
16

Contrasting of Various Algorithmic Techniques to Solve Knapsack 0-1

Problem

Yogesh Awasthi#, Ashish Sharma*

Department of Information Technology, Lebanese French University, College of Engineering and Computer Science, Erbil-KR, Iraq

 * Department of Computer Networking, Lebanese French University, College of Engineering and Computer Science, Erbil-KR, Iraq

 E-mail: dryogeshawasthi@lfu.edu.krd, ashish.sharma@lfu.edu.krd

Abstract— This paper will point of convergence on a relative assessment and estimation of the dynamic programming, B&B, Greedy

and Genetic algorithm including of the intricacy of time prerequisites, and the necessary programming endeavors and inspect the

absolute incentive for every one of them. Out of these four, two algorithm (Greedy and Genetic) algorithm can be utilized to clear up

the 0-1 Knapsack issue inside a sensible time multifaceted nature. The most pessimistic scenario time unpredictability (Big-O) of the

two calculations is O(N). Parallelly, these calculations can't find the accurate response to the issue; they are valuable in detecting a

close by premier final product as it were. Our basic commitment directly here is to investigate the two calculations contrary to

common benchmark realities units and to quantify the precision of the impacts provided by method for each calculation. In this way,

we will think about the top-notch neighbourhood result created by utilizing the calculation against the genuine real most dependable

outcome.

Keywords— Running Time, Complexity, B&B, Genetic, Greedy, DP.

I. INTRODUCTION

The knapsack is an issue in combinatorial streamlining:

given a lot of things, each with a weight and a worth, decide

the quantity of every thing to remember for an assortment so

the all-out weight is not exactly or equivalent to a given

farthest point and the complete worth is as huge as could be

expected under the circumstances. It gets its recognition

from the issue looked by somebody who is compelled by a

fixed-size rucksack and must select the bag with the most

substantial items. The most well-known backpack issue is

the paired (0–1) rucksack issue, where the leader is

permitted to pick (1) or not to pick (0) the thing, at the end

of the day, the things are not dividable. The 0/1 Knapsack

Problem is a case of a combinative enhancement issue,

which appears for a exceptional arrangement from amongst

numerous extraordinary arrangements. It is worried about a

knapsack that has wonderful entire number volume (or limit)

V. There are n precise matters that may also conceivably be

put in the backpack. Thing I has a fine total range quantity

Vi and nice total quantity advantage Bi. In expansion, there

are Qi duplicates of thing I accessible, the place quantity Qi

is a two high-quality variety pleasing 1 <= Qi <= Infinity.

Let Xi decides what range of duplicates of component I are

to be set into the rucksack the objective is to:

Maximize

 (1)

Subject to the constraints

 (2)

and

 (3)

In the event that at least one of the Qi is unending, the KP is

unbounded; something else, the KP is limited [1].The limited

KP can be either 0-1 KP or multi requirement KP. In the

event that Qi = 1 for I = 1, 2, …, N, the issue is a 0-1

backpack issue In the present paper, we have chipped away

at the limited 0-1 KP, where we can't have more than one

duplicate of a thing in the knapsack(Gossett & Eric 2003).

II. THE KNAPSACK PROBLEM (KP)

The KP issue can be broadly applied in flotsam and

jetsam classification, valuable asset portion, work planning,

capital planning, venture choices, task choice, freight

pressing and various fields. For this issue, its answer

strategies can be separated into two classes: exactness

calculations, (for example, thorough pursuit, dynamic

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 4 (2020) NO 1

e-ISSN : 2549-9904

ISSN : 2549-9610

17

programming strategy, branch and sure technique, and so on.)

and estimate calculations, (for example, voracious strategy,

hereditary calculation, subterranean insect calculation, and

so on.) [5]. Since the KP issue has a place with the NP-C

(Non-deterministic Polynomial Completeness) issue [6], its

computational multifaceted nature is O(2n). In this paper, a

0/1 KP is as an answer of the 0/1 backpack issue, getting a

handle on calculation, dynamics programming calculation,

B&B calculation, and Genetic calculation are employed and

assessed each systematically and tentatively as far as time

and the total expense for every one of them, Moreover, a

near investigation of the getting a handle on all four

discussed algorithm and its calculations is displayed.

Fig. 1 0/1 Knapsack Problem

This paper is composed as pursues: Second part, gives a

global perspective on foundation of knapsack issue,

additionally exhibits the past connected work of the 0-1 KP

and the calculations they are utilized to fathom it. Third

segment of the paper contains the past work in this area. All

calculations showed in fourth part. While in fifth part,

expository perspective on calculation results will be

displayed. Besides, the investigation includes the estimation

of a few execution measurements, including: the most

pessimistic scenario time intricacy. In sixth section, an

examination of the exploratory outcomes between the four

calculations will be appeared. At long last, the ends will be

talked about in seventh segment.

III. LITERATURE REVIEW

Numerous Investigators has marked enforcing GA

calculations to take care of 0/1 KP issues. Julstrom et. al.

(2015) speak to the greedy calculations, genetic calculations

and greedy genetic calculations penetrated the quadratic 0/1

rucksack issue. Here rucksack issue we need to detect

customary backpack issue and characterizing the object of

each and single article. Those outcomes show the force of

hereditary calculations acquire on heuristic rule way to deal

with gain ideal outcome on mix issue and to illuminate 0-1

rucksack issue utilizing genetic calculations.

G. Megha (2013) actualized an amended 0/1 backpack

issue utilizing the combination of genetic and Hybrid

Algorithm. Hereditary calculation is a computational

calculation and quick, effective calculations to implement

the 0-1 rucksack issue.

Umbarkar A.J. and Joshi M. (2014) present a cutting-edge

way to deal with take care of 0-1 backpack issue utilizing

Dual Population Genetic Algorithms. Double populace

hereditary calculations are additionally giving ideal answer

for the problem. The results speak to double populace

hereditary calculations to improve and great execution in the

0-1 backpack issue, and check progressively troublesome

rucksack issue.

Hristakeva M. and Shresthna D. proposed the usage of the

0/1 rucksack issue utilizing the Algorithm for genetic. We

need to locate the ideal arrangement of the rucksack issue,

and usage of these capacity roulette-wheel capacity and

choice capacity for taking care of the issue.

Khuri et.al. (2012) speak to the usage of the 0-1 numerous

rucksack issue utilizing hereditary calculations. Hereditary

Algorithms utilizing for discipline furthermore, include of

incomprehensible contribution to the populace for the

hereditary calculations. The knapsack is an issue in

combinatorial streamlining: given a lot of things, each with a

weight and a worth.

IV. DIFFERENT APPROACHES

A. Greedy Algorithm

Using this technology in optimization problems to make a

decision is probably the right solution. We have three

possibilities in this technique to figure out the 0/1 Knapsack

problem

1) take the items that contain the highest value of others,

this leads to increase the value of Knapsack

immediately.

2) Take the lightest element in Knapsack, where many

items are deleted.

3) Selection of high-weight items.

B. Dynamic Programming

Is a technique to solve sub - problems, where solve each

small sub - problem once and stored only in memory so that

the next time when we need the same solution can be easily

found.

On the other hand, to find a solution to the problem, all of

its sub-problems are solved separately. This sub-section is

then assembled to obtain an ideal solution.

Let’s the value of W [1 … N] and V [1 … N], structure of

2D-Array [0 ... N, 0 … Capacity]) of Dynamic Programming.

Subsequently, O (N*Capacity) shows the multifaceted

nature of the Dynamic Programming calculation. When we

define the DP as a memory requirement it requires 2D array

which contain the rows as number of item columns as

capacity of KP. This algorithm is likely one of the most

comfortable to carry out because it does not demand the use

of any extra anatomical structure.

C. Branch & Bound Algorithm

It is a direct technique for solving difficult problems in a

holistic way. If it does not find values for the remaining

18

branches, which can give a solution, it will automatically

ignore them, and solve the branches that have values, even if

only one branch evaluates the solutions every time.

They use Branch and Bound calculation for the KP by

showed which can secure either ideal or vague arrangements.

Best First Branch and Bound (Weights [1 … N], Values

[1 … N).In the most pessimistic scenario, the branch and

bound calculation will produce all single level stage and all

leaves. In this manner, the tree would be generated and it has

2n-1 hubs, Lets say it will have an exponential intricacy.

Notwithstanding, it is still superior to the animal power

calculation on the grounds that all things considered it won't

create every conceivable hub (arrangements). The necessary

memory relies upon the length of the need line.

D. Genetic Algorithm

It is also called a computer algorithm, looking for the best

solution among as many solutions as possible. Basic steps of

algorithm are as.

Complexity: The multifaceted nature of the hereditary

calculation relies upon the quantity of things (N) and the

quantity of chromosomes in every age (Size). It is O(Size*N)

19

When comparing these three possibilities we find that the

best results in the third possibility (selection of high-weight

items)

V. EXPERIMENTAL MODELLING

This section of the study shows the analytical or

experimental modelling. For figuring out the 0/1 knapsack

problem and finding the all effects generated by various

situations the most important metric the show the

performance of all four algorithms (DP, B&B, Greedy,

Genetic algorithms). This study includes the running time

parameter and performance to get maximum benefit to the

knapsack. As we know the target of knapsack problem is to

get the maximum profit.

The running time metric used to see that how much time

is required and how much time is needed to finish the task

assigned by the algorithm. On the other hand Time

complexity evaluate the maximum time needed to solve the

0/1 rucksack problem over the unlike data items. The

running time arrogates a immense component in increasing

the function operation. By this fashion, the aim of any

algorithm to solve 0/1 knapsack is to execute fertile effective

result in the lowest existing time.

A. Greedy Algorithm

The running time complexity of greedy algorithm follows

two steps as

1. First Sort by Merge sort algorithm is O(NlogN)

2.

Therefore the complexity of above algorithm is O (NlogN)

+ O(N) � O(NlogN).

B. Dynamic Algorithm

Maximum running time taken by dynamic algorithm to

find the solution of 0/1 rucksack problem is O(W×N).

C. Branch & Bound Algorithm

When B&B algorithm generates its all levels and nodes

(in worst case) then the time complexity of the complete tree

will be O(2N).

D. Genetic Algorithm

The array chromosomes has been introduced by the

function of O(N). Fitness, Mutation and Crossover functions

also have O (N). These two functions for selection have

order 1. The termination condition checked by the function

has order 1 and order of N is the total complexity of the

program.
TABLE I

TIME COMPLEXICITY OF FOUR ALGORITHM

VI. EXPERIMENTAL RESULT

All algorithms shown in the previous sections have been

programmed in VC++. We run the all the programs by

using variable array size but with constant capacity on

processor AMD CORE i5 2.00 GHz and four gigabyte

memory laptop and, we iterate the all algorithms forty times.

After this process we get the average running time of the

algorithms. For reading the data set we create a file generate

the values between one to one thousand with variable sizes.,

yet we start the process to run the programs with least size

array to check the code and correctness of the results. After

that we make it for bigger one and find the results. Table 5

shows the running time calculated by the experimental

programme for genetic, B&B, DP and Greedy algorithms

with variable sizes (in thousands). We test the data up to the

size of 60K due to the limitation in B&B algorithm because

its complexity is O(2n) and it needs more space. The

running time calculated the by the programme for all four

algorithms has been shown in table 6.

The outcome of the programme as shown in table 6 are

anticipated on the experimental model. The minimum time

for out of all four algorithms belongs to genetic algorithm

under the designed parameters and environment.

If we see other part of the algorithms we found that most

likely results always measured by dynamic programming

techniques yet other two i.e. greedy and genetic always

evaluate the best local optimum result. Due to this reason we

have implemented all the algorithms on the similar data

block and check where they will obtain the most beneficial

optimum outcome in course of running time.

When we focus on the table 7 and table 8 we analyze that

local optimum result calculated by the genetic algorithm is

better than the greedy one in most of the cases yet genetic

local outcome is best as compare to the greedy outcome.

For evaluating the efficiency of all algorithms, the most

important metric has been presented in this section.
TABLE V

OBSERVATIONAL TIME

20

TABLE VI

OBSERVATIONAL TIME

Fig. 2. Running time for Genetic, Dynamic and Greedy.

Fig. 3. Running time for B&B, Greedy and Dynamic algorithms.

VII. CONCLUSIONS

All four algorithms discussed in above sections have been

depicted and presented thoroughly. The overall evaluation

and contrasting have been shown and all the outcome of the

experiment over 0/1 knapsack problem have been discussed

and demonstrated. Here The top most metric to check the

effective ness of Greedy Algorithm that makes visible the

algorithm in status of its running time. At this stage we could

observe that performance of B&B and DP algorithms is

much better than genetic and greedy algorithm in term of the

all values generated by them.

Here we focus on the greedy and genetic algorithm for

finding the most efficient result in favor of execution time.

After performing this experiment it could be depicted that

genetic algorithms achieve higher effects in phrases of how

near the impacts belongs to the genuine authentic ones.

This circumstances arises due to the above that algorithms

permit for multifariousness in giving choice results and they

assess the fitness of these options at all steps. There are two

major elements that impresses the precision of genetic

algorithm. Firstly, the hypothesis of showing the problem in

a way that is worthy for genetic algorithms valuation and

secondly the precision of the fitness function planned for the

given problem. This paper we enlighten the 0/1 Knapsack

issue.

This issue well corresponded to the genetic algorithm.

This may be more improved and accurate if the parameters

like crossover chromosomes, mutation, and other population

features etc.. can be assumed under the experiment.

The algorithm that abided the worst execution time is

B&B because the complexity of the B&B moves

exponentially. Although whenever we change the size of

knapsack bag above the items still the performance time

required by the dynamic algorithm greater is than the greedy

algorithm.

REFERENCES

[1] Gossett, Eric. Discreet Mathematics with Proof. New Jersey: Pearson
Education Inc., 2013.

[2] Hristakeva, Maya and Dipti Shrestha. “Solving the 0/1 Knapsack

Problem with Genetic Algorithms.” MICS 2014 Proceedings.
<www.micsymposium.org/mics_2004/Hristake.pdf>.

21

[3] S. Mohanty, R. Satapathy, “An evolutionary multiobjective genetic

algorithm to solve 0/1 Knapsack Problem,” IEEE Transl.

[4] Beijing, vol. 2, pp. 397–399, August 2009.P.KOLESAR, “A branch

and bound algorithm for the knapsack problem. Manage,” Sci, pp.

723-735, May 2018.

[5] Adams, E. Balas, D. Zawack. The Shifting Bottleneck Procedure for

Job-Shop Scheduling. Management Science, 34, 3, 391–401, .2017.

[6] Y. Yang, R.L. Bulfin. An exact algorithm for the Knapsack Problem

with Setup. Int. J. Operational Research, 5, 280–291, 2018.
[7] George B. Dantzig, Discrete-Variable Extremum Problems,

Operations Research Vol. 5, No. 2, April 1957, pp. 266–

288,doi:10.1287/opre.5.2.266.
[8] Different Approaches to Solve the 0/1 Knapsack Problem. Maya

Hristakeva, Dipti Shrestha; Simpson College.

[9] Rahman K. and Ahmed S. Performance Analysis of Genetic

Algorithm for Solving the Multiple-Choice Multi-Dimensional

Knapsack Problem. International Journal of Recent Trends in

Engineering, 2009, vol. 2, no. 2.2017.

[10] Chen Lin, “A Heuristic Genetic Algorithm Based on Schema

Replacement for 0-1 knapsack Problem”, Fourth International

Conference on Genetic and Evolutionary Computing 2015

[11] Harish G , A hybrid PSO – GA algorithm for constrained

optimization problems Applied Mathematics and Computation
(Atlanta, USA: Elsevier) 274 292 – 305,2016.

[12] Cormen T H 2009 Introduction to algorithms (third edition) (MIT

press).

