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Abstract—The Traveling Salesman Problem (TSP) represents an extensively researched challenge in combinatorial optimization. 

Genetic Algorithms (GAs), recognized for their nature-inspired approach, stand as potent heuristics for resolving combinatorial 

optimization problems. Nevertheless, GA exhibits inherent deficiencies, notably premature convergence, which diminishes population 

diversity and consequential inefficiencies in computational processes. Such drawbacks may result in protracted operations and potential 

misallocation of computational resources, particularly when confronting intricate NP-hard optimization problems. To address these 

challenges, the current study underscores the pivotal role of the selection operator in ameliorating GA efficiency. The proposed 

methodology introduces a novel parameter operator within the Stochastic Universal Selection (SUS) framework, aimed at constricting 

the search space and optimizing genetic operators for parent selection. This innovative approach concentrates on selecting individuals 

based on their fitness scores, thereby mitigating challenges associated with population sorting and individual ranking while 

concurrently alleviating computational complexity. Experimental results robustly validate the efficacy of the proposed approach in 

enhancing both solution quality and computational efficiency, thereby positioning it as a noteworthy contribution to the domain of 

combinatorial optimization. 
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I. INTRODUCTION

The Traveling Salesman Problem (TSP) is one of the 

extensively researched challenges in combinatorial 

optimization. The problem involves a given set of cities with 

known distances between them, aiming to determine the 

shortest path that visits each city exactly once and returns to 

the starting city. Despite being classified as NP-Hard, the 

constraint remains that the traveling salesman must traverse 

each city once and conclude the journey at the initial city [1], 
[2], [3]. 

Two predominant approaches exist for addressing the TSP. 

The first involves exact algorithms characterized by 

exhaustive search methods, providing a best solution. This 

approach strives for precision, albeit at the cost of 

computational intensity. The second method, known as 

heuristic algorithms or approximate methods, encompasses 

algorithms that yield optimized or specific solutions without 
guaranteeing optimality for all problem instances [3], [4]. Due 

to the computational demands associated with exact 

algorithms, heuristics algorithms, such as Genetic Algorithms 

(GA), become preferable as they offer insights into the 

magnitude of suboptimal solutions attainable within 

reasonable time frames [5], [6], [7], [8].  

The GA is a widespread evolutionary method for 

efficiently working out the TSP [3], [5]. Rooted in the survival 

of the fittest principle, the GA generates superior solutions 

from a population of potential solutions for TSP. Initially, a 

random population of individuals is generated, with only the 
most suitable individuals surviving and reproducing. The GA 

iteratively creates new chromosomes using crossover and 

mutation operators until predefined conditions, such as 

convergence or a fixed time, are met. The objective is to 

uncover solutions with outstanding fitness values to pursue 

the best solution. A notable feature of the GA is its ability to 
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investigate the entire search space with the assistance of the 

whole population [9], [10]. An important observation is that 

good sub-solutions in a GA become increasingly similar as 

they evolve. Consequently, computations of good sub-

solutions in later generations often duplicate earlier efforts. 

The challenge is to eradicate these redundant computations in 

the early generations of a GA, significantly reducing 

computation time while maintaining or improving the result's 

quality [10]. 

Hence, finding a trade-off between exploration (i.e., 
exploring promising areas of the search space) and 

exploitation (i.e., utilizing existing identified genetic 

operators to search for the optimum) is essential. Therefore, 

the performance of the GA is highly dependent on two factors 

[10], [11]. The first factor is selection, which is used to choose 

the set of chromosomes for the mating process, and the second 

factor includes genetic operators (crossover and mutation) 

employed to create new individuals and introduce random 

changes. 

The main objective of this study is to enhance the selection 

operator, which plays a significant role in the GA process. A 
novel parameter in Stochastic Universal Selection (SUS) is 

proposed with the intention of effectively narrowing down the 

search space and exploiting the genetic operators of promising 

candidate solutions. The aim is to enhance result quality 

within a reasonable time frame. The study rigorously 

evaluates and compares the performance of the proposed 

method, the enhanced GA (EGA), against the traditional GA. 

Additionally, the EGA undergoes testing with various 

problem sizes from the TSPLIB dataset [12]. 

The manuscript is structured into four sections. Section 1 

thoroughly reviews related works, critically examining the 
existing literature in the field. Section 2 furnishes an 

exhaustive description of the EGA methodology, 

encompassing a detailed exposition of the novel parameter 

operator. Section 3 presents experiments and their 

corresponding results, comprehensively analyzing the 

empirical findings. The concluding section, Section 4, 

encapsulates the study's termination, offering summative 

insights and proposing potential directions for future research 

endeavors. 

Research in GAs focuses on reducing computation time 

and improving the worth of the final product. Improving the 

efficiency of GA is a crucial pursuit, particularly when 
addressing complex optimization problems. The selection 

operator is pivotal in this enhancement, serving as a vital 

exploratory tactic within the search space and guiding the 

algorithm toward convergence [11]. Moreover, genetic 

operators such as crossover and mutation significantly 

facilitate the introduction of random alterations and the 

generation of new individuals [10]. Numerous studies and 

applications of GAs, employing both sequential and parallel 

approaches, have been elucidated with the goal of diminishing 

the time required to identify a viable solution and augmenting 

the quality of the final product. Parallel GAs, hybrid GAs, and 
substantial modifications to the evolutionary process or GA 

design represent some strategies explored in this endeavor 

[13]. These methodologies aim to address the dual objectives 

of computational efficiency and optimization efficacy. 

Zakir H. Ahmed [14] conducted an examination and 

comparison of three crossover types—Sequential 

Constructive Crossover (SCX), Generalized Npoint 

Crossover (GNX), and Edge Re-combination Crossover 

(ERX)—for solving the TSP. The empirical findings of this 

study demonstrate that SCX yields a higher quality solution 

than GNX and ERX. Aranganayaki [15] introduced a novel 

approach for solving the TSP using GA, enhancing the 

Sequential Constructive Crossover (SCX) method. This 

improved method efficiently generates a high-quality solution 

within a realistic timeframe by selecting the minor edge from 

the parent and developing a new child or retaining the same 
parent, contingent on the edge selection. In this study, the 

researcher endeavored to minimize runtime by executing this 

method once and utilizing SCX to achieve a high-quality 

solution. In addressing the TSP, Rani, and Kumar [16] 

employed the Roulette Wheel and Stochastic Universal 

Sampling methods, complemented by the Order Crossover 

(OX) technique. Notably, the Stochastic Universal Sampling 

method yielded satisfactory results when dealing with small 

population sizes. However, the GA demonstrated improved 

solution quality for larger population sizes by employing the 

Stochastic Universal Sampling method in conjunction with 
the Elitism Method. 

Employing an efficient mutation strategy, K. Rani and V. 

Kumar [16] introduced an innovative approach to parent 

selection for the TSP. This method randomly selects two cities 

from the solution, followed by an iterative heuristic transpose 

procedure. Three operators, namely transpose, shift-and-

insert, and swap, are utilized in the subsequent heuristic steps. 

The GA with Efficient Mutation (GA-EM) was then 

compared with four contemporary, efficient algorithms. The 

results demonstrated superior accuracy performance of GA-

EM across all tested TSP instances. 
Proposed by A. Hussain and Y. Muhammad [10], Split 

Rank Selection (SRS) introduces an alternative selection 

strategy that adeptly navigates the delicate balance between 

exploration and exploitation. This method not only resolves 

the fitness scaling issue but also maintains sufficient selection 

pressure throughout the entire selection process. Within this 

framework, individuals undergo ranking based on their fitness 

values, ranging from the worst to the best. Notably, even 

individuals with identical fitness values receive distinct 

rankings. SRS has exhibited commendable results, 

particularly in scenarios characterized by a limited population 

size. Phuang [17] proposed an algorithm for solving the 
symmetric TSP. The algorithm is based on the galaxy-based 

search algorithm and employs a novel technique known as the 

clockwise search process. This novel approach is intended to 

conduct a thorough search within promising areas. 

Furthermore, the algorithm uses the hill-climbing local search 

algorithm to improve neighbor search capabilities. Rigorous 

testing with relevant data sets demonstrates the proposed 

algorithm's efficacy. Gao [18] introduced an innovative 

algorithm that diverges from the traditional GA by utilizing 

regular random numbers for determining crossover and 

mutation locations. Drawing inspiration from the weed 
algorithm, this approach incorporates a typical distribution 

sequence as a library of random numbers. The exchange and 

different locations of genetic factors are retrieved from this 

library and applied iteratively to address the TSP. MATLAB 

tests demonstrate that the algorithm proposed in this study 

exhibits certain advantages over the conventional genetic 
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algorithm, particularly in path optimization and runtime 

efficiency. 

Islam et al. [19] introduced a parallel GA for the TSP using 

the Map/Reduce Framework on a Hadoop cluster to enhance 

solution quality. Parallel GA was intended to reduce TSP 

runtime and expedite execution. This study incorporates three 

distinct crossover methods: Order Crossover, Two Point 

Crossover, and Partially Matched Crossover. The 

implementation of GA in parallel is facilitated through the 

Map/Reduce framework, allowing the algorithm to handle 
extensive datasets effectively. The storage of large datasets is 

managed using the Hadoop Distributed File System (HDFS). 

II. MATERIAL AND METHODS 

A. The Proposed Enhanced Genetic Algorithm 

Broadly, the EGA proposed herein adopts a stochastic 

methodology, strategically exploring optimal solutions for the 

TSP within a specified timeframe. The principal objective lies 

in augmenting the GA's efficacy and elevating solution 
quality for TSP instances. The EGA delineated in this study 

encompasses four pivotal steps, elucidated in Fig 1. The 

ensuing sub-sections furnish a meticulous exposition of these 

four stages. 

 

 
Fig. 1  The enhanced genetic algorithm steps 

B. Population Initialization 

The algorithm commences by randomly initializing the 

population, generating an initial state characterized by 

randomness that progressively evolves towards a more 

structured state, thereby rendering it well-suited for 

algorithmic evaluation. This population encompasses the 

potential solutions to a given problem, illustrated in the 

context of the traveling salesman problem, where each 

solution is denoted as a chromosome or an individual. 

Ensuring diversity within the population is imperative, with a 

stipulation that each member differs from others and that the 
population size is appropriately controlled. The length of an 

individual is typically determined by the number of nodes or 

genes in the problem, as illustrated in Fig. 2 [20]. 

 
Fig. 2  A population of individuals 

C. Evaluation 

The evaluation function, commonly known as the fitness 

function, functions as a heuristic measure to estimate solution 
quality. In the fitness function phase, each individual solution 

generated in the preceding step is assigned a fitness value, 

with this value computed through techniques tailored to user 

specifications [21]. One widely adopted method is 

represented by Equation 1, designed to determine the 

minimum length of a Hamiltonian tour. In this context, a 

Hamiltonian tour is defined as a closed path systematically 

visiting each n node in a graph G exactly once. Therefore, the 

optimal solution to the TSP requires a permutation of the node 

indices 1,2,…,n ensuring the minimum length (〖length〗
_((min))). In this equation, d_((i)(i+1)) denotes the distance 

between nodes i and (i+1), while d_((i)(1)) signifies the 

distance between node n and the first node [22], [23], [24] 

 �����ℎ(�	
) = ∑ �(	)(	��) + �(
)(�)
��	��  (1) 
D. Selection of New Candidate 

The selection phase is pivotal in guiding the GA toward 

optimal solutions and effectively limiting the search space. Its 

objective is to leverage the favorable characteristics of 

promising candidate solutions, progressively enhancing their 

quality. Theoretically, this iterative process will lead the GA 

toward an appropriate and satisfactory solution for the 

optimization problem. Despite extensive research spanning 
years, there have yet to be universally applicable guidelines 

or robust theoretical foundations for selecting an optimal 

operator for each problem. This lack of guidance poses a 

significant challenge, as suboptimal operator selection can 

detrimentally impact both the speed and reliability of the GA's 

performance [25]. 

The proportionate selection operator, a prominent method 

in the selection phase, entails choosing individuals based on 

their fitness values. This operator can be implemented 

through diverse approaches, such as the Roulette Wheel and 

SUS. In contrast, the ordinal-based selection operator selects 

individuals based on their orderliness within the population. 
In ordinal selection, the selection pressure remains 

independent of fitness, assigning individuals with higher 

fitness to a greater probability of participating in the mating 

process for generating the next generation. Consequently, this 

mechanism enables the GA to focus on promising regions 

within the search space. Noteworthy methods falling under 

this category include the Exponential Rank Selection operator, 

Linear Ranking Selection operator, and Tournament Selection 

operator [25], [26], [27], [28]. 

1) Roulette wheel selection:  Roulette Wheel Selection 

(RWS), also recognized as Fitness Proportional Selection and 

introduced by Holland in 1975, is a stochastic method widely 

employed in GAs for parent selection [26], [29]. This 
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mechanism selects individuals based on a probability directly 

proportional to their fitness scores. 

In the context of RWS, the selection process closely 

mirrors the functionality of a roulette wheel, where each 
individual in the population is assigned a distinct segment on 

the wheel. The probability of an individual's selection is 

contingent upon the ratio of their fitness score to the total 

fitness of the population. In simpler terms, individuals with 

higher fitness scores are allocated more significant segments 

on the wheel, augmenting their likelihood of being chosen as 

parents during the evolutionary process [30]. It is important 

to note that this mechanism may overlook influential 

individuals and result in biased selection towards high fitness, 

not assuring that the best individual will be chosen for the 

subsequent generation [30]. 
RWS exhibits an O(n)2 time complexity involving n loops 

(generations), each iterating through the population. This 

elucidates the frequency with which the selection process is 

reiterated for each generation, underscoring the 

computational overhead associated with this method [26], 

[29], [31], [32]. 

2) Tournament Selection:  In Tournament Selection (TS), 

a set of n individuals is randomly chosen from the broader 

population, instigating a competitive scenario among the 

selected individuals. The victor, distinguished by the highest 

fitness, is then incorporated into the mating pool for the 

subsequent generation population. The mechanism of TS is 

depicted in Fig. 3, wherein the tournament size (Ts) is 

designated as three, signifying that three chromosomes 

engage in competition, with the superior chromosome 

selected to reproduce the fittest individual [6], [10], [28]. 
 

Fig. 3  A population of Individuals 

 

Although the RWS method exhibits greater sophistication 

compared to TS, its practical application can be excessively 

time-consuming or virtually unfeasible in scenarios with large 

populations or parallel population distributions [28], [33]. The 

time complexity of TS remains O(nlogn). 

3) Rank Selection:  The population undergoes sorting 

through Rank Selection (RS), a methodology grounded in 

fitness worth. In this process, the fitness assignment to each 

individual is determined by its rank, rendering the actual 
objective value inconsequential [10], [20], [28]. RS offers 

advantages by addressing scaling issues inherent in 

proportional fitness assignment, providing a robust 

mechanism for controlling selective pressure, and ensuring 

uniform scaling across the population. However, a notable 

disadvantage is the additional overhead introduced by the 

sorting process [15], [34]. Whether employing a Linear Rank 

or Exponential Rank mapping function, the fundamental 

concept of rank-based selection remains consistent. 

RS comprises two distinct processes. The initial step 

involves sorting individuals within the population, with the 

time complexity, assuming the use of an optimal sorting 

technique, being O(nlogn). The second step is RS, 

characterized by an O(nlogn) time complexity. 

4) Stochastic Universal Selection:  The SUS proposed by 

Baker in 1987 [35], is a variant of proportionate selection 

operator akin to RWS, with a focus on alleviating certain 

drawbacks associated with RWS, particularly in scenarios 

involving the selection of multiple parents. SUS maintains 

selection based on the fitness values of individuals within the 

population. In contrast to assigning each individual a segment 
on a conventional roulette wheel, SUS employs a single, 

elongated roulette wheel, with each segment precisely equal 

to the corresponding fitness, mirroring the method of roulette-

wheel selection. Subsequently, equally spaced pointers, 

numbering the same as the individuals to be selected, are 

positioned along the wheel. 

Fig. 4 illustrates the procedure of selecting individuals 

through the SUS method, where the variable N pointers 

denote the number of individuals to be chosen. The initial 

position of the pointer is determined by a randomly generated 

number within the range [0,1∕Ν  Pointer], and the intervals 

between the pointers are set at 1∕Ν  Pointer [25]. 
 

 
Fig. 4  Stochastic Universal Selection 

 

The primary improvement of SUS over traditional RWS 

lies in its ability to ensure a more uniform and consistent 

selection of individuals, mitigating the risk of 

disproportionately favoring high-fitness individuals. Multiple 

evenly spaced pointers enhance the probability of selecting 

individuals across a broader fitness spectrum [6]. Due to the 
selection of one element through the population after the 

summation of fitness values, the time complexity of SUS is 

generally linear O(n), rendering it an efficient and widely 

adopted method in GA. SUS proves especially beneficial 

when selecting multiple parents simultaneously, fostering 

diversity in the mating pool and contributing to the overall 

exploration of the solution space [31]. 

5) Proposed Selection Operator:  Various selection 

methods aim to choose a subset of individuals based on their 

fitness values rather than considering the entire population 

[26]. The Selection stage can be time-consuming, particularly 

with a large population size [4], [36], [37], [38]. RS 

consistently demonstrates superior solution quality [25], [28], 

[37]. In RS, the population is sorted, with the best fitness 
corresponding to position 0 and the worst fitness associated 

with position N. Selecting this position number results in a 

high fitness proportion. RS involves two steps: initially 

sorting the population size list based on fitness values and 

then ranking the individuals. The dual-process nature of RS, 
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with its two sorting operations, contributes to increased 

computational complexity. Previous research [33], [35] has 

identified sorting techniques with a time complexity of 

O(nlogn). SUS exhibits lower time complexity than RS as it 

chooses parents randomly, eliminating the need for a sorting 

process. However, this randomness introduces the risk of 

selecting lower-quality parents [28]. 

The primary objective of this study is to enhance the 

performance of the GA by introducing a novel parameter in 

SUS, aimed explicitly at improving solution quality for the 
TSP within a reasonable timeframe. The conceptual 

foundation of this innovative selection operator revolves 

around identifying the optimal fitness value among pre-

established solutions. A designated proportion (P) is extracted 

from the optimal fitness in this phase. Subsequently, this 

proportion (P) is added to the optimal fitness, establishing a 

new fitness value. Then, rather than dividing the fitness value 

of the nominated individual by the total number of organisms 

(population size), as in SUS, the fitness value of the selected 

individual is divided by the new fitness value. For example, 

consider Table 1, which encompasses all pre-established 
solutions, and assume the optimal fitness among them is 100. 

Suppose we extract 50% from this optimal fitness value, 

denoting P as 50. In that case, we subsequently add this 

proportion (P) to the optimal fitness value, establishing a new 

fitness value equal to 150. 

TABLE I 

THE PROBABILITY OF THE SELECTION (PS) USING THE ORIGINAL SUS AND 

NEW SELECTION OPERATOR 

No Individual Fitness 

Value 

Original Sus New Selection 

Operator 

1 200 200/830=0.240 200/150=1.33 
2 140 140/830=0.168 140/150=0.93 
3 120 120/830=0.144 120/150=0.80 
4 100 100/830=0.120 100/150=0.66 
5 270 270/830=0.325 270/150=1.80 

SUM 830 0.990 5.22 

 

The distinction between SUS and the proposed selection operator 

lies in the methodology of individual selection. In the original SUS, 
the probability for individual i to be selected for mating in a 

population of size u is computed as in Equation 2 [20], [37]. 

 ��(�) = ��
∑ ��������

 (2) 

where j=1,2...u, f_i represents the fitness value of an 

individual i, typically selected through a random process, 

while f_j is the total fitness of the population. 

While the probability for individual i to be selected for 

mating in a population of size u is computed in the proposed 

selection operator is the fitness value of an individual as by 

Equation 3: 

 ��(�) = �(	)�� !
�"#$%�&  (3) 

where f(i)rand represents the fitness, typically selected 

randomly, fbest+p is the best fitness in the present population, 

and p is the proportion added to the best fitness. Normally, p 

is in the order of 10%–50%; however, its value is contingent 

upon the representation of individual solutions and the 
number of individual solutions selected for generating the 

next generation 

The objective of choosing the new fitness is to move 

towards optimal solutions and effectively narrow the search 

space, as shown in Equation 4. This novel selection operator 

randomly selects any individual with a value less than 1, as 

shown in Fig. 5. Although similar to RS, it operates without 

the need for sorting. In contrast to the original SUS that selects 

any individual, the outcome may vary based on the initial 

selection. Additionally, time complexity calculations treat 

these as distinct steps. After finding the best fitness within the 

population, the time complexity is O(n). Similarly, the time 
complexity of the new selection operator for selection is O(n). 

The proposed selection
= 45��� 6������ 78�9�, �6 0 < �� < 1

>?@�� 6������ 78�9�, �6 �� A 1  
(4) 

This implies that the proposed approach will randomly 

choose fitness values from any number within the range [0,1]. 

Subsequently, all the remaining individuals are considered 

inferior, characterized by fitness values equal to 1 or greater. 

 

Fig. 5  The proposed selection operator 

E. Genetic Operators 

Genetic operators consist of the Crossover Operation and 

Mutation Operation. These operations promote diversity and 

drive the population towards novelty, thereby augmenting the 

quality of solutions in the new generation through the iterative 

application of genetic operators [20]. 

1) Crossover operation:  Crossover Operations (CX), a 

pivotal operator in GA, generates a new offspring by 

combining genetic material from more than one parent. Order 

Crossover (OX), Single Point Crossover, Two Point 

Crossover, Cycle Crossover, and Partially Mapped Crossover 

(PMX) are all instances of CX [20]. In this study, the One-

Point Crossover method, traditionally employed in GA, was 

utilized. The initial step involves selecting two parents for 

each child. Subsequently, the GA randomly selects a 
crossover point and initiates the transfer of parental genes to 

the offspring. The One-Point Crossover Operator is illustrated 

in Fig. 6, where genes to the left of the crossover point are 

inherited from parent one, while genes to the right are 

inherited from parent two [20], [30]. 

 

Fig. 6  One-Point of Crossover Operator 
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2) Mutation operation:  The Mutation Operator plays a 

pivotal role in maintaining population diversity and 

introducing variations to individual solutions. A spectrum of 

mutation operations, such as Swap Mutation, Insert Mutation, 

and Scramble Mutation [20], [39], can be employed, each 

directed at a single solution (genotype). Specifically, Swap 

Mutation involves the random selection of a location within 

the solution, introducing changes and generating new values 

that are not present in the original sequence, potentially 

leading to improved results. In the context of this study, the 
Swap Mutation Operator is implemented to counter premature 

convergence and enhance population diversity [40]. In Swap 

Mutation, two cities within the tour are randomly selected, 

and a subsequent exchange of these two chosen cities takes 

place (see Fig. 7) [20], [30]. 

3)  

 
Fig. 7  Swap Mutation Operator Sampling 

III. RESULTS AND DISCUSSION 

This study conducted computational experiments using 
five distinct cases from the Traveling Salesman Problem 

Library (TSPLIB) [12]. The primary aim was to assess the 

performance of the EGA in comparison to the traditional GA. 

Additionally, symmetric TSP was employed in computations 

and analyses involving a destination matrix. This ensures that 

the travel fee from city A to city B is identical to that from B 

to A, facilitating straightforward distance verification. The 

selection of parameters is a critical consideration as it directly 

impacts both the execution time and the quality of the solution. 

Table 2 delineates these parameters, including the dataset 

extracted from the TSPLIB library. 

The algorithm was implemented in C programming 
language and executed on a server featuring an Intel Xeon 

Processor E5-2620 V2 @ 2.10GHz, 8GB RAM, and the 

Linux operating system. The dataset and parameters are 

essential to the testing of the GA. Modifying these parameters 

directly impacts solution quality and the algorithm's runtime. 

As a stochastic algorithm, GA derives its complexity from 

factors such as the number of generations, population size, 

chromosome representation, and fitness function calculation. 

The sequential time execution of GA is determined using the 

high-resolution function gettimeofday(). 

TABLE III 

PARAMETERS OF THE EGA AND TRADITIONAL GA 

Parameters Value 

TSP Name gr120, brazil58, gr24, si175 
and pa561 

Population Size 1024, 2048, 4096 
Type of Parent Selection SUS and proposed selection 

operator 
The number of iterations (as ending 

criterion) 
1000 

Type of Crossover One-Point 

Type of Mutation Swap 

 

The experiment conducted ten trials on each TSP dataset to 

assess solution quality and time complexity. Subsequently, 

the average tour length and execution time were computed, 

and results obtained using the SUS method (the original 

algorithm) and the proposed selection operator were 

compared. The trade-off between average tour length and 

average execution time is detailed in Tables 3 and illustrated 

in Fig. 8 and Fig. 9. 

TABLE IIIII 

AVERAGE EXECUTION TIME (IN SECONDS) AND AVERAGE TOUR LENGTH 

USING THE PROPOSED SELECTION OPERATOR AND SUS FOR SELECTION 

TSP 

Name 

Population 

Size 

Traditional GA EGA 

Tour 

length 

Execution 

time(s) 

Tour 

length 

Execution 

time(s) 

gr120 

1024 1323 0.9 1258 0.85 

2048 1314 2.2 1313 2.1 

4096 1361 11.9 1320 10.6 

brazil58 

1024 99887 4.0 33695 3.7 

2048 103250 18.3 70800 13.4 

4096 105050 44.1 84443 36.7 

gr24 

1024 49281 13.8 27919 11.2 

2048 46898 45.4 29275 43.6 

4096 48955 204.7 29959 161.6 

si175 

1024 45068 16.9 33652 15.0 

2048 46450 69.1 33590 66.2 

4096 46968 168.4 34803 156.7 

pa561 

1024 25814 636.6 10637 619.7 

2048 25405 1278.8 16905 1232.0 

4096 25359 2626.8 18191 2539.5 

 

Table 3 presents the results of experiments conducted on 

the traditional GA and EGA. The primary objectives of these 

experiments were to determine the average tour length and 

average execution times using both the traditional GA and the 
EGA. Furthermore, the performance evaluation encompassed 

five TSP samples (datasets) with 24, 58, 120, 175, and 561 

cities (indicating the length of the solution) and population 

sizes of 1024, 2048, and 4096 for each dataset. The execution 

involved 10 trials on each TSP dataset. 

Figure 8 depicts the representations of the five TSP 

samples, where cities are symbolized by the columns, and the 

solutions are represented by the lengths of the columns. 

Various population sizes are considered for both the 

traditional GA and the EGA. Meanwhile, Fig. 9 illustrates the 

representations of average execution times for both the 
traditional GA and the EGA at population sizes of 1024, 2048, 

and 4096. 

Fig. 8  The results of the tour length of both the traditional GA and EGA at 

population sizes of 1024, 2048, and 4096 
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Fig. 9  The results of Average execution time(s) of both the traditional GA 

and EGA at population sizes of 1024, 2048, and 40962048, and 4096 
 

The statistical analysis also evaluates the significant 

difference between the traditional GA and the EGA. The t-test, 

a commonly utilized statistical method in research [41], is a 

fundamental tool for comparing means and discerning 

statistically significant differences between two groups. This 

study used the t-test to assess the significance of differences 

between the traditional GA and the EGA, focusing on key 

metrics such as execution time and tour length. The 

significance level, denoted as α, was set at 0.05, a standard 

threshold for hypothesis testing. A significant difference was 
concluded between the traditional GA and the EGA if the p-

value was more remarkable than α. Conversely, if the p-value 

was less than α, no discernible difference existed between the 

two algorithms. From the t-test, it was found that all the p-

values for both execution time and tour length were greater 

than α. This rigorous statistical analysis provided a robust 

foundation for evaluating the efficacy of the enhancements 

incorporated into the EGA.   

The results of these experiments underscore the efficacy of 

both algorithms in addressing the challenges posed by the 

TSP. Notably, both traditional GA and the EGA delivered 

satisfactory results, especially when confronted with smaller 
population sizes and a limited number of cities. Nevertheless, 

as the complication of the problem increased with a larger 

number of cities, the EGA consistently outperformed the 

traditional GA. This persistent superiority of the EGA over 

the traditional GA indicates substantial enhancements in 

result quality, especially while maintaining the running time, 

as depicted in Table 3, Fig. 8, and Fig. 9. 

IV. CONCLUSION 

Both selection and genetic operators play a pivotal role in 

determining the functioning of a GA, as these are two 

fundamental factors essential to its functionality. The first 

factor, selection, is responsible for choosing the set of 

chromosomes for mating. In contrast, the additional factor 

involves genetic operators (crossover and mutation), which 

are employed to generate new individuals and introduce 

random changes. This article introduces a novel parameter in 

SUS, aiming to effectively narrow the search space and 

optimize the genetic operators for selecting promising 

candidate solutions (parent selection). Consequently, the 
proposed approach selects individuals based on their fitness 

scores, addressing population sorting and individual ranking 

issues while mitigating computational complexity. To 

evaluate the performance of the proposed operator, 

experiments were handled with both the traditional GA and 

the EGA on a well-known TSPLIB benchmark dataset, 

encompassing various problem sizes. The EGA consistently 

outperforms the sequential traditional GA in terms of solution 

quality. These findings suggest potential avenues for future 

research, exploring the algorithm's behavior with larger 

datasets and enhanced genetic operators (crossover and 
mutation). Additionally, the presented study could be 

expanded to enhance solution quality by investigating the 

association between the proportion included to the best fitness 

and population size to achieve improved consistency. It is 

hoped that the proposed method can be utilized in different 

areas such as image recognition [42], [43], cyber security [44], 

[45], [46], [47], healthcare [48], [49] and machine learning 

[50], [51]. 
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