
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Optimizing Genetic Algorithm by Implementation of An Enhanced

Selection Operator

Mohammed BinJubier a,b, Mohd Arfian Ismail a,c,*, Muhaini Othman d, Shahreen Kasim d, Hidra Amnur e
a Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia

b Engineering Faculty, Sana’a Community College, Sana’a, Yemen
c Centre of Excellence for Artificial Intelligence & Data Science, Universiti, Al-Sultan Pahang, Lebuhraya Tun Razak, Gambang, Malaysia

d Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Johor, Malaysia
e Department of Information Technology, Politeknik Negeri Padang, Padang, Indonesia

Corresponding author: *arfian@umpsa.edu.my

Abstract—The Traveling Salesman Problem (TSP) represents an extensively researched challenge in combinatorial optimization.

Genetic Algorithms (GAs), recognized for their nature-inspired approach, stand as potent heuristics for resolving combinatorial

optimization problems. Nevertheless, GA exhibits inherent deficiencies, notably premature convergence, which diminishes population

diversity and consequential inefficiencies in computational processes. Such drawbacks may result in protracted operations and potential

misallocation of computational resources, particularly when confronting intricate NP-hard optimization problems. To address these

challenges, the current study underscores the pivotal role of the selection operator in ameliorating GA efficiency. The proposed

methodology introduces a novel parameter operator within the Stochastic Universal Selection (SUS) framework, aimed at constricting

the search space and optimizing genetic operators for parent selection. This innovative approach concentrates on selecting individuals

based on their fitness scores, thereby mitigating challenges associated with population sorting and individual ranking while

concurrently alleviating computational complexity. Experimental results robustly validate the efficacy of the proposed approach in

enhancing both solution quality and computational efficiency, thereby positioning it as a noteworthy contribution to the domain of

combinatorial optimization.

Keywords— Genetic algorithm; traveling salesman problem; selection operator.

Manuscript received 5 May 2024; revised 24 Aug. 2024; accepted 11 Sep. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) is one of the

extensively researched challenges in combinatorial

optimization. The problem involves a given set of cities with

known distances between them, aiming to determine the

shortest path that visits each city exactly once and returns to

the starting city. Despite being classified as NP-Hard, the

constraint remains that the traveling salesman must traverse

each city once and conclude the journey at the initial city [1],
[2], [3].

Two predominant approaches exist for addressing the TSP.

The first involves exact algorithms characterized by

exhaustive search methods, providing a best solution. This

approach strives for precision, albeit at the cost of

computational intensity. The second method, known as

heuristic algorithms or approximate methods, encompasses

algorithms that yield optimized or specific solutions without
guaranteeing optimality for all problem instances [3], [4]. Due

to the computational demands associated with exact

algorithms, heuristics algorithms, such as Genetic Algorithms

(GA), become preferable as they offer insights into the

magnitude of suboptimal solutions attainable within

reasonable time frames [5], [6], [7], [8].

The GA is a widespread evolutionary method for

efficiently working out the TSP [3], [5]. Rooted in the survival

of the fittest principle, the GA generates superior solutions

from a population of potential solutions for TSP. Initially, a

random population of individuals is generated, with only the
most suitable individuals surviving and reproducing. The GA

iteratively creates new chromosomes using crossover and

mutation operators until predefined conditions, such as

convergence or a fixed time, are met. The objective is to

uncover solutions with outstanding fitness values to pursue

the best solution. A notable feature of the GA is its ability to

1643

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1643-1650

investigate the entire search space with the assistance of the

whole population [9], [10]. An important observation is that

good sub-solutions in a GA become increasingly similar as

they evolve. Consequently, computations of good sub-

solutions in later generations often duplicate earlier efforts.

The challenge is to eradicate these redundant computations in

the early generations of a GA, significantly reducing

computation time while maintaining or improving the result's

quality [10].

Hence, finding a trade-off between exploration (i.e.,
exploring promising areas of the search space) and

exploitation (i.e., utilizing existing identified genetic

operators to search for the optimum) is essential. Therefore,

the performance of the GA is highly dependent on two factors

[10], [11]. The first factor is selection, which is used to choose

the set of chromosomes for the mating process, and the second

factor includes genetic operators (crossover and mutation)

employed to create new individuals and introduce random

changes.

The main objective of this study is to enhance the selection

operator, which plays a significant role in the GA process. A
novel parameter in Stochastic Universal Selection (SUS) is

proposed with the intention of effectively narrowing down the

search space and exploiting the genetic operators of promising

candidate solutions. The aim is to enhance result quality

within a reasonable time frame. The study rigorously

evaluates and compares the performance of the proposed

method, the enhanced GA (EGA), against the traditional GA.

Additionally, the EGA undergoes testing with various

problem sizes from the TSPLIB dataset [12].

The manuscript is structured into four sections. Section 1

thoroughly reviews related works, critically examining the
existing literature in the field. Section 2 furnishes an

exhaustive description of the EGA methodology,

encompassing a detailed exposition of the novel parameter

operator. Section 3 presents experiments and their

corresponding results, comprehensively analyzing the

empirical findings. The concluding section, Section 4,

encapsulates the study's termination, offering summative

insights and proposing potential directions for future research

endeavors.

Research in GAs focuses on reducing computation time

and improving the worth of the final product. Improving the

efficiency of GA is a crucial pursuit, particularly when
addressing complex optimization problems. The selection

operator is pivotal in this enhancement, serving as a vital

exploratory tactic within the search space and guiding the

algorithm toward convergence [11]. Moreover, genetic

operators such as crossover and mutation significantly

facilitate the introduction of random alterations and the

generation of new individuals [10]. Numerous studies and

applications of GAs, employing both sequential and parallel

approaches, have been elucidated with the goal of diminishing

the time required to identify a viable solution and augmenting

the quality of the final product. Parallel GAs, hybrid GAs, and
substantial modifications to the evolutionary process or GA

design represent some strategies explored in this endeavor

[13]. These methodologies aim to address the dual objectives

of computational efficiency and optimization efficacy.

Zakir H. Ahmed [14] conducted an examination and

comparison of three crossover types—Sequential

Constructive Crossover (SCX), Generalized Npoint

Crossover (GNX), and Edge Re-combination Crossover

(ERX)—for solving the TSP. The empirical findings of this

study demonstrate that SCX yields a higher quality solution

than GNX and ERX. Aranganayaki [15] introduced a novel

approach for solving the TSP using GA, enhancing the

Sequential Constructive Crossover (SCX) method. This

improved method efficiently generates a high-quality solution

within a realistic timeframe by selecting the minor edge from

the parent and developing a new child or retaining the same
parent, contingent on the edge selection. In this study, the

researcher endeavored to minimize runtime by executing this

method once and utilizing SCX to achieve a high-quality

solution. In addressing the TSP, Rani, and Kumar [16]

employed the Roulette Wheel and Stochastic Universal

Sampling methods, complemented by the Order Crossover

(OX) technique. Notably, the Stochastic Universal Sampling

method yielded satisfactory results when dealing with small

population sizes. However, the GA demonstrated improved

solution quality for larger population sizes by employing the

Stochastic Universal Sampling method in conjunction with
the Elitism Method.

Employing an efficient mutation strategy, K. Rani and V.

Kumar [16] introduced an innovative approach to parent

selection for the TSP. This method randomly selects two cities

from the solution, followed by an iterative heuristic transpose

procedure. Three operators, namely transpose, shift-and-

insert, and swap, are utilized in the subsequent heuristic steps.

The GA with Efficient Mutation (GA-EM) was then

compared with four contemporary, efficient algorithms. The

results demonstrated superior accuracy performance of GA-

EM across all tested TSP instances.
Proposed by A. Hussain and Y. Muhammad [10], Split

Rank Selection (SRS) introduces an alternative selection

strategy that adeptly navigates the delicate balance between

exploration and exploitation. This method not only resolves

the fitness scaling issue but also maintains sufficient selection

pressure throughout the entire selection process. Within this

framework, individuals undergo ranking based on their fitness

values, ranging from the worst to the best. Notably, even

individuals with identical fitness values receive distinct

rankings. SRS has exhibited commendable results,

particularly in scenarios characterized by a limited population

size. Phuang [17] proposed an algorithm for solving the
symmetric TSP. The algorithm is based on the galaxy-based

search algorithm and employs a novel technique known as the

clockwise search process. This novel approach is intended to

conduct a thorough search within promising areas.

Furthermore, the algorithm uses the hill-climbing local search

algorithm to improve neighbor search capabilities. Rigorous

testing with relevant data sets demonstrates the proposed

algorithm's efficacy. Gao [18] introduced an innovative

algorithm that diverges from the traditional GA by utilizing

regular random numbers for determining crossover and

mutation locations. Drawing inspiration from the weed
algorithm, this approach incorporates a typical distribution

sequence as a library of random numbers. The exchange and

different locations of genetic factors are retrieved from this

library and applied iteratively to address the TSP. MATLAB

tests demonstrate that the algorithm proposed in this study

exhibits certain advantages over the conventional genetic

1644

algorithm, particularly in path optimization and runtime

efficiency.

Islam et al. [19] introduced a parallel GA for the TSP using

the Map/Reduce Framework on a Hadoop cluster to enhance

solution quality. Parallel GA was intended to reduce TSP

runtime and expedite execution. This study incorporates three

distinct crossover methods: Order Crossover, Two Point

Crossover, and Partially Matched Crossover. The

implementation of GA in parallel is facilitated through the

Map/Reduce framework, allowing the algorithm to handle
extensive datasets effectively. The storage of large datasets is

managed using the Hadoop Distributed File System (HDFS).

II. MATERIAL AND METHODS

A. The Proposed Enhanced Genetic Algorithm

Broadly, the EGA proposed herein adopts a stochastic

methodology, strategically exploring optimal solutions for the

TSP within a specified timeframe. The principal objective lies

in augmenting the GA's efficacy and elevating solution
quality for TSP instances. The EGA delineated in this study

encompasses four pivotal steps, elucidated in Fig 1. The

ensuing sub-sections furnish a meticulous exposition of these

four stages.

Fig. 1 The enhanced genetic algorithm steps

B. Population Initialization

The algorithm commences by randomly initializing the

population, generating an initial state characterized by

randomness that progressively evolves towards a more

structured state, thereby rendering it well-suited for

algorithmic evaluation. This population encompasses the

potential solutions to a given problem, illustrated in the

context of the traveling salesman problem, where each

solution is denoted as a chromosome or an individual.

Ensuring diversity within the population is imperative, with a

stipulation that each member differs from others and that the
population size is appropriately controlled. The length of an

individual is typically determined by the number of nodes or

genes in the problem, as illustrated in Fig. 2 [20].

Fig. 2 A population of individuals

C. Evaluation

The evaluation function, commonly known as the fitness

function, functions as a heuristic measure to estimate solution
quality. In the fitness function phase, each individual solution

generated in the preceding step is assigned a fitness value,

with this value computed through techniques tailored to user

specifications [21]. One widely adopted method is

represented by Equation 1, designed to determine the

minimum length of a Hamiltonian tour. In this context, a

Hamiltonian tour is defined as a closed path systematically

visiting each n node in a graph G exactly once. Therefore, the

optimal solution to the TSP requires a permutation of the node

indices 1,2,…,n ensuring the minimum length (〖length〗
((min))). In this equation, d((i)(i+1)) denotes the distance

between nodes i and (i+1), while d_((i)(1)) signifies the

distance between node n and the first node [22], [23], [24]

 �����ℎ(�	
) = ∑ �()(��) + �(
)(�)
��	�� (1)
D. Selection of New Candidate

The selection phase is pivotal in guiding the GA toward

optimal solutions and effectively limiting the search space. Its

objective is to leverage the favorable characteristics of

promising candidate solutions, progressively enhancing their

quality. Theoretically, this iterative process will lead the GA

toward an appropriate and satisfactory solution for the

optimization problem. Despite extensive research spanning
years, there have yet to be universally applicable guidelines

or robust theoretical foundations for selecting an optimal

operator for each problem. This lack of guidance poses a

significant challenge, as suboptimal operator selection can

detrimentally impact both the speed and reliability of the GA's

performance [25].

The proportionate selection operator, a prominent method

in the selection phase, entails choosing individuals based on

their fitness values. This operator can be implemented

through diverse approaches, such as the Roulette Wheel and

SUS. In contrast, the ordinal-based selection operator selects

individuals based on their orderliness within the population.
In ordinal selection, the selection pressure remains

independent of fitness, assigning individuals with higher

fitness to a greater probability of participating in the mating

process for generating the next generation. Consequently, this

mechanism enables the GA to focus on promising regions

within the search space. Noteworthy methods falling under

this category include the Exponential Rank Selection operator,

Linear Ranking Selection operator, and Tournament Selection

operator [25], [26], [27], [28].

1) Roulette wheel selection: Roulette Wheel Selection

(RWS), also recognized as Fitness Proportional Selection and

introduced by Holland in 1975, is a stochastic method widely

employed in GAs for parent selection [26], [29]. This

1645

mechanism selects individuals based on a probability directly

proportional to their fitness scores.

In the context of RWS, the selection process closely

mirrors the functionality of a roulette wheel, where each
individual in the population is assigned a distinct segment on

the wheel. The probability of an individual's selection is

contingent upon the ratio of their fitness score to the total

fitness of the population. In simpler terms, individuals with

higher fitness scores are allocated more significant segments

on the wheel, augmenting their likelihood of being chosen as

parents during the evolutionary process [30]. It is important

to note that this mechanism may overlook influential

individuals and result in biased selection towards high fitness,

not assuring that the best individual will be chosen for the

subsequent generation [30].
RWS exhibits an O(n)2 time complexity involving n loops

(generations), each iterating through the population. This

elucidates the frequency with which the selection process is

reiterated for each generation, underscoring the

computational overhead associated with this method [26],

[29], [31], [32].

2) Tournament Selection: In Tournament Selection (TS),

a set of n individuals is randomly chosen from the broader

population, instigating a competitive scenario among the

selected individuals. The victor, distinguished by the highest

fitness, is then incorporated into the mating pool for the

subsequent generation population. The mechanism of TS is

depicted in Fig. 3, wherein the tournament size (Ts) is

designated as three, signifying that three chromosomes

engage in competition, with the superior chromosome

selected to reproduce the fittest individual [6], [10], [28].

Fig. 3 A population of Individuals

Although the RWS method exhibits greater sophistication

compared to TS, its practical application can be excessively

time-consuming or virtually unfeasible in scenarios with large

populations or parallel population distributions [28], [33]. The

time complexity of TS remains O(nlogn).

3) Rank Selection: The population undergoes sorting

through Rank Selection (RS), a methodology grounded in

fitness worth. In this process, the fitness assignment to each

individual is determined by its rank, rendering the actual
objective value inconsequential [10], [20], [28]. RS offers

advantages by addressing scaling issues inherent in

proportional fitness assignment, providing a robust

mechanism for controlling selective pressure, and ensuring

uniform scaling across the population. However, a notable

disadvantage is the additional overhead introduced by the

sorting process [15], [34]. Whether employing a Linear Rank

or Exponential Rank mapping function, the fundamental

concept of rank-based selection remains consistent.

RS comprises two distinct processes. The initial step

involves sorting individuals within the population, with the

time complexity, assuming the use of an optimal sorting

technique, being O(nlogn). The second step is RS,

characterized by an O(nlogn) time complexity.

4) Stochastic Universal Selection: The SUS proposed by

Baker in 1987 [35], is a variant of proportionate selection

operator akin to RWS, with a focus on alleviating certain

drawbacks associated with RWS, particularly in scenarios

involving the selection of multiple parents. SUS maintains

selection based on the fitness values of individuals within the

population. In contrast to assigning each individual a segment
on a conventional roulette wheel, SUS employs a single,

elongated roulette wheel, with each segment precisely equal

to the corresponding fitness, mirroring the method of roulette-

wheel selection. Subsequently, equally spaced pointers,

numbering the same as the individuals to be selected, are

positioned along the wheel.

Fig. 4 illustrates the procedure of selecting individuals

through the SUS method, where the variable N pointers

denote the number of individuals to be chosen. The initial

position of the pointer is determined by a randomly generated

number within the range [0,1∕Ν Pointer], and the intervals

between the pointers are set at 1∕Ν Pointer [25].

Fig. 4 Stochastic Universal Selection

The primary improvement of SUS over traditional RWS

lies in its ability to ensure a more uniform and consistent

selection of individuals, mitigating the risk of

disproportionately favoring high-fitness individuals. Multiple

evenly spaced pointers enhance the probability of selecting

individuals across a broader fitness spectrum [6]. Due to the
selection of one element through the population after the

summation of fitness values, the time complexity of SUS is

generally linear O(n), rendering it an efficient and widely

adopted method in GA. SUS proves especially beneficial

when selecting multiple parents simultaneously, fostering

diversity in the mating pool and contributing to the overall

exploration of the solution space [31].

5) Proposed Selection Operator: Various selection

methods aim to choose a subset of individuals based on their

fitness values rather than considering the entire population

[26]. The Selection stage can be time-consuming, particularly

with a large population size [4], [36], [37], [38]. RS

consistently demonstrates superior solution quality [25], [28],

[37]. In RS, the population is sorted, with the best fitness
corresponding to position 0 and the worst fitness associated

with position N. Selecting this position number results in a

high fitness proportion. RS involves two steps: initially

sorting the population size list based on fitness values and

then ranking the individuals. The dual-process nature of RS,

1646

with its two sorting operations, contributes to increased

computational complexity. Previous research [33], [35] has

identified sorting techniques with a time complexity of

O(nlogn). SUS exhibits lower time complexity than RS as it

chooses parents randomly, eliminating the need for a sorting

process. However, this randomness introduces the risk of

selecting lower-quality parents [28].

The primary objective of this study is to enhance the

performance of the GA by introducing a novel parameter in

SUS, aimed explicitly at improving solution quality for the
TSP within a reasonable timeframe. The conceptual

foundation of this innovative selection operator revolves

around identifying the optimal fitness value among pre-

established solutions. A designated proportion (P) is extracted

from the optimal fitness in this phase. Subsequently, this

proportion (P) is added to the optimal fitness, establishing a

new fitness value. Then, rather than dividing the fitness value

of the nominated individual by the total number of organisms

(population size), as in SUS, the fitness value of the selected

individual is divided by the new fitness value. For example,

consider Table 1, which encompasses all pre-established
solutions, and assume the optimal fitness among them is 100.

Suppose we extract 50% from this optimal fitness value,

denoting P as 50. In that case, we subsequently add this

proportion (P) to the optimal fitness value, establishing a new

fitness value equal to 150.

TABLE I

THE PROBABILITY OF THE SELECTION (PS) USING THE ORIGINAL SUS AND

NEW SELECTION OPERATOR

No Individual Fitness

Value

Original Sus New Selection

Operator

1 200 200/830=0.240 200/150=1.33
2 140 140/830=0.168 140/150=0.93
3 120 120/830=0.144 120/150=0.80
4 100 100/830=0.120 100/150=0.66
5 270 270/830=0.325 270/150=1.80

SUM 830 0.990 5.22

The distinction between SUS and the proposed selection operator

lies in the methodology of individual selection. In the original SUS,
the probability for individual i to be selected for mating in a

population of size u is computed as in Equation 2 [20], [37].

 ��(�) = ��
∑ ��������

 (2)

where j=1,2...u, f_i represents the fitness value of an

individual i, typically selected through a random process,

while f_j is the total fitness of the population.

While the probability for individual i to be selected for

mating in a population of size u is computed in the proposed

selection operator is the fitness value of an individual as by

Equation 3:

 ��(�) = �()�� !
�"#$%�& (3)

where f(i)rand represents the fitness, typically selected

randomly, fbest+p is the best fitness in the present population,

and p is the proportion added to the best fitness. Normally, p

is in the order of 10%–50%; however, its value is contingent

upon the representation of individual solutions and the
number of individual solutions selected for generating the

next generation

The objective of choosing the new fitness is to move

towards optimal solutions and effectively narrow the search

space, as shown in Equation 4. This novel selection operator

randomly selects any individual with a value less than 1, as

shown in Fig. 5. Although similar to RS, it operates without

the need for sorting. In contrast to the original SUS that selects

any individual, the outcome may vary based on the initial

selection. Additionally, time complexity calculations treat

these as distinct steps. After finding the best fitness within the

population, the time complexity is O(n). Similarly, the time
complexity of the new selection operator for selection is O(n).

The proposed selection
= 45��� 6������ 78�9�, �6 0 < �� < 1

>?@�� 6������ 78�9�, �6 �� A 1
(4)

This implies that the proposed approach will randomly

choose fitness values from any number within the range [0,1].

Subsequently, all the remaining individuals are considered

inferior, characterized by fitness values equal to 1 or greater.

Fig. 5 The proposed selection operator

E. Genetic Operators

Genetic operators consist of the Crossover Operation and

Mutation Operation. These operations promote diversity and

drive the population towards novelty, thereby augmenting the

quality of solutions in the new generation through the iterative

application of genetic operators [20].

1) Crossover operation: Crossover Operations (CX), a

pivotal operator in GA, generates a new offspring by

combining genetic material from more than one parent. Order

Crossover (OX), Single Point Crossover, Two Point

Crossover, Cycle Crossover, and Partially Mapped Crossover

(PMX) are all instances of CX [20]. In this study, the One-

Point Crossover method, traditionally employed in GA, was

utilized. The initial step involves selecting two parents for

each child. Subsequently, the GA randomly selects a
crossover point and initiates the transfer of parental genes to

the offspring. The One-Point Crossover Operator is illustrated

in Fig. 6, where genes to the left of the crossover point are

inherited from parent one, while genes to the right are

inherited from parent two [20], [30].

Fig. 6 One-Point of Crossover Operator

1647

2) Mutation operation: The Mutation Operator plays a

pivotal role in maintaining population diversity and

introducing variations to individual solutions. A spectrum of

mutation operations, such as Swap Mutation, Insert Mutation,

and Scramble Mutation [20], [39], can be employed, each

directed at a single solution (genotype). Specifically, Swap

Mutation involves the random selection of a location within

the solution, introducing changes and generating new values

that are not present in the original sequence, potentially

leading to improved results. In the context of this study, the
Swap Mutation Operator is implemented to counter premature

convergence and enhance population diversity [40]. In Swap

Mutation, two cities within the tour are randomly selected,

and a subsequent exchange of these two chosen cities takes

place (see Fig. 7) [20], [30].

3)

Fig. 7 Swap Mutation Operator Sampling

III. RESULTS AND DISCUSSION

This study conducted computational experiments using
five distinct cases from the Traveling Salesman Problem

Library (TSPLIB) [12]. The primary aim was to assess the

performance of the EGA in comparison to the traditional GA.

Additionally, symmetric TSP was employed in computations

and analyses involving a destination matrix. This ensures that

the travel fee from city A to city B is identical to that from B

to A, facilitating straightforward distance verification. The

selection of parameters is a critical consideration as it directly

impacts both the execution time and the quality of the solution.

Table 2 delineates these parameters, including the dataset

extracted from the TSPLIB library.

The algorithm was implemented in C programming
language and executed on a server featuring an Intel Xeon

Processor E5-2620 V2 @ 2.10GHz, 8GB RAM, and the

Linux operating system. The dataset and parameters are

essential to the testing of the GA. Modifying these parameters

directly impacts solution quality and the algorithm's runtime.

As a stochastic algorithm, GA derives its complexity from

factors such as the number of generations, population size,

chromosome representation, and fitness function calculation.

The sequential time execution of GA is determined using the

high-resolution function gettimeofday().

TABLE III

PARAMETERS OF THE EGA AND TRADITIONAL GA

Parameters Value

TSP Name gr120, brazil58, gr24, si175
and pa561

Population Size 1024, 2048, 4096
Type of Parent Selection SUS and proposed selection

operator
The number of iterations (as ending

criterion)
1000

Type of Crossover One-Point

Type of Mutation Swap

The experiment conducted ten trials on each TSP dataset to

assess solution quality and time complexity. Subsequently,

the average tour length and execution time were computed,

and results obtained using the SUS method (the original

algorithm) and the proposed selection operator were

compared. The trade-off between average tour length and

average execution time is detailed in Tables 3 and illustrated

in Fig. 8 and Fig. 9.

TABLE IIIII

AVERAGE EXECUTION TIME (IN SECONDS) AND AVERAGE TOUR LENGTH

USING THE PROPOSED SELECTION OPERATOR AND SUS FOR SELECTION

TSP

Name

Population

Size

Traditional GA EGA

Tour

length

Execution

time(s)

Tour

length

Execution

time(s)

gr120

1024 1323 0.9 1258 0.85

2048 1314 2.2 1313 2.1

4096 1361 11.9 1320 10.6

brazil58

1024 99887 4.0 33695 3.7

2048 103250 18.3 70800 13.4

4096 105050 44.1 84443 36.7

gr24

1024 49281 13.8 27919 11.2

2048 46898 45.4 29275 43.6

4096 48955 204.7 29959 161.6

si175

1024 45068 16.9 33652 15.0

2048 46450 69.1 33590 66.2

4096 46968 168.4 34803 156.7

pa561

1024 25814 636.6 10637 619.7

2048 25405 1278.8 16905 1232.0

4096 25359 2626.8 18191 2539.5

Table 3 presents the results of experiments conducted on

the traditional GA and EGA. The primary objectives of these

experiments were to determine the average tour length and

average execution times using both the traditional GA and the
EGA. Furthermore, the performance evaluation encompassed

five TSP samples (datasets) with 24, 58, 120, 175, and 561

cities (indicating the length of the solution) and population

sizes of 1024, 2048, and 4096 for each dataset. The execution

involved 10 trials on each TSP dataset.

Figure 8 depicts the representations of the five TSP

samples, where cities are symbolized by the columns, and the

solutions are represented by the lengths of the columns.

Various population sizes are considered for both the

traditional GA and the EGA. Meanwhile, Fig. 9 illustrates the

representations of average execution times for both the
traditional GA and the EGA at population sizes of 1024, 2048,

and 4096.

Fig. 8 The results of the tour length of both the traditional GA and EGA at

population sizes of 1024, 2048, and 4096

1648

Fig. 9 The results of Average execution time(s) of both the traditional GA

and EGA at population sizes of 1024, 2048, and 40962048, and 4096

The statistical analysis also evaluates the significant

difference between the traditional GA and the EGA. The t-test,

a commonly utilized statistical method in research [41], is a

fundamental tool for comparing means and discerning

statistically significant differences between two groups. This

study used the t-test to assess the significance of differences

between the traditional GA and the EGA, focusing on key

metrics such as execution time and tour length. The

significance level, denoted as α, was set at 0.05, a standard

threshold for hypothesis testing. A significant difference was
concluded between the traditional GA and the EGA if the p-

value was more remarkable than α. Conversely, if the p-value

was less than α, no discernible difference existed between the

two algorithms. From the t-test, it was found that all the p-

values for both execution time and tour length were greater

than α. This rigorous statistical analysis provided a robust

foundation for evaluating the efficacy of the enhancements

incorporated into the EGA.

The results of these experiments underscore the efficacy of

both algorithms in addressing the challenges posed by the

TSP. Notably, both traditional GA and the EGA delivered

satisfactory results, especially when confronted with smaller
population sizes and a limited number of cities. Nevertheless,

as the complication of the problem increased with a larger

number of cities, the EGA consistently outperformed the

traditional GA. This persistent superiority of the EGA over

the traditional GA indicates substantial enhancements in

result quality, especially while maintaining the running time,

as depicted in Table 3, Fig. 8, and Fig. 9.

IV. CONCLUSION

Both selection and genetic operators play a pivotal role in

determining the functioning of a GA, as these are two

fundamental factors essential to its functionality. The first

factor, selection, is responsible for choosing the set of

chromosomes for mating. In contrast, the additional factor

involves genetic operators (crossover and mutation), which

are employed to generate new individuals and introduce

random changes. This article introduces a novel parameter in

SUS, aiming to effectively narrow the search space and

optimize the genetic operators for selecting promising

candidate solutions (parent selection). Consequently, the
proposed approach selects individuals based on their fitness

scores, addressing population sorting and individual ranking

issues while mitigating computational complexity. To

evaluate the performance of the proposed operator,

experiments were handled with both the traditional GA and

the EGA on a well-known TSPLIB benchmark dataset,

encompassing various problem sizes. The EGA consistently

outperforms the sequential traditional GA in terms of solution

quality. These findings suggest potential avenues for future

research, exploring the algorithm's behavior with larger

datasets and enhanced genetic operators (crossover and
mutation). Additionally, the presented study could be

expanded to enhance solution quality by investigating the

association between the proportion included to the best fitness

and population size to achieve improved consistency. It is

hoped that the proposed method can be utilized in different

areas such as image recognition [42], [43], cyber security [44],

[45], [46], [47], healthcare [48], [49] and machine learning

[50], [51].

ACKNOWLEDGMENT

Research Grant the Ministry of Higher Education Malaysia

provided funding for this study through the Fundamental

Research Grant (FRGS) with

FRGS/1/2022/ICT02/UMP/02/2 (RDU220134).

REFERENCES

[1] R. W. Dewantoro, P. Sihombing, and others, “The combination of ant

colony optimiza-tion (ACO) and tabu search (TS) algorithm to solve

the traveling salesman problem (TSP),” in 2019 3rd International

Conference on Electrical, Telecommunication and Computer

Engineering (ELTICOM), 2019, pp. 160–164.

[2] Y. Shi and Y. Zhang, “The neural network methods for solving

Traveling Salesman Prob-lem,” Procedia Comput Sci, vol. 199, pp.

681–686, 2022, doi: 10.1016/j.procs.2022.01.084.

[3] S. Prayudani, A. Hizriadi, E. B. Nababan, and S. Suwilo, “Analysis

effect of tournament se-lection on genetic algorithm performance in

traveling salesman problem (TSP),” in Journal of Physics: Conference

Series, 2020, p. 12131.

[4] H. R. Er and N. Erdogan, “Parallel Genetic Algorithm to Solve

Traveling Salesman Prob-lem on MapReduce Framework using

Hadoop Cluster,” Jscse, vol. 3, no. 3, pp. 380–386, 2013,

doi:10.7321/jscse.v3.n3.57.

[5] A. R. S. K. Hegde, “A Novel Method to Solve Travelling Salesman

Problem Using Sequen-tial Constructive Crossover Using

Map/Reduce Framework,” International Journal of Science and

Research (IJSR), vol. 4, no. 5, pp. 1362–1367, 2015.

[6] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic

algorithm: past, present, and future,” Multimed Tools Appl, vol. 80,

no. 5, pp. 8091–8126, Feb. 2021, doi: 10.1007/s11042-020-10139-6.

[7] Z. Drezner and T. D. Drezner, “Biologically Inspired Parent Selection

in Genetic Algo-rithms,” Ann Oper Res, vol. 287, no. 1, pp. 161–183,

Apr. 2020, doi: 10.1007/s10479-019-03343-7.

[8] C. Nilsson, “Heuristics for the traveling salesman problem,” 2003.

doi:10.1016/S0305-0548(98)00085-9.

[9] G. Steven, “Evolutionary algorithms for single and multicriteria

design optimization. A. Osyczka. Springer Verlag, Berlin, 2002, ISBN

3-7908-1418-01,” Structural and Multidisciplinary Optimization, vol.

24, no. 1, pp. 88–89, Aug. 2002, doi: 10.1007/s00158-002-0218-y.

[10] A. Hussain and Y. S. Muhammad, “Trade-off between exploration and

exploitation with genetic algorithm using a novel selection operator,”

Complex & intelligent systems, vol. 6, no. 1, pp. 1–14, 2020.

[11] Z. H. Ahmed, “Adaptive Sequential Constructive Crossover Operator

in a Genetic Algo-rithm for Solving the Traveling Salesman Problem,”

International Journal of Advanced Computer Science and Applications,

vol. 11, no. 2, 2020, doi: 10.14569/ijacsa.2020.0110275.

[12] G. Reinhelt, “TSPLIB: a library of sample instances for the TSP (and

related problems) from various sources and of various types,” 2014.

[13] C.-W. Tsai, S.-P. Tseng, M.-C. Chiang, C.-S. Yang, and T.-P. Hong,

“A High-Performance Genetic Algorithm: Using Traveling Salesman

1649

Problem as a Case,” The Scientific World Jour-nal, vol. 2014, pp. 1–

14, 2014, doi: 10.1155/2014/178621.

[14] Z. H. Ahmed, “Genetic Algorithm for the Traveling Salesman Problem

using Sequential Constructive Crossover Operator,” Int J Biom

Bioinformatics, vol. 3, no. 6, pp. 96–105, 2010.

[15] A. Aranganayaki, “Reduce Total Distance and Time Using Genetic

Algorithm in Traveling Salesman Problem,” International Journal of

Computer Science & Engineering Technology, vol. 5, no. 2229–3345,

p. 4, 2014.

[16] K. Rani and V. Kumar, “Solving travelling Salesman problem using

genetic algorithm based on heuristic crossover and mutation operator,”

Int J Res Eng Technol, vol. 2, no. 2, pp. 27–34, 2014.

[17] A. Phu-ang, “The new technique based on the galaxy based search

algorithm for solving the symmetric travelling salesman problem,” in

2018 International ECTI Northern Section Con-ference on Electrical,

Electronics, Computer and Telecommunications Engineering (ECTI-

NCON), 2018, pp. 131–134. doi: 10.1109/ecti-ncon.2018.8378296.

[18] Y. Gao and J. Ye, “An Improved Genetic Algorithm Based on Normal

Distribution for Solving the Traveling Salesman Problem,” in 2018

International Conference on Virtual Reality and Intelligent Systems

(ICVRIS), 2018, pp. 360–362. doi: 10.1109/icvris.2018.00094.

[19] M. L. Islam, D. Pandhare, A. Makhthedar, and N. Shaikh, “A Heuristic

Approach for Opti-mizing Travel Planning Using Genetics Algorithm,”

International Journal of Research in Engi-neering and Technology

eISSN: 2319-1163, pISSN: 2321, vol. 7308, no. 01, 2014.

[20] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

[21] X. Liu, M. Zhang, Z. Bai, L. Wang, W. Du, and Y. Wang, “Function

Call Flow based Fitness Function Design in Evolutionary Testing,” in

14th Asia-Pacific Software Engineering Conference (APSEC’07),

2007, pp. 57–64. doi: 10.1109/aspec.2007.13.

[22] A. Rao and S. K. Hegde, “Literature Survey On Travelling Salesman

Problem Using Genet-ic Algorithms,” 2015.

[23] S. S. Juneja, P. Saraswat, K. Singh, J. Sharma, R. Majumdar, and S.

Chowdhary, “Travelling Salesman Problem Optimization Using

Genetic Algorithm,” in 2019 Amity International Con-ference on

Artificial Intelligence (AICAI), 2019, pp. 264–268.

doi:10.1109/aicai.2019.8701246.

[24] M. S. H. Kalathingal, S. Basak, and J. Mitra, “Artificial neural network

modeling and genetic algorithm optimization of process parameters in

fluidized bed drying of green tea leaves,” J Food Process Eng, vol. 43,

no. 1, p. e13128, Jan. 2020, doi: 10.1111/jfpe.13128.

[25] I. Jannoud, Y. Jaradat, M. Z. Masoud, A. Manasrah, and M. Alia, “The

Role of Genetic Al-gorithm Selection Operators in Extending WSN

Stability Period: A Comparative Study,” Electronics (Basel), vol. 11,

no. 1, p. 28, Dec. 2021, doi: 10.3390/electronics11010028.

[26] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic

Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.

doi:10.1007/978-3-540-73190-0.

[27] J. Too and A. R. Abdullah, “A new and fast rival genetic algorithm for

feature selection,” J Supercomput, vol. 77, no. 3, pp. 2844–2874, Mar.

2021, doi: 10.1007/s11227-020-03378-9.

[28] M. Noraini and J. Geraghty, “Genetic algorithm performance with

different selection strategies in solving TSP,” in World Congress on

Engineering, 2011, pp. 4–9.

[29] M. Gen and R. Cheng, Genetic Algorithms and Engineering

Optimization, vol. 7. Wiley, 1999. doi: 10.1002/9780470172261.

[30] S. Mirjalili, “Genetic Algorithm,” in Evolutionary Algorithms and

Neural Networks: Theory and Applications, Springer, 2019, pp. 43–

55. doi: 10.1007/978-3-319-93025-1_4.

[31] D. E. Goldberg and K. Deb, “A Comparative Analysis of Selection

Schemes Used in Ge-netic Algorithms,” in Foundations of genetic

algorithms, vol. 1, 1991, pp. 69–93.

[32] K. Asghari, M. Masdari, F. S. Gharehchopogh, and R. Saneifard,

“Multi-swarm and chaotic whale-particle swarm optimization

algorithm with a selection method based on roulette wheel,” Expert

Syst, vol. 38, no. 8, p. e12779, Dec. 2021, doi: 10.1111/exsy.12779.

[33] T. Blickle and L. Thiele, “A Comparison of Selection Schemes used

in Genetic Algo-rithms,” Evol Comput, vol. 2, no. 11, pp. 311–347,

1995, doi: 10.1162/evco.1996.4.4.361.

[34] M. Mitchell, “Genetic algorithms: An overview,” Complexity, vol. 1,

no. 1, pp. 31–39, Sep. 1995, doi: 10.1002/cplx.6130010108.

[35] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”

in Proceedings of the second international conference on genetic

algorithms, 1987, pp. 14–21.

[36] T. Harada and E. Alba, “Parallel Genetic Algorithms,” ACM Comput

Surv, vol. 53, no. 4, pp. 1–39, Jul. 2021, doi: 10.1145/3400031.

[37] H. M. Pandey, “Performance Evaluation of Selection Methods of

Genetic Algorithm and Network Security Concerns,” Procedia

Comput Sci, vol. 78, no. December 2015, pp. 13–18, 2016,

doi:10.1016/j.procs.2016.02.004.

[38] M. Abbasi, M. Rafiee, M. R. Khosravi, A. Jolfaei, V. G. Menon, and

J. M. Koushyar, “An efficient parallel genetic algorithm solution for

vehicle routing problem in cloud imple-mentation of the intelligent

transportation systems,” Journal of Cloud Computing, vol. 9, no. 1, p.

6, Dec. 2020, doi: 10.1186/s13677-020-0157-4.

[39] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996.

doi:10.1007/978-3-662-03315-9.

[40] A. Plichta, T. Gaciarz, B. Baranowski, and S. Szominski,

“Implementation Of The Genetic Algorithm By Means Of CUDA

Technology Involved In Travelling Salesman Problem,” in ECMS

2014 Proceedings edited by: Flaminio Squazzoni, Fabio Baronio,

Claudia Archetti, Marco Castellani, 2014, pp. 475–479.

doi:10.7148/2014-0475.

[41] S. García, D. Molina, M. Lozano, and F. Herrera, “A study on the use

of non-parametric tests for analyzing the evolutionary algorithms’

behaviour: a case study on the CEC’2005 Special Session on Real

Parameter Optimization,” Journal of Heuristics, vol. 15, no. 6, pp.

617–644, Dec. 2009, doi: 10.1007/s10732-008-9080-4.

[42] K. Moorthy, K. Mohd Daud, S. R. Arokiasamy, and M. R. I. Tomal,

“Hybrid Biometric Au-thentication for Automatic Teller Machine,”

International Journal of Software Engineering and Computer Systems, vol.

10, no. 1, pp. 32–39, Sep. 2024, doi:10.15282/ijsecs.10.1.2024.3.0121.

[43] Y. Zhong, K. M. Daud, A. N. B. M. Nor, R. A. Ikuesan, and K.

Moorthy, “Offline Handwrit-ten Chinese Character Using

Convolutional Neural Network: State-of-the-Art Methods,” Journal of

Advanced Computational Intelligence and Intelligent Informatics, vol.

27, no. 4, pp. 567–575, 2023, doi: 10.20965/jaciii.2023.p0567.

[44] A. Nuhu, A. F. Mat Raffei, M. F. Ab Razak, and Abubakar Ahmad,

“Distributed Denial of Service Attack Detection in IoT Networks

using Deep Learning and Feature Fusion: A Re-view,” Mesopotamian

Journal of CyberSecurity, vol. 4, no. 1, pp. 47–70, Apr. 2024,

doi:10.58496/mjcs/2024/004.

[45] M. I. Jaya and M. F. Ab. Razak, “Dynamic Ransomware Detection for

Windows Platform Using Machine Learning Classifiers,” JOIV :

International Journal on Informatics Visualization, vol. 6, no. 2–2, p.

469, Aug. 2022, doi: 10.30630/joiv.6.2-2.1093.

[46] N. S. Nordin and M. A. Ismail, “A hybridization of butterfly

optimization algorithm and harmony search for fuzzy modelling in

phishing attack detection,” Neural Comput Appl, vol. 35, no. 7, pp.

5501–5512, Mar. 2023, doi: 10.1007/S00521-022-07957-0/tables/6.

[47] E. H. Tusher, M. A. Ismail, M. A. Rahman, A. H. Alenezi, and M.

Uddin, “Email Spam: A Comprehensive Review of Optimize

Detection Methods, Challenges, and Open Research Problems,” IEEE

Access, vol. 12, pp. 143627–143657, 2024,

doi:10.1109/access.2024.3467996.

[48] M. A. I. Rohismadi, A. F. M. Raffei, N. S. A. Zulkifli, M. H. Ithnin,

and S. F. Othman, “An Automated Strabismus Classification Using

Machine Learning Algorithm for Binocular Vi-sion Management

System,” in 2023 IEEE 8th International Conference On Software

Engineering and Computer Systems (ICSECS), 2023, pp. 487–492.

doi: 10.1109/icsecs58457.2023.10256291.

[49] A. F. Z. Abidin et al., “Adaboost-multilayer perceptron to predict the

student’s perfor-mance in software engineering,” Bulletin of Electrical

Engineering and Informatics, vol. 8, no. 4, pp. 1556–1562, 2019,

doi:10.11591/eei.v8i4.1432.

[50] A. Feizollah, N. B. Anuar, R. Mehdi, A. Firdaus, and A. Sulaiman,

“Understanding COVID-19 Halal Vaccination Discourse on Facebook

and Twitter Using Aspect-Based Sentiment Analysis and Text

Emotion Analysis,” Int J Environ Res Public Health, vol. 19, no. 10,

2022, doi: 10.3390/ijerph19106269.

[51] N. F. Idris, M. A. Ismail, M. I. M. Jaya, A. O. Ibrahim, A. W. Abulfaraj,

and F. Binzagr, “Stacking with Recursive Feature Elimination-

Isolation Forest for classification of diabetes mellitus,” PLOS ONE,

vol. 19, no. 5, p. e0302595, May 2024,

doi:10.1371/journal.pone.0302595.

1650

