

A. Datasets 

The TAC 2017 dataset [27] consists of 200 drug labels in 

XML format, divided into a training set of 101 labels and a 
test set of 99. The dataset features five attributes related to 

Adverse Drug Reactions (ADR): Animal, Drug Class, Factor, 

Negation, and Severity. Additionally, the dataset includes 

three types of relationships: Effect (linking severity to ADR), 

Hypothetical (linking animal, drug class, or factor mentions 

to ADR), and Negated (linking negation or factor mentions to 

ADR). 

The second dataset, the n2c2 2018 dataset [28], derived 

from clinical narratives, was used for the adverse drug events 

extraction challenge. This dataset contains annotations for 

nine entities (drug, strength, form, dosage, frequency, route, 

duration, reason, and ADE entities) linked to a drug entity as 
their source, with eight possible relations between them. Our 

model was trained and evaluated using the official dataset 

splits of 303 training records and 202 testing records. 

B. Multi-prompt-based Multi-task Soft Prompting of Large 

Language Models 

Learning multiple related tasks simultaneously can lead to 

biased results if a single prompt is used to adapt LLMs. To 

overcome this limitation, we propose a novel approach that 
uses multiple prompts tailored to each task to guide the 

adaptation of LLMs and ensure more balanced and effective 

multi-task learning. Two task-specific prompt templates are 

generated, one for each task. The text prompts are converted 

into embedding vectors that can be fine-tuned. This process 

involves two steps: first, the text is broken down into sub-

words using a pre-trained tokenizer, and then, the embedding 
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layer of a pre-trained model is used to generate vector 

representations for both the input text and the soft prompt 

tokens, as in Equation 1. 

 Sp = We(Tp) and Ex=We(X) (1) 

where We are the embedding matrix of the model, Sp is the 

embedding of the soft prompt tokens, and Ex is the embedding 

of the input sequence. The soft prompt is added to the input 

embedding as a prefix specific to each task. However, since 

some prompt tokens can harm LLMs' performance, we use a 

feature selection method to choose the most important ones 
based on their attention weights generated by the transformer 

attention mechanism. This ensures that only beneficial tokens 

are used to fine-tune the model. The detailed procedure for 

prompt selection is in the following section.  

To allow the model to process the added soft prompt 

embedding, we extended the model's maximum sequence 

length to accommodate the combined input sequence. This, in 

turn, required extending the attention mask, token type IDs, 

and sequence labels to match the new sequence length. 

C. Transformer-based Attention-driven Prompt Token 

Selection 

The self-attention mechanism proposed by [29], is an 

effective way to determine the contextual relationships 

between different words within an input sequence regardless 

of their relative distance. It enables the model to ascertain the 

importance of each word within the sequence. Because some 

prompt tokens prepended to the input sequence may 

negatively impact the model adaptation, we apply an 

attention-based selection approach to select only the top 

relevant tokens to the input sequence, thereby reducing the 
use of negative prompt tokens.  

We start by taking the dot product of the prompt input 

embeddings to the input sequence embeddings, then apply a 

SoftMax function to obtain the attention weight, as in 

Equation 2. Finally, compute the weighted sum for each token 

to get its importance score, as shown in Equation 3. The 

overall procedure is depicted in Algorithm 1. 

 Attention _weights = SoftMax (
���

√��
) V (2) 

where Q, K, and V are obtained from the linear transformation 

of input embeddings. 

 Attention_output = Attention_weights ⋅ Ptoken (3) 

 

Algorithm 1: Procedure for Transformer-based attention-

driven prompt tokens selection method 

Input: 

     S:←input-embedding, Semb:←soft-prompt-
embed 

     K:←top−k−features, D:←model-dimension 

Output: Cemb, top−selected−prompt 

A; W; I  ← []           Initialize attention score, weight and token importance 

for Iemb  ∈ S do: 

  for semb ∈  Semb  do: 

        A←DotProduct(Iemb,semb)             computes the dot product.                

        W ← Softmax(A)      convert the attention scores to 

probabilities 
  endfor 

   I←sum(W). semb          sum up the attention weight for importance. 

   Indices←GetIndices(I, K)        indices of the top−k 

soft prompt. 

   Eindices←Expand(Indices, D)         expand to the dmodel  

   top−prompt-

tokens←GatherSelected(Semb, Eindices)        

    Cemb←concat(top−prompt,Iemb)       top prompt toinput 

embedding. 

endfor 

return Cemb        return the combined input to the model. 

end procedure 

D. Dual Sequence Labelling for Adverse Drug Event 

Extraction 

Figure 1 illustrates the overall architecture where two 
tasks—concept identification and attribute relation 

extraction—are modeled simultaneously. We employed a 

sequence labeling and multi-task transfer learning approach 

as proposed by [30].  

 

 
Fig. 1  A multi-prompt model takes two prompt sequences, one for each task.  
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The textual tokens are transformed into trainable 

embedding vectors and undergo an attention-driven token 

selection procedure to select top-k prompt tokens (positive 

tokens). The positive tokens are then prepended to the input 

embedding of each task to serve as input to the multi-task 

learning framework to produce shared representation by the 

transformers model (with frozen or unfrozen parameters). 

This method converts both tasks into a dual sequence labeling 

problem, modeled together using a multi-task deep learning 

framework [31] to generate a shared contextual representation 
of the input via a transformer-based model. The concatenated 

input, which includes both the input embeddings and the 

selected prompt embeddings for the two sub-tasks derived 

from the proposed multi-prompt tuning procedure detailed 

above, is fed into the transfer learning framework. The output 

is then directed to task-specific layers, where the sub-task 

classification head and SoftMax are applied for the final 

classification of each token in the sequence.  

During the dual sequence labeling stage, the system 

transforms the tasks into ADR-source mention identification 

and ADR-mention attribute relation identification. Each 
dataset contains either ADR or Drug mentions. The ADR-

source mention identification task classifies the input 

sequence into binary classes: positive (source mentions 

containing one or more relations with mention attributes) and 

negative (source mentions with no relation with mention 

attributes). Conversely, the ADR-mention attribute relation 

identification task involves identifying the attributes and 

relationships of the positive ADR-mentions identified in the 

first sub-task. 

The system uses an extended beginning inside outside 

(BIO) tagging scheme to handle discontinuous mentions and 
sub-words from word piece tokenization during token-based 

sequence labeling for the two sub-tasks. Additional tags, DB 

(discontinuous mention beginning) and DI (discontinuous 

mention inside), are introduced—the "X" tag labels sub-

words generated by the tokenizer.  

III. . RESULTS AND DISCUSSION 

A. Large Language Models and Experimental Settings 

The BERT model, introduced by [32], is trained on vast 

text data from English Wikipedia and BooksCorpus. Two pre-
trained versions of BERT are available, differing in size: 

BERT-Base and BERT-Large. We experiment with the base 

mode for fine-tuning and soft prompting (with frozen and 

unfrozen model parameters). The SciBERT model [12], this 

model builds upon the BERT architecture and is pre-trained 

on a large corpus of 1.14 million full-text papers from 

Semantic Scholar. There are two available versions of 

SciBERT: scivocab and base-vocab. We utilize the sci-vocab 

model. 

We configured our model with a maximum sequence 

length of 512 and a batch size of 8 and 32 for unfrozen and 
frozen models, respectively. We optimized the learning rate 

to 2e-5, using the cross-entropy loss function and Adamax 

optimizer. We applied a weight decay of 0.05 and a dropout 

rate of 0.1 to prevent overfitting. We trained the model for 10 

epochs on the TAC 2017 dataset and 15 on the n2c2 2018 

dataset for soft prompt tuning with unfrozen models. 

Similarly, we trained the model for 200 epochs for soft 

prompt tuning with frozen models for both datasets. 

B. Results 

Tables I and II show the reported results of our two 

experimented models, BERT and SciBERT, on TAC 2017 

and n2c2 2018 for concept and end-to-end relation extraction, 

respectively. On the n2c2 dataset, we can see from Table 1 for 

concept extraction that the SciBERT model has a better 

overall performance for both fine-tuning and soft prompt 

tuning for the unfrozen model. In comparison to BERT, the 

SciBERT model improved by 3.6%. Similarly, SciBERT 
outperformed BERT on the TAC 2017 dataset by 1.76%. For 

the frozen model, SciBERT outperformed BERT by 0.8% and 

2.44% for concept extraction. 

TABLE I 

THE RESULT OF THE TWO EXPERIMENTED MODELS ON THREE TUNING 

STRATEGIES FOR CLINICAL CONCEPT EXTRACTION. 

Dataset Models  Training strategy 

Fine-

tuning  

Soft 

prompt 

Unfrozen 

Soft 

prompt 

Frozen 

F1-score F1-score F1-score 

N2C2 

2018 

BERT 88.83 88.94 57.25 

 SCIBERT 92.38 92.54 58.07 

TAC 

2017 

BERT 83.83 85.32 70.22 

 SCIBERT 86.85 87.08 72.66 

TABLE II 

THE RESULT OF THE TWO EXPERIMENTED MODELS ON THREE TUNING FOR 

CLINICAL END-TO-END EXTRACTION 

Dataset Models  Training strategy 

Fine-

tuning  

Soft 

prompt 

Unfrozen 

Soft 

prompt 

Frozen 

F1-score F1-score F1-score 

N2C2 

2018 

BERT 83.83 83.94 32.07 

 SCIBERT 89.13 89.25 33.23 

TAC 

2017 

BERT 50.10 51.15 18.10 

 SCIBERT 51.26 53.33 19.24 

 

In addition, Table 2 presents the results for end-to-end 

relation extraction for the experimented models' TAC 2017 

and n2c2 2018 datasets. The SciBERT model outperforms 

BERT by 5.31% on n2c2 and 2.18% on TAC 2017. For the 

frozen model, it was 1.16% and 1.14%, respectively. These 

results demonstrate the capability of the SciBERT model over 

BERT. The observed performances could be attributed to the 
pre-training data from the scientific document, giving the 

model more chances to identify concepts and terminologies 

from the clinical text. Figure 2 depicts the results of the 

models. 
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Fig. 2  Summary of the results obtained in the F1 score by the models for concept (a) and relation (b) on both TAC 2017 and n2c2 2018 datasets. 

 

C. Discussion 

Prompt-based learning is a lightweight approach to 

adopting LLM, especially with frozen models. Most existing 

prompting systems are mainly developed to handle natural 
language generation problems. The kinds of research 

developed on natural language processing understanding 

problems mostly explored large models with many 

parameters. However, this approach has not fully explored 

complex NLP problems, such as sequence labeling involving 

multiple predictions for a single input. In addition, prompt-

based learning suffers from the quality of prompt tokens to 

effectively guide the model on downstream tasks, thereby 

reducing the gap between pre-training and downstream 

objectives. This study proposed a multi-prompt-based soft 

prompting method with a transformer-based attention prompt 
tokens selection to select the top necessary prompt tokens. We 

conduct our experiments with two popular small-scale models 

to investigate the effectiveness of this approach. 

To further investigate the potential of our model to state-

of-the-art models, we evaluate our models' performance on 

the n2c2 2018 dataset, comparing them to the GatorTron 

system [19], a clinical natural language processing model. 

Notably, GatorTron is the largest clinical model in the 

literature, pre-trained on an extensive corpus of over 8.9 

trillion words from biomedical texts and electronic health 

records. The model comes in three sizes: GatorTron base (345 

million parameters), GatorTron medium (3.6 trillion 
parameters), and GatorTron large (8.9 trillion parameters) 

[19]. Tables 3 and 4 show the concept and end-to-end relation 

extraction comparison results.  

For concept, SciBERT with unfrozen parameters 

outperformed GatorTron-base, which has the highest score 

among the GatorTron variants at 1.36%. Similarly, end-to-end 

relations improved by 5.93%. However, for a frozen model, 

the performance dropped by 32.86% for concept and 49.76% 

for end-to-end relation compared to GatorTron-large. This 

drastic drop is not surprising, as the SciBERT model is 1.23% 

in parameters compared to GatorTron-large. This parameter 
difference also indicates the capability of our approach of 

multi-prompt tuning for multi-task learning settings, 

achieving the performance of 39% and 40% for concept and 

relation extraction, respectively, to the highest GatorTron 

models. Figure 3 displays the comparison of the models.  

TABLE III 

COMPARISON OF OUR EXPERIMENTED MODELS WITH GATORTRON MODELS 

ON THE N2C2 2018 DATASET FOR CONCEPT EXTRACTION USING OFFICIAL 

EVALUATION METRIC (MICRO F1 SCORE). 

Dataset Models  Number of 

parameters 

Training strategy 

Fine-

tuning  

Soft 

prompt 

Unfrozen 

Soft 

prompt 

Frozen 

F1 

score 

F1 score F1 score 

N2C2 

2018 

BERT 110 million 88.83 88.94 57.25 

SCIBERT 110 million 92.38 92.54 58.07 

GatorTron 

base 

345 million 88.79 91.12 86.56 

GatorTron 

medium 

3.9 billion 88.83 91.18 90.85 

GatorTron 

large 

8.9 billion  88.91 91.15 90.93 

TABLE IV 

COMPARISON OF OUR EXPERIMENTED MODELS WITH GATORTRON MODELS 

ON THE N2C2 2018 DATASET FOR END-TO-END RELATION EXTRACTION 

USING OFFICIAL EVALUATION METRIC (MICRO F1 SCORE). 

Dataset Models  Number of 

parameters 

Training strategy 

Fine-

tuning  

Soft 

prompt 

Unfrozen 

Soft 

prompt

Frozen 

F1 

score 

F1 score F1 score 

N2C2 

2018 

BERT 110 million 83.83 83.94 32.07 

SCIBERT 110 million 89.13 89.25 33.23 

GatorTron 

base 

345 million 81.92 83.32 79.21 

GatorTron 

medium 

3.9 billion 82.05 83.21 82.99 

GatorTron 

large 

8.9 billion  82.00 83.30 82.68 

 

This study shows that models with small to medium 

parameters can perform well while on frozen parameters. 

However, to attain the performance of traditional fine-tuning, 

the model's parameters must be scaled up to billions of 

parameters, as is evident in the GatorTron models. In addition, 

soft prompt tuning can be successfully applied to complex 

natural language understanding problems involving multi-
tasking with remarkable performance.  
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Fig. 3  Summary of the results compared results in the F1 score by the experimented models and GatorTron models for concept (a) and relation (b) on n2c2 2018 

datasets 

 

IV.  CONCLUSION 

The prefix-based multi-prompt tuning with attention-based 

prompt token selection proposed in this study has 

demonstrated the effectiveness of soft prompt tuning in 

adopting a large language model for natural language 

understanding problems involving sequence labeling for a 

multi-task adverse drug extraction. Our approach with 

unfrozen models outperforms the traditional fine-tuning and 
GatorTron models for these tasks. In our future work, we plan 

to investigate our proposed approach with language models of 

medium to large size and decoder-based models like GPT. In 

addition, we will explore other NLP tasks like sequence 

classification. 
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