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Abstract— As the world population grows rapidly nowadays, the demand for food has come to rise. The escalating demand for food has 

caused substantial wastage and loss, which not only hampers food security efforts but also aggravates greenhouse gas (GHG) emissions, 

intensifying the environmental crisis. Among numerous countries, Malaysia, with its diverse agricultural profile, emerges as a good fit for 

our case study. This study chooses the clustering technique to examine food sector data in Malaysia and investigate the link between the 
clustering results on food data and the data on GHG emissions. This case study aims to find crops depending on their production efficiency, 

underline those that match major waste, and estimate their contribution to greenhouse gas emissions. Three clustering techniques, Gaussian 

Mixture Modelling (GMM), Birch, and Density Peak clustering, are applied in the Production and Supply Utilisation Accounts (SUA) 

datasets, help to identify and cluster crops based on their similar traits to acquire uncovered patterns between the food sector and 

environmental issues. Using cutting-edge clustering algorithms and visualization tools, this study investigated in-depth the complex 

interactions among food production, waste, and greenhouse gas emissions in Malaysia. By addressing food production efficiency and waste 
reduction, the outcome will be a cascade of benefits that not only improve food security but also help to lessen negative environmental effects.

This study illuminates the multifaceted dynamics of food production, waste, and environmental impact, offering valuable insights and 

pathways toward a more sustainable future for Malaysia and potentially other nations. 
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I. INTRODUCTION

In recent years, food security, food waste and loss, and GHG 

emissions have become crucial global issues that keep getting 

worse. Even though the food system and environmental issues 

seem like two different issues, they are profoundly connected 
and significantly affect each other. Globally, approximately 
one-third of the food produced, equivalent to 1.3 billion metric 

tons, is wasted or lost yearly, representing significant 

inefficiency in the food supply chain and a significant source of 
GHG emissions [1], [2]. These emissions, primarily methane 

from decomposing organic waste, contribute to the accelerating 

pace of climate change, further exacerbating the challenges of 
ensuring food security. Such vast amounts of food waste loss 

exacerbate food insecurity and contributes to environmental 

degradation. 

A review of 78 articles reveals that the household-level 

calorie adequacy indicator is the most used single measure of 
food security, appearing in 22% of the studies [3]. Food waste 

loss is not just an issue common in developing countries but also 

in developed nations. In developing nations, inadequate 

infrastructure, poor harvesting techniques, and climatic 
conditions are the main reasons that cause food waste loss. In 

contrast, consumer behavior and retail practices in developed 

countries lead to higher per capita waste. This waste, especially 

when sent to landfills, becomes a significant source of GHG 
emissions [4]. 

Moreover, the food system's GHG emissions are not just why 

this issue exists. Agricultural practices, land-use changes, and 
transportation all contribute to the carbon footprint of the food 

people consume. As the global population continues to rise, the 

linear model of food production and consumption becomes 
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increasingly unsustainable in terms of meeting human needs and 

its impact on the planet [2]. 
Food waste is a significant problem worldwide. Major food 

loss and waste factors include poor management of perishables, 

stakeholder attitudes, buyer-supplier agreements, and supply 

chain interruptions. Livestock sector GHG emissions contribute 
to climate change and global warming [5], [6], [7]. Food 

systems worldwide struggle with GHG emissions and food 

waste, which harm food security, the environment, and 
economies. The cold chain for perishable goods in China 
accounts for 1–3% of total emissions, mainly from energy use 

and food losses. Food waste undermines ecosystems and food 

system resilience, with storage improvements potentially 
affecting food system stability. Models like BioBaM-GHG 2.0 

show that afforestation can significantly reduce agricultural 

emissions. Regional differences in China's food system 

emissions point to the need for regional coordination. These 
findings emphasize the need for integrated approaches and 

detailed models to reduce food system emissions and waste [8], 

[9], [10], [11]. 
Researchers have devised several ideas to handle the 

problems of food security, food waste and loss, and greenhouse 

gas emissions. Among these is the change from linear to circular 

food systems, which give recycling and repurposing top priority 
over disposal. From organic farming to precision farming, 

sustainable agricultural methods, which range in impact on the 

environment, have been underlined as essential in guaranteeing 

food security while lowering environmental effects. 
Furthermore, under increasing focus is global cooperation with 

projects that share best practices, technologies, and policies to 

lower waste and emissions [1], [2].  
Using both unsupervised and supervised machine learning, 

analysis was conducted to learn patterns and identify solutions 

depending on the outcomes of several machine learning 

techniques [12], [13], [14]. As the world grapples with these 
challenges, the collective insights from research underscore the 

urgency to act, with the well-being of current and future 

generations at stake. Understanding needs, family habits, and 
eating behaviors are critical to reducing food waste. Food loss 

and waste significantly impact food security, the environment, 

and the economy. Food insecurity, which is associated with 

global warming and poor health, was exacerbated by the 
COVID-19 pandemic. Food loss and waste in the Arab region 

can total more than 210 kg per person per year [15], [16], [17].  
The food waste issue is severe in Malaysia. In addition, like 

many nations, Malaysia faces the dual challenge of ensuring 
food security while mitigating environmental impacts, 

particularly GHG emissions [18], [19]. A significant portion of 

GHG emissions can be attributed to the causes of massive food 
waste and utilization. This is proven by their previous research, 

where they showed statistics on the emission of CO2 in Malaysia 

from 2000 to 2016, as shown in Fig. 2, which was mainly caused 

by food waste, as shown in Fig. 1. Current research suggests a 
strong correlation between food waste and GHG emissions [20]. 

However, a knowledge gap exists regarding the efficiency of 
food production across various regions in Malaysia.   

Crucially, one must understand this efficiency and how it 

relates to food usage for common crops. Furthermore, the link 
between these crops' efficiency and their impact on greenhouse 

gas emissions is primarily unexplored. Therefore, this work 

attempts to close this gap by using clustering methods on 

datasets concerning food production efficiency and food 
consumption. By comparing and analyzing these datasets in the 

framework of GHG emissions, this study aims to offer a 

thorough knowledge of the interaction among food production, 
use, and environmental influence in Malaysia.  

 

 
Fig. 1  Waste Pie Chart in Malaysia 

 
Fig. 2  CO2 Emission Line Chart in Malaysia 

A. Clustering methods in the Food sector 

Advanced data collecting techniques cause many data to be 
acquired in several databases. Demand for organizing 

significant information from data and extracting insightful 

analysis has grown. Clustering is among the most basic issues 

in data mining and knowledge search. Based on their similarity, 
data points are split into several clusters; hence, data points in 

one cluster are more similar than those in another [21]. Mehrdad 

Rostami [22] developed a new hybrid food recommender 

system to address similar issues with precious systems. Based 
on the similarity of features, this work clustered users and food 

products using graph clustering and a deep-learning-based 

method. 

B. Gaussian Mixture Model 

The Gaussian mixture model (GMM) is a probabilistic 

clustering technique used to aggregate several Gaussian 
distributions to model complicated data distributions. Dealing 

with datasets with several underlying structures or when the data 
is not normally distributed will significantly benefit from it. 
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GMM clustering is used in a similar case study conducted by 

[13] to find the possible causes of food insecurity in each area 
and to comprehend the features and structure of the food 

assistance network in a particular region. In crime cases, GMM 

is used to pinpoint groups of burglary and antisocial behavior 

criminal records. These clusters present Gaussian mixed model-
like distributions (GMMs). While enabling probabilistic 

assignments [23], GMM efficiently manages complicated data 

structures. In weather forecasting, GMM is used to identify 
clusters corresponding to different distribution errors to correct 
ensemble forecast distributions [24]. 

C. Birch Clustering 

BIRCH excels at clustering massive datasets by creating a 
compressed summary of the data points rather than processing 

the entire dataset directly. It is known for its efficiency and 

scalability, making it suitable for large datasets. BIRCH 
requires the maximum number of clusters for a better clustering 

quality performance [25]. It can incrementally incorporate new 
data points as they become available. This technique extracts 

load forms from large databases, clusters high, moderate, and 
minimal load types using cost functions, and determines the 

right number of clusters for global grouping [26], [27]. Similar 

research also proves that BIRCH’s method for clustering 
complex large datasets first generates smaller and compact 

summaries from the original dataset that retain as much 

information as possible [28]. In the context of food security 

and waste management, BIRCH shows the emission of 
greenhouse gases in the current scenario and predicts the 

future environment [29]. 

D. Density Peak Clustering 

Density Peak Clustering is a clustering algorithm that uses 

the concept of density peaks to identify clusters in the data. It is 

beneficial when dealing with datasets with varying densities and 

shapes. It can automatically ascertain the number of knee 
points in the decision graph according to the characteristics of 

different datasets and further determine the number of 

clustering centers without human intervention. On the other 
hand, the density peak clustering algorithm (DPC) requires 
manual determination of cluster centers and poor performance 

on complex datasets with varying densities or non-convexity. 

Hence, this study introduces a new DPC variant designed to 
be more resistant to noise in data.  

Food waste data might have inherent noise due to variations 

or inconsistencies. This noise-resistant DPC variant could fit 
the proposed study well [30]. Besides, there is also a way to 

handle imbalanced data in clustering. The existing work by 

[31] applies clustering to minority class samples. The sub-

clusters with sparse data (less dense sub-clusters), which are 
closer to the borderline of the majority class, are assigned 

higher weights to achieve a high probability of selection for 

generating a new synthetic sample. 

II. MATERIAL AND METHOD 

A. Data Collection and Cleaning 

The research’s foundation was laid with the data collection 

process, where datasets for food production, food waste & loss 

relating to crops, and GHG emission in Malaysia were sourced 
from the Food and Agriculture Organization of the United 
Nations (FAOSTAT). All three of the datasets consisted of 

different features and different time ranges; however, the 

differences in the features of all three datasets made a 
connection among each other. After data was collected, 

explorations and visualizations were carried out to understand 

each dataset better. The three datasets consist of null values, 

meaning no values are recorded for that specific element for 
that specific year; therefore, the null values are filled with zero 

values.  

B. Data Feature Selection and Preprocessing 

The preprocessing data step starts with the food production 

dataset, where the ‘area’ column is filtered to ‘Malaysia,’ and 

the ‘element’ column is filtered to ‘Area harvested’ and 

‘Production.’ This process was carried out due to previous 
research carried out by Renard and Tilman. The food production 

dataset from FAOSTAT was implemented in the research to 

find out crop production efficiency, where rows remained that 
consisted of the ‘Area harvested’ and ‘Production’ in the 

FAOSTAT dataset [32].  
The dataset is then transformed, where each row represents 

either the Area harvested or Production element for a crop; each 
row containing the quantities for consecutive years is summed 

up, and a new column containing the total quantities is created, 

as shown in Table 1. Afterward, the dataset is transformed 
where it only has three columns, which are the Item, Area 

harvested, containing the total value of all the years each crop 

for area harvested, and Production, containing the total value of 

all the years for each crop for production as shown in Table 2. 
As Area harvested and Production are needed for clustering 

uses, dimensionality reduction is unnecessary as the dataset is 
already in 2-dimensional format.  

As the values in the dataset vary significantly, 
standardization using StandardScaler becomes imperative. This 

method centers the data around a mean of zero with a standard 

deviation of one, ensuring that features with larger scales don't 
disproportionately influence the outcome of algorithms 

sensitive to feature magnitude. By transforming the data this 

way, a more balanced and fair comparison between the features 

can be achieved, facilitating better performance and 
interpretability for the three clustering algorithms. 
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TABLE I 

FOOD PRODUCTION DATASET BEFORE TRANSPOSING 

 Item Element Y1961 Y1962 Y1963 Y1964 Y1965 Y1966 Y1967 Y1968 … 

0 Abaca, manila 
hemp, raw 

Area 
harvested 

1836 1821 2023 2064 2289 2198 2023 1214  

1 Abaca, manila 
hemp, raw 

Production 4400 4000 4000 4400 3200 3259 3281 3519  

2 Areca nuts Area 
harvested 

6000 3800 5500 4500 5000 4500 5000 3000  

3 Areca nuts Production 6500 4000 5000 4000 6000 4000 5000 3500  

TABLE II 

FOOD PRODUCTION DATASET AFTER TRANSPOSING 

 Item Area harvested Production  

0 Abaca, manila hemp, raw 17654 33218 
1 Areca nuts 110678 152003.48 
2 Avocados 361 824 

3 Bananas 1521709 25172384.11 

TABLE III 

FOOD WASTE & LOSS DATASET BEFORE TRANSPOSING 

 Item Element Y2010 Y2011 … Y2019 Y2020 Total 

0 Almonds, in shell Calories/Year 611 680 … 488.38 468.71 4048.09 
1 Almonds, in shell Export Quantity 0.0 14 … 63.27 5.13 129.4 
2 Almonds, in shell Fat supply quantity 

(g/capita/day 

0.0 0 … 0 0 0 

3 Almonds, in shell Fats/Year 54 60 … 43.25 44.16 357.41 
4 Almonds, in shell Food supply 

(kcal/capital/day) 
0 0 … 0.04 0.04 0.08 

TABLE IV 

FOOD WASTE & LOSS DATASET AFTER TRANSPOSING 

 Item Export quantity Import quantity Stock variation 

0 Areca nuts 33029.46 24833.88 1007.52 
1 Avocados 615.28 19160.19 0 
2 Bananas 253421.23 175040.37 0 
3 Cabbages 169715.52 1372403.27 0 
4 Cashew nuts, in shell 49.03 923.37 -5263 
5 Cassava, fresh 0 0 0 

For the preprocessing of the food waste and loss dataset, the 
data was filtered based on the area where the area is ‘Malaysia’ 
and the element column where the values were ‘Feed’, ‘Import 

Quantity’, ‘Loss’, ‘Other uses (non-food)’, ‘Processed’, 

‘Residuals’ and ‘Stock Variation’. This step is carried out after 
the clustering on the food production dataset, as comparisons 

are made to find the common crops within the clusters produced 

by the food production dataset with the crops in the food waste 
and loss dataset. Each row represents a specific element for a 

crop, with columns detailing the quantities for consecutive 

years. A two-step data transformation process is carried out; for 

each crop-element combination, the total quantity across the 
years is calculated as shown in Table 3.  

The dataset is transposed to reorient its structure. In this 
transformed format, each row represents a unique crop, while 
the columns correspond to the total quantities for each element. 

As shown in Table 4, the columns for the transposed dataset in 

total are eight columns; therefore, dimensional reduction is 

applied using Principal Component Analysis (PCA) to convert 
the dataset to a two-dimensional dataset. Due to the large data 

scales in the dataset, standardization is also carried out on the 

food waste and loss dataset to make the three clustering 
algorithms better perform when training on the data. 

For the GHG emission dataset, unwanted features, such as 

‘Domain Code’, ‘Area Code (M49)’, ‘Element Code’, ‘Item 

Code’, and ‘Year Code’ are removed from the dataset. 
Afterward, the preprocessed dataset is applied for data 

visualization and analysis. 

C. Data Visualization 

Before the clustering phase of the research, extensive data 

visualization techniques were applied to the Food Production 

dataset to gain a comprehensive understanding of its structure 
and characteristics before the clustering process. To begin with, 

bar charts were utilized to visualize the top 10 crops in terms of 

both the total areas harvested shown in Fig. 3 and total 

production shown in Fig. 4, where we can observe that oil palm 
fruit was top 1 for both charts. This approach provided an 

immediate grasp of the most significant crops in the dataset.  

Subsequently, a pair plot was generated in Fig. 5 to explore 
the relationships between area harvested and production, 

offering insights into their correlation and potential outliers. 
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Density plots were created to delve deeper into the data 

distribution for harvested and production areas, highlighting 
regions of high and low data density. Boxplots in Fig. 6 were 

also employed for these two variables to identify their spread, 

skewness, and potential outliers, informing the data cleaning 

and preprocessing stages. Finally, a parallel coordinate plot was 

used to visualize the multi-dimensional nature of the area 

harvested and production across different crops shown in Fig. 7. 
This ensemble of visualization techniques served as a diagnostic 

tool, setting the stage for the subsequent clustering and in-depth 

analysis.  

 

 
Fig. 3  Top 10 Total Area Harvested Bar Chart 

 

 
Fig. 4  Top 10 Production Bar Chart 

 

 
Fig. 5  Subset of Total Area Harvested & Production PairPlot Graph 
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Fig. 6  Total Area Harvested and Production Boxplot 

 

 
Fig. 7  Parallel Coordinate Plot 

 

In the data visualization analysis of food waste and loss for 

crops in Malaysia, a series of plots yield critical insights for 
stakeholders. From Fig. 8, a bar plot ranking the top 10 items by 

total loss reveals that "Oil palm fruit" incurs the highest loss, 

trailed by "Maize (corn)" and "Rice (Paddy Equivalent)," 

pinpointing key areas for targeted waste reduction interventions.  
Another bar plot in Fig. 9 focusing on feed contributions 

shows that "Maize" leads the list, followed by "Soya beans" 

and "Sweet Potatoes," suggesting these crops are grown 
mainly for animal feed. The strong correlation of 0.98 between 

'Feed' and 'Import Quantity' implies that a rise in feed 

correlates with an increase in imports, potentially indicating 

that most imports serve animal feed needs. The heatmap of the 
correlation matrix in Fig. 10 further indicates strong positive 

correlations between 'Loss' and 'Processed' (0.86) and 'Loss' and 

'Stock Variation' (0.86), hinting at possible inefficiencies in 

food processing and storage. 
In Fig. 11, the 2D density plot between 'Feed' and 'Loss' 

shows a high density of points at lower values. This suggests 

that most items have low feed and loss quantities, making them 

ideal candidates for redistribution efforts. These visualizations 
collectively provide a comprehensive understanding of 

Malaysia's food waste and loss landscape, offering actionable 

insights for optimizing the agricultural supply chain. 
 

1897



 
Fig. 8  Bar Plot of Total Loss by Item 

 

 
Fig. 9  Bar Plot of Top 10 Items Contributing to Feed 

 

 
Fig. 10  Heatmap of Correlation Matrix 

 

 
Fig. 11  2D Density Plot of Feed vs Loss 

 

Applying visualization techniques in the GHG dataset helped 

one to acquire a better knowledge of GHG emissions in 

Malaysia. First plotted to show the trend of total GHG emissions 
over the years, a line graph offered a temporal viewpoint on how 

emissions have changed. This visualization was essential for 

spotting any trends, spikes, or emissions drop, providing the 

background for more investigation. A bar graph and pie chart 
were also produced to match the line graph and show the overall 

GHG emissions over the years. The pie chart gave a 
proportional view of yearly emissions that emphasizes the years 
with the most important contributions; the bar plot presented 

another angle on the temporal trends, allowing a year-by-year 

comparison of total emissions. 

For 2020, extra bar graphs and pie charts were created to 
divide GHG emissions by element to highlight the most current 

statistics. The bar graph gave a comprehensive picture of the 

emissions for every element, enabling a simple comparison of 
their magnitudes. By contrast, the pie chart gave a whole picture 

of the share of every element in the total GHG emissions for that 

particular year. These visualizations, providing a whole picture 

of Malaysia's present GHG emissions, will serve as a 
fundamental basis for future studies and interpretations.  

D. Clustering Algorithm 

Three clustering algorithms, the Gaussian Mixture Model 
(GMM), BIRCH, and Density Peak Clustering, are applied in 

preprocessed food production and food waste and loss datasets. 

The GMM is a commonly used soft clustering method that 

approximates complex probability distributions by combining 
multiple weighted Gaussian distributions. In our analysis, each 
Gaussian distribution represents a distinct coverage class. In the 

context of our data, where we have observation vectors denoted 
by Y with specific attributes, the GMM aims to find к mixture 

models, each with its mixture weight πi, mean vector µi, and 

covariance matrix Σi. GMM can then effectively capture 

multiple underlying patterns or clusters within the data, which 
makes it a versatile tool for various analytical applications as 

those components collectively model the observed data 

distribution. GMM’s formula is shown below:  
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One of GMM's primary advantages is its capability to model 
elliptical clusters, which allows greater flexibility in capturing 

the underlying patterns in the data. Applying GMM to the food 

production and waste and loss datasets could identify the 

distinct Gaussian distributions representing different clusters.  
BIRCH is a hierarchical clustering algorithm designed to 

process large datasets efficiently. Large datasets are efficiently 

processed by BIRCH, which incrementally and dynamically 
clusters incoming multi-dimensional metric data points. The 

algorithm's essence lies in using the CF-tree, a height-balanced 

tree data structure that summarizes the data's information. The 

nuances of food production and waste patterns are identified 
through BIRCH clustering on both datasets. It was especially 
beneficial given its ability to handle large datasets and produce 

a set of compact yet interpretable clusters. The clustering feature 

of a 3d vector is defined as CF = (n, LS, SS) where n is the 
number of objects in the cluster, and LS and SS are defined by 

the formula below: 

LS = ∑ ()*)�   and SS = ∑ () �*)�  (3) 

Density Peak Clustering works on the principle of identifying 

cluster centers as density peaks, which are data points that 

neighbors with lower density surround. To determine these 
cluster centers, the algorithm leverages a decision graph that 

plots density against distance to determine them. Clusters are 

then formed based on the relative densities and distances of data 
points from these centers. Potential crops of focus for 
intervention and further analysis are highlighted when Density 

Peak Clustering is applied to our dataset, which provides 

insights into clusters based on the pattern of food production and 
food waste and loss. The Density Peak Clustering’s formula 

consists of 3 focuses, which are: 

1) Calculating local density: 

+) � �  
,-∈/

01 Eudist 1(), (23 #  dist cutoff 3,   
0�(� � 41, ( 5 00, ( 7 0 

(4) 

2) Determine the cluster centroid via the decision graph: 

8) � max,-∈/,2;)  Eudist1(), (23
8) � min2:D-EDF Eudist1() , (23    �5� (5) 

3) Forming clusters based on the centroid and its nearest 

high-density neighbor: 

For ∀() ∈ I, the matrix �+) , 8)� (6) 

For the clustering algorithms that required a predefined 
number of clusters, specifically GMM and BIRCH, the cluster 
number selection was a pivotal step. For GMM, multiple criteria 

were employed to determine the optimal number of clusters. 
The Silhouette Score was used to ensure both cohesiveness 

within clusters and separation between them, as shown in Fig. 

13. Additionally, both the Bayesian Information Criterion (BIC) 

and the Akaike Information Criterion (AIC) were utilized as 
shown in Fig. 12. These criteria provided a balance between the 

goodness of fit of the model and the complexity of the model, 

with lower values indicating better models. By comparing the 

BIC and AIC values for different numbers of clusters, the 
optimal number of clusters was three clusters, so that the 
underlying patterns in the data were effectively captured 

without being overly complex. 
 

 

Fig. 12  BIC & AIC Plot 

 
Fig. 13  Silhouette Plot 

For BIRCH, the Distortion Elbow Method was applied. This 
method involves plotting the sum of squared distances against 

the number of clusters. By observing the point where the rate of 
decrease sharply changes, known as the 'elbow', the optimal 

cluster count identified was three clusters, where a balance 
between precision and computational efficiency was ensured. 

This is shown in Fig. 14. 
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Fig. 14  Distortion Elbow Plot 

Once the ideal number of clusters was decided upon and the 

data was grouped using the three techniques, each cluster was 

examined to grasp its unique qualities. Descriptive statistics and 
visualisers were produced for every cluster so it could spot 

trends, anomalies unique to every group. This stage was 
essential in comprehending the nature of food production and 

use inside every cluster, so enabling more focused 
recommendations and insights.  

The next stage connected the results with the dataset of 

greenhouse gas emissions using the clusters found and 
described. By mapping the patterns of food production and 

waste from every cluster to their respective GHG emissions, one 

obtained a thorough integrated knowledge of the environmental 

impact of various food production and waste patterns. This 
linkage provided a foundation for identifying which clusters or 

patterns of food production and waste had the most notable 
environmental impact. The simplified overall methodology 

workflow can be referred to in Fig. 15 below. 

 
Fig. 15  Workflow of Methodology 

III. RESULT AND DISCUSSION 

In our analysis of the Food Production dataset, with the 

application of all three different clustering algorithms, Gaussian 

Mixture Model (GMM), BIRCH, and Density Peak Clustering, 
insightful outcomes were yielded. Specifically, GMM identified 

three distinct clusters, as shown in Fig. 16. It can be shown the 
cluster is differentiated into 3 colors, which are green, purple, 

and yellow, where each color cluster was characterized by 
different levels of area harvested and production. #Green 

represents crops with high production efficiency, where the 

production level is high, and the area harvested is low. Cluster  
#Yellow represents crops that have low production 

efficiency, where the production level is low, and they are 

harvested in high. Cluster #Purple represents the crops within 

the cluster that have a consistent ratio of production to area 
harvested; where the area harvested increases, the production 

level also increases. Similar to GMM, Birch also gave a result 
of 3 clusters, as shown in Fig. 17. According to the plot, it could 

be seen that the clusters were classified by production 
efficiency, where Cluster #Purple was a crop with high 

production efficiency, Cluster #Green was a crop with low 

production efficiency, and Cluster #Red was a crop with 
consistent production to be harvested. However, for the cluster 

result found by DPC as shown in Fig. 18, the number of clusters 

found was only 1 cluster. It could be shown that DPC was 

unsuitable for clustering the food production dataset. 

 
Fig. 16  Cluster Result of GMM 

 
Fig. 17  Cluster Result of Birch 
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Fig.18  Cluster Result of DPC 

 

In the Food Waste and Loss dataset, clustering algorithms 

unveiled unique crop utilization patterns. The clustering results 

offer valuable insights into key features and cluster 
distributions. Due to the small size of the dataset, the original 
scatter plot for clustering was challenging to interpret; therefore, 

a bar graph was used to represent cluster distributions. The 

analysis identified three significant clusters. Cluster #0 is 
characterized by high values in features like 'feed,' 'import 

quantity,' 'loss,' 'other uses (non-food),' 'processed,' and 'stock 

variation.' In contrast,  

Cluster #1 primarily exhibits high values in 'import quantity' 
and 'loss.' Cluster #2 stands out with elevated values in 'feed,' 

'import quantity,' 'loss,' and 'processed.' These findings 

corroborate the heatmap matrix, reinforcing import quantity and 
loss as pivotal indicators for clustering food waste and loss data. 
Our understanding of the dynamics in food waste and loss is 

enhanced by Cluster #2, which underscores the correlation 

between ‘feed’ and ‘processed’ features with ‘import quantity’ 
and ‘loss’, as beyond Cluster #0 shows generally high feature 

values.  

In short, the clustering results provide a nuanced view of food 

waste and loss, highlighting the importance of ‘import quantity’ 
and ‘loss’ as key indicators. The clusters also suggest areas for 

targeted interventions and actionable insights to optimize the 

agricultural supply chain. As shown in Fig. 19, Fig. 20, and Fig. 

21, it could be demonstrated that the GMM, Birch, and DPC 
found 3 cluster classes relating to food utilization.  

 

 
Fig. 19  Result of GMM Cluster on FWL Dataset 

 
Fig. 20  Result of Birch Cluster on FWL Dataset 

 
Fig. 21  Result of DPC Cluster on FWL Dataset 

After the dataset was dimensionality reduced, the distribution 

of elements for each cluster was found, as shown in Fig. 22, Fig. 

23, and Fig. 24, which shows which element each cluster 

contained. 
 

 

Fig. 22  Distribution of GMM Cluster on FWL Dataset 
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Fig. 23  Distribution of Birch Cluster on FWL Dataset 

 

 

Fig. 24  Distribution of DPC Cluster on FWL Dataset 
 

Performance score evaluations, which were Silhouette Score, 

Calinski-Harabasz Index, and Davies-Bouldin Index were 
performed on all three algorithms’ clustering results on food 
production and food waste and loss datasets. A table was created 

to identify which algorithm performed the best, as shown in 

Table V and Table VI. Based on Table V, it could be 

demonstrated that Birch performed the best in clustering the 
food production dataset. In contrast, in Table VI, GMM and 

Birch got the same performance score and performed better in 

clustering the food waste and loss dataset. From this, it is shown 
that the cluster performed by both algorithms on the food waste 

and loss dataset was robust, meaning that there was likely a 

trustworthy representation of the actual patterns in the data. 

TABLE V 

PERFORMANCE SCORE OF 3 ALGORITHMS FOR FOOD PRODUCTION DATASET 

 GMM Birch DPC 

Silhouette Score 0.76 0.85 -0.49 

Calinski-Harabasz Index 80.86 146.50 0.57 

Davies-Bouldin Index 0.50 0.19 1.35 

TABLE VI 

PERFORMANCE SCORE OF 3 ALGORITHMS FOR FOOD WASTE & LOSS DATASET 

 GMM Birch DPC 

Silhouette 
Score 

0.86 0.86 -0.64 

Calinski-
Harabasz 
Index 

45.49 45.49 0.12 

Davies-
Bouldin Index 

0.07 0.07 1.88 

 

Continuing with our GHG emission findings from the 

dataset, we have found that from Fig. 25, around 1990, there 
was a big spike in emissions, which can be explained by the rise 

in Malaysia’s economy due to a rise in industrial operations.  

Besides that, from Fig. 26, the energy consumption is 

abnormally high compared to the others, which suggests that 
LULUCF-related operations have caused this effect.  

Based on research done by Hassan et al., the rise in the oil palm 

industry, which involves LULUCF operations, contributes to the 
GHG emissions in the Energy Element from our visualization 
[21]. To add on, CO2 occupies a fair amount of the pie chart in 

Fig. 27 and Fig. 28, which indicates a strong relation of CO2 being 

emitted due to the energy item from Fig. 26. This could be a 
strong indicator that LULUCF is emitting most of the CO2 and to 

reduce the emission, proper and strict policies must be imposed. 

 

 
Fig. 25  Line Graph for GHG Emission 

 

 
Fig. 26  GHG Emission Source Bar Chart for 2020 

 

 
Fig. 27  Pie Chart for GHG Emission Source 
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Fig. 28  Pie Chart for GHG Emission Source for 2020 

 
The clustering results offer valuable insights into both food 

production and waste patterns. Identifying distinct clusters in 

the Food Production dataset suggests that targeted interventions 

could be more effective than a one-size-fits-all approach. 
Similarly, the clusters identified in the Food Waste and Loss 
dataset indicate areas where waste reduction efforts could be 

most impactful. For instance, the cluster characterized by high 

production but low utilization levels could be a key focus for 
waste reduction initiatives. 

Malaysia’s booming industrial operations, especially the rise 

of the oil palm industry and its LULUCF operations, have 
contributed to a significant emissions spike around 1990, as 

pinpointed by GHG analysis. CO2, being a dominant emission 

in our findings, further underscores the impact of the Energy 

Item, suggesting LULUCF is a significant contributor. The 
results also pave the way for future research. The clustering 
algorithms could be expanded to other agricultural datasets or 

not limited to one nation, and the GHG emissions trends could 
be investigated in the framework of policy changes to evaluate 

their effectiveness. This research adds to the increasing corpus 

of knowledge meant to improve food security and slow climate 

change. 

IV. CONCLUSION 

Using advanced clustering algorithms and visualization tools, 
this study thoroughly investigated the complex interactions 

among food production, waste, and greenhouse gas emissions in 
Malaysia. Different clusters found by insights from the Food 

Production dataset underlined the need for focused 

interventions catered to particular production trends. The Food 

Waste and Loss dataset also revealed notable areas of waste that 
might be targeted for waste reduction initiatives.  

Malaysia's industrial development, especially the expansion 

of the oil palm sector and related LULUCF activities, caused a 

notable increase in greenhouse gas emissions around 1990. The 
main concentration of CO2 emissions causes the notable 
environmental influence of these activities. Combining these 

results in many benefits when addressing food production 
efficiency and waste reduction, including improving food 

security and lowering negative environmental effects.  

This study emphasizes the link between these problems and 

the need to discover all-encompassing answers since the world 
must simultaneously ensure food security and combat climate 

change. Future research could extend this analysis to other 

agricultural environments and areas, enhancing our knowledge 

and approaches to negotiating these worldwide issues. Through 
a data-driven approach, this study highlights the dynamics of 

food production, waste, and environmental impact. Therefore, it 

provides insightful analysis and roadmaps for Malaysia and 
other countries to have a more sustainable future.  
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