
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Comparative Analysis of Machine Learning Algorithms for Cross-Site

Scripting (XSS) Attack Detection

Khairatun Hisan Hamzah a, Mohd Zamri Osman a,*, Tumusiime Anthony a, Mohd Arfian Ismail b,

Zubaile Abdullah c, Alde Alanda d
a Faculty of Computing, Universiti Teknologi Malaysia, Skudai, Johor Bahru, Malaysia

b Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia
c Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia

d Department of Information Technology, Politeknik Negeri Padang, Padang, Indonesia

Corresponding author: *mohdzamri.osman@utm.my

Abstract—Cross-Site Scripting (XSS) attacks pose a significant cybersecurity threat by exploiting vulnerabilities in web applications to

inject malicious scripts, enabling unauthorized access and execution of malicious code. Traditional XSS detection systems often struggle

to identify increasingly complex XSS payloads. To address this issue, this research evaluated the efficacy of Machine Learning

algorithms in detecting XSS threats within online web applications. The study conducts a comprehensive comparative analysis of XSS

attack detection using four prominent Machine Learning algorithms, which consist of Extreme Gradient Boosting (XGBoost), Random

Forest (RF), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). This research utilizes a comparative methodology to

assess the selected Machine Learning algorithms by analyzing their performance metrics, including confusion matrix, 10-fold cross-

validation, and assessment of training time to thoroughly evaluate the models. By exploring dataset characteristics and evaluating the

performance metrics of each selected algorithm, the study determined the most robust Machine Learning solution for XSS detection.

Results indicate that Random Forest is the top performer, achieving 99.93% accuracy and balanced metrics across all criteria evaluated.

These findings will significantly enhance web application security by providing reliable defenses against evolving XSS threats.

Keywords—Cross Site Scripting (XSS); machine learning; RF; XGBoost; KNN; SVM; cybersecurity; web application security.

Manuscript received 5 Mar. 2024; revised 17 Jul. 2024; accepted 24 Sep. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Cross-site scripting (XSS) remains a challenging threat in

cybersecurity, exploiting vulnerabilities in online web

applications to inject malicious scripts into web pages. XSS is

a web security vulnerability where attackers inject malicious

scripts into trusted websites, exploiting the site's failure to

validate or encode user input properly. This poses a
significant risk to users, enabling attackers to gain

unauthorized access to sensitive information and execute

malicious code. The traditional XSS detection system needs

to be improved, considering the increasingly diverse forms of

XSS payloads [2]. OWASP's 2021 report indicates that 94%

of the applications tested are susceptible to injection

vulnerabilities, with 33 Common Weakness Enumerations

(CWEs) falling into this category [1]. Traditional methods for

detecting cross-site scripting (XSS) focus on signature-based

approaches, which involve investigating known attack

patterns. As a result, online web applications and users that

utilize traditional methods are left vulnerable. This calls for a

dynamic and adaptive solution that can overcome the

constantly evolving payloads of XSS.

This research implemented a machine learning (ML)

approach to XSS detection to address the increasing

complexity of XSS payloads. The study focuses on utilizing

four prominent algorithms, specifically Extreme Gradient

Boosting (XGBoost), Random Forest (RF), K-Nearest

Neighbors (KNN), and Support Vector Machine (SVM). Each

model is carefully tuned to enhance its ability to distinguish
between malicious scripts and benign code. Our study aims to

comprehensively analyze these algorithms to determine the

most effective model for robust XSS detection in web

applications.

The performance of each model is evaluated based on

multiple metrics, including training time, confusion matrix,

and 10-fold cross-validation. By assessing these metrics, the

1678

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1678-1685

study aims to identify the optimal approach for XSS detection

that can adapt to the evolving nature of web-based attacks.

The findings of this research are expected to contribute

significantly to the advancement of XSS detection models and

provide valuable insights for enhancing cybersecurity in the

digital realm.

The findings propose recommendations for enhancing the

accuracy and performance of the XSS detection model by

selecting the most effective approach for classifiers to identify

various types of XSS attacks.

A. Type of XSS Attack

Distinguishing XSS attacks can be exceedingly

challenging due to the concealed aspect of the malicious script,

whether it happens to be on the server side or the client side.

Within the framework of an XSS attack, it is possible to

classify the threats into three distinct types: Stored XSS,

Reflected XSS, and DOM-based XSS [3]. Each type of XSS

attack demonstrates the diverse methods attackers use to
exploit web application vulnerabilities. Understanding these

XSS variants' mechanisms and potential impacts is expected

to protect web applications and their users against these

persistent threats.

B. XSS Detection Model Machine Learning-based

XSS attacks can be prevented by employing a machine-

learning algorithm in an XSS detection model [4]. This model

aims to differentiate the dataset for the proposed approach

effectively. Differentiating between XSS attacks and non-
XSS inputs, which are regular web application inputs. These

standard inputs can include text, numbers, and other types of

inputs, including combinations of these elements. Hence, it is

the one to monitor and detect XSS attacks on web application

inputs.

C. Related Studies

The related research on XSS attack detection using an ML-

based model includes efforts to understand the analysis of
XSS attack patterns, applying machine learning algorithms

for XSS attack identification, and evaluating various ML

algorithms for XSS detection. Research on XSS attack

patterns has explored various aspects, including XSS attack

payloads' characteristics, XSS attack methods' evolution, and

the impact of XSS attacks on web applications. TABLE I

shows that the studies provide valuable insights into the

nature of XSS attacks, making way for more effective

detection strategies [3], [5], [7], [9]. A proposed fusion

verification method that combines traffic detection and XSS

payload detection. The approach, utilizing Random Forest

and a novel Web Application Intrusion Detection Prevention
Firewall System (WAIDPFS), demonstrated superior real-

time detection capabilities [15].

A comprehensive evaluation of multiple machine learning

algorithms was performed on a dataset comprising 13,686

instances. The analysis focused on the efficacy of AdaBoost,

Random Forest, Decision Tree, SVM, KNN, Logistic

Regression, and XGBoost. Findings revealed that AdaBoost,

Random Forest, and Decision Tree exhibited superior

performance regarding accuracy and F1-score [16].

A hybrid feature methodology integrating n-gram

modeling and feature selection techniques was proposed.

Utilizing logistic regression on 16,361 samples, the method

attained exceptional accuracy with minimal false positives.

This hybrid strategy exhibited enhanced efficacy relative to

standalone linguistic and feature selection techniques [17].

The n-gram was also studied comprehensively in [20] for

email spam detection. In [21], a hybrid method for phishing

attack detection was employed for better performance.

An extensive evaluation of multiple ML models, including

Random Forest, XGBoost, and ensemble methods. Their

study utilized a large dataset of 138,569 samples and
incorporated feature selection techniques. The Random Forest

model achieved high accuracy, while their ensemble models

combining Random Forest with Decision Trees and Gradient

Boosting also showed high performance [18]. The Isolation

Forest, meanwhile, was deployed to detect diabetes mellitus,

reducing the complexity of staking.

A comparative analysis of five ML algorithms using a

Kaggle dataset. The study evaluated AdaBoost, XGBoost,

Decision Tree, Logistic Regression, and Naive Bayes. Among

these, AdaBoost demonstrated the highest accuracy. AdaBoost

also excelled in precision, specificity, and F1-score, further
establishing its effectiveness for XSS attack detection. [19].

TABLE I

RELATED RESEARCH PAPERS

Ref. Description Result

[9] Used XGBoost in a hybrid

learning approach for XSS

detection.

Hybrid (XGBoost+RF):96.3%

XGBoost: 94.8%

RF: 93.6%, SVM: 91.9%

KNN: 89.2%

[3] Compared XGBoost, RF,

KNN, and SVM for XSS

detection.

XGBoost: 95.2%

RF: 93.8%, SVM: 92.1%,

KNN: 89.7%

[7] Compared KNN and SVM for

XSS detection.

SVM: 93.2%, KNN: 88.5%

[5] Compared XGBoost, KNN,

RF, and SVM for XSS

detection.

RF: 94.5%, XGBoost: 94.1%

SVM: 91.7%, KNN: 88.9%

[15] Proposed Random Forest,

WAIDPFS

Random Forest: 99.91%

accuracy

[16] Compared AdaBoost, Random

Forest, Decision Tree, SVM,

KNN, LR, XGBoost

AdaBoost: 99.69%,

 Random Forest:99.67%

[17] Proposed Logistic Regression,

N-gram, Feature Selection

Logistic Regression: 99.87%

accuracy, 0.039% false

positive rate

[18] Evaluated Random Forest,

XGBoost, Decision Trees,

Gradient Boosting, MLP,

Ensemble Learning

Random Forest: 99.78%,

Ensemble (RF+DT+GB):

99.76%, Ensemble (RF+MLP):

99.65%

[19] Used AdaBoost, XGBoost,

Decision Tree, Logistic

Regression, Naive Bayes

AdaBoost: 97.92%, XGBoost:

96.82%, Decision Tree:

95.76%, Logistic Regression:

94.41%, Naive Bayes: 86.89%.

D. Proposed Solutions

This research proposes the use of machine learning

algorithms, specifically XGBoost, RF, SVM, and KNN for
detecting XSS attacks. From the summarizations of related

studies, as shown in Table II, XGBoost is the superior

algorithm based on its performance in XSS detection, and it

will be one of the selected algorithms for the proposed

solution. However, this research will include a comparative

analysis between other prominent machine learning

algorithms to assess their effectiveness in identifying XSS

attacks. In addition to XGBoost, other machine learning

1679

algorithms such as RF, SVM, and KNN will be explored as

part of the comparative analysis.

TABLE III

COMPARATIVE OF RESEARCH PAPERS

Selected ML

Algorithms
Advantages Disadvantages

KNN Simple and effective
for small datasets, it
handles multi-class
classification well
[10]

Computationally
expensive with large
datasets, sensitive to
irrelevant features [10].

SVM Effective in high-
dimensional spaces,

robust to overfitting
[3], [7].

It requires careful tuning
of parameters and is

computationally
intensive with large
datasets [3], [10].

XGBoost High performance,
handles missing
data, scalable [2],
[14].

It requires careful tuning
and complex
implementation [14].

RF High accuracy,

handles non-linear
data, reduces
overfitting [5], [7].

Computationally

intensive, less
interpretable [10][3].

E. Extreme Gradient Boosting (XGBoost)

XGBoost's iterative learning method constructs an

ensemble of decision trees that leverage knowledge acquired
from previous iterations. This iterative nature empowers

XGBoost to continually enhance its accuracy in predicting

XSS attacks [14]. Regardless of the volume and complexity

of XSS data, XGBoost shows a high level of preparedness to

process the information efficiently and reveal concealed

patterns. This dual capability of iterative learning sets

XGBoost as an outstanding algorithm for XSS detection [3].

F. Random Forest (RF)

Theoretically, each tree in the forest is trained on a random

subset of the data, and the final prediction is determined by

combining the predictions of individual trees. RF functions as

an ensemble technique, successfully preventing overfitting

and exhibiting strong performance with diverse data sources.

An outstanding feature is its capacity to analyze complex data

sets with several dimensions, which allows it to be versatile

in detecting XSS in various settings [5].

G. K-Nearest Neighbors (KNN)

KNN offers a more straightforward approach. It is a non-

parametric algorithm for classification. It assigns an object to

the class most common among its k-nearest neighbors, where

k is a user-defined parameter. KNN can be computationally

expensive for large datasets and needs help dealing with noisy

or imbalanced data.

H. Support Vector Machine (SVM)

SVM can effectively handle high-dimensional data. It

works by finding the hyperplane that best separates the classes

of data points in the feature space. This separation margin is

maximized to ensure optimal classification performance.

Despite its high computational cost, it has a strong theoretical

foundation and can generalize well to unseen data, making it

valuable for XSS detection.

I. Support Vector Machine (SVM)

The selected dataset "XSS_dataset.csv," obtained from the

Kaggle platform [6], is a suitable and deliberate choice for the

literature evaluation in this study context. The dataset's

specific nomenclature, which clearly indicates its emphasis on

XSS threats, perfectly matches the study goal of training

machine learning models to detect XSS. Conclusively, the

validity and importance of this dataset in evaluating machine

learning methods for XSS detection result from its specific

focus on XSS attacks and applicability for training machine

learning models.

II. MATERIAL AND METHOD

This section thoroughly explains the research methods

employed in planning and evaluating the experiment.

Additionally, the research workflow will be outlined to clarify

the methodologies proposed at each stage of the research

process. The chapter justifies the tools, datasets, and

procedures used to carry out the experiment for the

comparative analysis. A list of the performance metrics used
in this investigation is also included.

A. Workflow

This research follows a three-stage workflow, each aligned

to specific research objectives. In the initial stage, data

preparation and cleaning processes are executed, followed by

a rigorous assessment and examination of methods and

attributes. In the second stage, the selected machine learning

algorithms are applied to train and test the model. Finally, in
the third stage, the experimental results are thoroughly

analyzed and discussed in Fig. 1. The research framework is

covered in three phases:

1) Phase 1: Phase 1 (Recognition of Dataset & Data

Preparation to Train Machine Learning Classifiers):

Understanding existing machine learning algorithm findings

from literature review and exploring a dataset for machine

learning detection model.

2) Phase 2: Phase 2 (Development of Proposed XSS

Detection and Classification Model): Create an efficient

model for detecting XSS attacks using machine learning

algorithms XGBoost, RF, SVM, and KNN. Model training

and testing.

1680

Fig. 1 Flowchart of proposed work

3) Phase 3: Phase 3 (Performance comparison of trained

Machine Learning Classifiers): The performance comparison

findings demonstrate the efficacy of the suggested XSS
detection model in terms of performance metrics

measurement. The comparison analysis will uncover insights

into the most effective model for XSS detection.

B. Data Labelling

The dataset has 13,686 raw data that has been prepared

with two primary columns, which are "Sentence" and "Label"

[6]. The "Sentence" column contains textual data in the form

of scripts, including both benign and malicious occurrences
associated with XSS attacks. The "Label" column assigns

binary values, "0" and "1," to each script, indicating the lack

or existence of XSS attacks, accordingly. Fig. 2 shows benign

data, which is “Label 0,” is 6,316, while malicious data, which

is “Label 1,” is 7,373.

Fig. 2 Distribution of dataset

The labeling outline is straightforward. "Label 0" likely

indicates cases without possible XSS attacks, representing

safe scripts. In contrast, "Label 1" signifies the existence of
XSS attacks, explicitly referring to malicious scripts. This

binary classification enables the training of machine learning

models to differentiate between these two categories.

C. Performance Measurement

This section analyzes the performance metrics used to

facilitate future comparative analysis. First, training time is

calculated by calculating how long it takes to train machine

learning using the selected dataset. This step is essential for
assessing the machine learning classifier's efficiency because

a shorter training period will result in lower computational

costs. The training time can be computed using the formula

below.

(1)

Second, the confusion matrix is a concept, and data related

to the Confusion Matrix are true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). Based on

Table III, FN is the model that incorrectly classifies positive

events as negative. TN is the model that accurately identifies

negative instances as negative. TP is a model that accurately

identifies the number of positive cases. Meanwhile, FP is the

frequency with which the model incorrectly identified a

negative case as a positive example.

�������� ���	
��� =
���	� �� ℎ����
ℎ�

����� ���	
��� − ������� ���	
���

1681

TABLE III

CONFUSION MATRIX

 Actually

Positive (1)

Actually

Negative (0)

Predicted Positive (1)
True Positive

(TP)
False Positive

(FP)

Predicted Negative

(0)

False Negative
(FN)

True Negative
(TN)

Then, using this data, accuracy, precision, recall, and F1-

score are calculated. These will be compared to previous

models to evaluate this proposed XSS detection model’s

performance. Accuracy is calculated by dividing the number

of predictions the model makes by the number of correct

predictions.

(2)

Precision is the percentage of total positive predictions; it
expresses the model's percentage of true positive predictions.

(3)

Recall is the total number of positive cases in the dataset;

it computes the detection model's real positive prediction rate.

(4)

F1-score is the data that combines recall and accuracy of a

model into a single score.

(5)

Cross-validation is a technique known as 10-fold cross-

validation that involves training and testing a machine

learning model on several subsets of a dataset to assess its

performance. In a series of ten iterations, the dataset is

resampled into ten equal-sized folds, of which nine are used

for training and one for testing. To visualize the iteration,

show how it works.

Fig. 3 10-fold cross-validation

D. Research Design and Implementation

This section provides an overview of the research

methodology, which involves selecting the appropriate

software and measurements to assess the effectiveness of

machine learning classifiers in detecting and classifying XSS

attacks. It also explains the machine learning classifiers that

have been trained, assessed, and compared.

E. Experiment Setup

The experiment is based on a Python environment. A

personal laptop running Jupyter Notebook with Anaconda

Navigator is utilized. The exploratory data analysis is
conducted by analyzing the raw dataset obtained from Kaggle

[6].

F. Experiment Design

To effectively achieve the research objectives, the

experiment's design provides a comprehensive explanation of

the implementation procedure, and the tools utilized in the

experiment. This includes detailing how the dataset was

prepared, the specific machine learning models chosen, and
the evaluation metrics employed to assess their performance

in detecting Cross-Site Scripting (XSS) vulnerabilities:

1) Data Preprocessing: The experiment begins with

loading the 'XSS_dataset.csv' dataset into a Panda DataFrame

(df). Each entry contains sentences labeled for Cross-Site

Scripting (XSS) vulnerabilities. As observed initially, the raw

dataset contains various forms of HTML tags and JavaScript

snippets. The preprocessing stage involves transforming the

raw dataset into a cleaned version where significant elements

like HTML tags and JavaScript event handlers are

systematically removed. This cleaning process consists of

several steps, such as converting all text to lowercase for
uniformity, reducing case sensitivity, and tokenizing sentences

into individual words to filter out non-informative words.

2) Vectorization Data: In this experiment, the text data

undergoes vectorization using the CountVectorizer from the

sci-kit-learn library, a crucial step in natural language

processing (NLP) tasks. This process transforms textual data

into a numerical format suitable for machine learning

algorithms. Error! Reference source not found. includes the

output result, which displays the transformed data as a NumPy

array (dtype=int64), where each element represents the

frequency count of a specific term in its corresponding
document. This numerical representation allows machine

learning models to process and learn from the textual data

effectively.

Fig. 4 Data after vectorization

3) Splitting Data and Model Development Execution

Setup: The performance of the models in detecting XSS threats

was assessed, the dataset was ratioed precisely 70% of the data

was allocated for training, and the remaining 30% was

reserved for testing. The splitting process was executed with a

fixed random state to ensure reproducibility of the results. The

function begins by recording the start time to calculate the

duration of the training. It then performs 10-fold cross-

validation on the training data to estimate the model's

�������� =

� + ���

� + �� + � + ��

��	������ =
��

�� + ���

�	���� =
��

�� + ��

�1 ����	 =
2 ∗
��	������ ∗ �	�����

��	������ + �	�����

1682

performance stability. After cross-validation, the model is

trained on the entire training set, and the end time is recorded

to determine the total training duration. The trained model is

then used to predict the labels of the test set, and several

performance metrics are computed, such as accuracy,

precision, recall, and F1 score. Then, the function

evaluate_model is applied to four different classifiers.

4) Model Evaluation: Throughout the model evaluation

phase, each model was tested thoroughly to determine how

well it detected XSS vulnerabilities. The evaluate_model
function was used with the models’ classifiers and the training

and testing datasets. This function provided several

performance metrics, including cross-validation scores,

accuracy, precision, recall, F1 score, confusion matrix, and

training time.

5) Model Selection: A ranking approach was applied using

the performance metrics stored in the results_df DataFrame to

determine the most effective model for detecting XSS

vulnerabilities. This method allows DataFrame to assess and

compare the performance of various classifiers based on

metric measurements. It is to identify and present the metrics

of the best-performing model.

III. RESULT AND DISCUSSION

This section provides the results and discussion, along with

an analysis of the experiments conducted. The proposed

models are evaluated in terms of performance metrics and

cross-validation in detecting Cross-Site Scripting (XSS)

threats, specifically in online web applications. This chapter

also provides an overview of the most effective model
identified from the evaluation and offers insights for future

research.

A. Result of Confusion Matrix

The study evaluates the performance of four key

algorithms: Random Forest, XGBoost, K-Nearest Neighbors,

and SVM. Each model is trained and evaluated using accuracy,

precision, recall, and F1-score metrics. To get the metrics

being assessed, each model needs to go through the confusion
matrix

TABLE IV

CONFUSION MATRIX FOR RANDOM FOREST

 Actually

Positive (1)

Actually

Negative (0)

Predicted Positive (1) 1919 0

Predicted Negative (0) 3 2184

TABLE V

CONFUSION MATRIX FOR XGBOOST

 Actually

Positive (1)

Actually

Negative (0)

Predicted Positive (1) 1917 2

Predicted Negative (0) 7 2180

TABLE VI

CONFUSION MATRIX FOR KNN

 Actually

Positive (1)

Actually

 Negative (0)

Predicted Positive (1) 1912 7

Predicted Negative (0) 12 2175

TABLE VII

CONFUSION MATRIX FOR SVM

 Actually

 Positive (1)

Actually

 Negative (0)

Predicted Positive (1) 1919 0

Predicted Negative (0) 9 2178

TABLE VIII

RESULT OF EVALUATION USING PERFORMANCE METRICS

Metric
Random

Forest
XGBoost

K-Nearest

Neighbors
SVM

Test

Accuracy
0.9993 0.9978 0.9953 0.9978

Precision 1.0000 0.9990 0.9967 1.0000

Recall 0.9986 0.9967 0.9945 0.9958

F1-Score 0.9993 0.9979 0.9956 0.9979

It can be concluded that XGBoost demonstrates a balanced

performance with a notable accuracy rate (0.9978). At the

same time, Random Forest shows superior results, likely due

to its ensemble approach that combines multiple decision

trees for enhanced prediction. Despite its simplicity, K-

Nearest Neighbors performs competitively, underscoring its

efficiency in handling text classification tasks. SVM also

shows high performance, although its training time is

significantly longer. The confusion matrices measure each
model's strengths and weaknesses in predicting XSS threats.

B. Result of Cross-Validation

Cross-validation results provide a robust evaluation of the

models by partitioning the data into subsets, training the

model on some subsets while validating on others, and

repeating this process to ensure that the evaluation metrics are

not biased by a particular data split. The 10-fold cross-

validation accuracy for each model is detailed, showing the

stability of the algorithms.

TABLE IX

CROSS-VALIDATION FOR MODELS

Metric
Random

Forest
XGBoost

K-Nearest

Neighbors
SVM

10-fold CV

Accuracy
0.9979 0.9960 0.9929 0.9942

Test Accuracy 0.9993 0.9978 0.9953 0.9978

C. Result of Training Time

Training time is important, especially for large datasets or

real-time applications. The training time for each model is

recorded and compared to highlight the models’ efficiency.

TABLE X

TRAINING TIME RESULTS FOR MODELS

Metric
Random

Forest
XGBoost

K-Nearest

Neighbors
SVM

Training

Time (s)
80.616 36.221 11.698 544.12

D. Comparison and Result Discussion

The algorithms' comparative analysis focuses on the

advantages and limitations of each approach in the context of

XSS detection models.

1683

TABLE XI

TRAINING TIME RESULT FOR MODELS

Metric
Random

Forest
XGBoost

K-Nearest

Neighbors
SVM

10-fold CV

Accuracy

0.9979 0.9960 0.9929 0.9942

Test

Accuracy

0.9993 0.9978 0.9953 0.9978

Precision 1.0000 0.9990 0.9967 1.0000
Recall 0.9986 0.9967 0.9945 0.9958
F1-Score 0.9993 0.9979 0.9956 0.9979
Training

Time (s)

80.616 36.221 11.698 544.12

Metric Random
Forest

XGBoost K-Nearest
Neighbors

SVM

Referring to Table XI, Random Forest emerges as the top

performer with an accuracy of 99.93%, benefiting from its

ability to manage complex decision boundaries through
ensemble learning. XGBoost follows closely with an accuracy

of 99.78%, showcasing its efficacy in handling linear and

non-linear relationships. K-Nearest Neighbors (KNN),

achieving an accuracy of 99.53%, is a valuable model due to

its simplicity and computational efficiency. SVM also shows

strong performance, though its training time is significantly

longer, which could be a drawback for time-sensitive

applications.

IV. CONCLUSION

This research provides a comprehensive summary of the

primary objectives, methodologies, and techniques employed

in the comparative analysis of machine learning algorithms

for detecting Cross-Site Scripting (XSS) threats in online web

applications The fast-changing nature of web security

requires effective detection systems. This research aimed to

determine how well different machine learning models can

identify XSS attacks and which model is the most effective.

The study used thorough research and careful evaluation to

improve understanding and application of machine learning
in web security

Based on the findings and constraints of this research,

several suggestions are made for future improvements and

further research. Future work should explore advanced feature

extraction techniques like word embeddings and deep

learning-based methods to capture more detailed patterns in

the data. Expanding the dataset to include more samples and

a wider variety of XSS attack patterns will help the models

generalize better. Using techniques like grid search, random

search, or Bayesian optimization for more extensive

hyperparameter tuning can improve model performance.

REFERENCES

[1] OWASP. OWASP Top Ten. Retrieved from Owasp.org website:

https://owasp.org/www-project-top-ten/. 2021.

[2] F. M. M. Mokbal, W. Dan, W. Xiaoxi, Z. Wenbin, and F. Lihua,

“XGBXSS: An Extreme Gradient Boosting Detection Framework for

Cross-Site Scripting Attacks Based on Hybrid Feature Selection

Approach and Parameters Optimization,” Journal of Information

Security and Applications, vol. 58, p. 102813, May 2021,

doi:10.1016/j.jisa.2021.102813.

[3] P. Roy, R. Kumar, P. Rani, and T. S. Joy, “XSS: Cross-site Scripting

Attack Detection by Machine Learning Classifiers,” 2022 11th

International Conference on System Modeling & Advancement

in Research Trends (SMART), pp. 1535–1539, Dec. 2022,

doi:10.1109/smart55829.2022.10046960.

[4] I. K. Thajeel, K. Samsudin, S. J. Hashim, and F. Hashim, “Machine

and Deep Learning-based XSS Detection Approaches: A Systematic

Literature Review,” Journal of King Saud University - Computer and

Information Sciences, vol. 35, no. 7, p. 101628, Jul. 2023,

doi:10.1016/j.jksuci.2023.101628.

[5] R. Banerjee, A. Baksi, N. Singh, and S. K. Bishnu, “Detection of XSS

in web applications using Machine Learning Classifiers,” 2020 4th

International Conference on Electronics, Materials Engineering &

Nano-Technology (IEMENTech), pp. 1–5, Oct. 2020,

doi:10.1109/iementech51367.2020.9270052.

[6] S. H. Shah and S. S. Hussain, "Cross site scripting (XSS) dataset for

deep learning," Kaggle, Jan. 11, 2024. [Online]. Available:

https://www.kaggle.com/datasets/syedsaqlainhussain/cross-site-

scripting-xss-dataset-for-deep-learning/data.

[7] B. Gogoi, T. Ahmed, and H. K. Saikia, “Detection of XSS Attacks in

Web Applications: A Machine Learning Approach,” International

Journal of Innovative Research in Computer Science &

Technology, vol. 9, no. 1, pp. 1–10, Jan. 2021,

doi:10.21276/ijircst.2021.9.1.1.

[8] J. Kaur, U. Garg, and G. Bathla, “Detection of cross-site scripting

(XSS) attacks using machine learning techniques: a review,” Artificial

Intelligence Review, vol. 56, no. 11, pp. 12725–12769, Mar. 2023,

doi:10.1007/s10462-023-10433-3.

[9] Q. Abu Al-Haija, “Cost-effective detection system of cross-site

scripting attacks using hybrid learning approach,” Results in

Engineering, vol. 19, p. 101266, Sep. 2023,

doi:10.1016/j.rineng.2023.101266.

[10] A. E. Mohamed, "Comparative study of four supervised machine

learning techniques for classification", Int. J. Appl. Sci. Technol., vol.

7, no. 2, pp. 5-18, 2017.

[11] A. Hannousse, S. Yahiouche, and M. C. Nait-Hamoud, “Twenty-two

years since revealing cross-site scripting attacks: A systematic

mapping and a comprehensive survey,” Computer Science Review,

vol. 52, p. 100634, May 2024, doi: 10.1016/j.cosrev.2024.100634.

[12] B. Panda, D. Chaturya, I. Sahil, C. Dinesh, and A. Prakash, "Hazard

Identification and Detection using Machine Learning," Shu Ju Cai Ji

Yu Chu Li/Journal of Data Acquisition and Processing, vol. 38, pp.

4418–4427, 2023. doi:10.5281/zenodo.7766139.

[13] A. W. Marashdih, Z. F. Zaaba, K. Suwais, and N. A. Mohd, “Web

Application Security: An Investigation on Static Analysis with other

Algorithms to Detect Cross Site Scripting,” Procedia Computer

Science, vol. 161, pp. 1173–1181, 2019,

doi:10.1016/j.procs.2019.11.230.

[14] T. Chen and C. Guestrin, “XGBoost,” Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

[15] J. Lu, Z. Wei, Z. Qin, Y. Chang, and S. Zhang, “Resolving Cross-Site

Scripting Attacks through Fusion Verification and Machine Learning,”

Mathematics, vol. 10, no. 20, p. 3787, Oct. 2022,

doi:10.3390/math10203787.

[16] J. Harish Kumar and J. J Godwin Ponsam, “Cross Site Scripting (XSS)

vulnerability detection using Machine Learning and Statistical

Analysis,” 2023 International Conference on Computer

Communication and Informatics (ICCCI), pp. 1–9, Jan. 2023,

doi:10.1109/iccci56745.2023.10128470.

[17] D. A. Prasetio, K. Kusrini, and M. R. Arief, “Cross-site Scripting

Attack Detection Using Machine Learning with Hybrid Features,”

Jurnal Infotel, vol. 13, no. 1, pp. 1–6, Feb. 2021,

doi:10.20895/infotel.v13i1.606.

[18] R. Alhamyani and M. Alshammari, “Machine Learning-Driven

Detection of Cross-Site Scripting Attacks,” Information, vol. 15, no. 7,

p. 420, Jul. 2024, doi: 10.3390/info15070420.

[19] A. Kumar and I. Sharma, “Performance Evaluation of Machine

Learning Techniques for Detecting Cross-Site Scripting Attacks,”

2023 11th International Conference on Emerging Trends in

Engineering & Technology - Signal and Information Processing

(ICETET - SIP), pp. 1–5, Apr. 2023, doi: 10.1109/icetet-

sip58143.2023.10151468.

[20] E. H. Tusher, M. A. Ismail, M. A. Rahman, A. H. Alenezi, and M.

Uddin, “Email Spam: A Comprehensive Review of Optimize

Detection Methods, Challenges, and Open Research Problems,” IEEE

Access, vol. 12, pp. 143627–143657, 2024,

doi:10.1109/access.2024.3467996.

1684

[21] N. F. Idris, M. A. Ismail, M. I. M. Jaya, A. O. Ibrahim, A. W. Abulfaraj,

and F. Binzagr, “Stacking with Recursive Feature Elimination-

Isolation Forest for classification of diabetes mellitus,” PLOS ONE,

vol. 19, no. 5, p. e0302595, May 2024,

doi:10.1371/journal.pone.0302595.

[22] N. S. Nordin and M. A. Ismail, “A hybridization of butterfly

optimization algorithm and harmony search for fuzzy modelling in

phishing attack detection,” Neural Computing and Applications, vol.

35, no. 7, pp. 5501–5512, Nov. 2022, doi: 10.1007/s00521-022-

07957-0.

1685

