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Abstract—The health of paddy fields significantly impacts rice yields and the economic stability of farmers. Limited number of experts 

available to watch these issues poses a challenge. Consequently, a reliable diagnostic system is necessary to find pests and diseases in 

rice crops. In this study, we propose deep metric learning with augmented latent fusion (FADMAKA) combined with a response-based 

knowledge distillation (KD) approach. The student model, which processes single RGB input images, is trained using soft latent labels 

derived from four augmented input from the teacher model. Our method delivers a high validation accuracy of 0.973, keeps an accuracy 

of 0.782 on the unseen data, and with rapid inference time of 38.911 milliseconds. This approach’s accuracy outperforms SoftMax deep 

learning classification with fine-tuning, which only has a maximum accuracy of 0.739 on the unseen data with computation time of 

36.224 ms, and the DML with augmented latent fusion with k-NN classifier on the same base model, which achieves an accuracy of 0.78 

with computation time of 124.977 ms. Our proposed model has 0.12 giga floating point operations per second (GFLOPs) that is suitable 

for edge devices with low computational resources. Following the modeling phase, we deployed the highest-accuracy student model to 

a Raspberry Pi 4B device equipped with a camera. This system can provide biological agent-based recommendations for identified pest 

and disease threats in rice fields. Our approach not only improved accuracy but also proved efficiency, enabling farmers to identify 

pests and disease without relying on internet connectivity. 
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I. INTRODUCTION

The health of paddy fields is crucial for farmers, as it 

directly affects crop yields and their economic stability. 

According to the International Rice Research Institute, pests 
and diseases can significantly reduce rice yield by up to 37%, 

with variations ranging from 24% to 41% depending on 

environmental and farming conditions [1]. One particularly 

destructive pest is the brown planthopper (Nilaparvata 

lugens), which causes considerable damage to rice crops [2]. 

Additionally, paddy fields are vulnerable to diseases such as 

leaf blight, brown spot, and blast, which are prevalent in the 

South Asian region [3]. In Indonesia, the situation is 

exacerbated by the limited number of agricultural experts 

available to monitor these problems. Typically, detecting 

plant diseases manually involves expert observation with the 

naked eye, which is time-consuming, costly, and prone to 

errors [4]. By machine learning, it is possible to show diseases 

in plants at an early phase, which could enhance the longevity 

of crops [5]. Therefore, a fast and exact system is needed to 

prevent outbreaks of pests and diseases in rice crops. A 

recommendation system is of paramount importance in 

guiding farmers to take necessary actions against potential 

threats before they escalate into severe outbreaks. While 

several existing products can find rice pests or diseases, they 
often focus solely on recognition and do not provide eco-

friendly recommendations. Furthermore, these models are not 

deployed in a device that allows farmers to use them for 

identification in real-world environments. 

Our earlier research proposed a system for paddy pests and 

disease identification using the deep metric learning (DML) 

with augmented latent fusion (FADMAKA) [6]. This model 

was deployed on cloud computing systems, providing real-

time monitoring through the concept of a 5D world map. In 

this research, we address the challenge of internet 
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connectivity for cloud computing platforms. Specifically, we 

deploy the model on an edge device, cutting the need for an 

internet connection during inference, as internet access is 

often unavailable in remote fields. We also aim to improve the 

model complexity and computational time from our earlier 

work [6]. This is particularly crucial because deploying neural 

network models on edge devices presents a challenge due to 

the limited computational and memory capabilities. 

Numerous methods to find pests and diseases in rice crops 

have been explored in past research. For instance, Ni et al. [7] 
proposed a novel model RepVGG_ECA, which integrates 

efficient channel attention blocks in RepVGG model to 

improve the feature extractor. This model, which is 

specifically designed for classifying rice pests and diseases, 

utilizes convolutional neural network (CNN) with SoftMax 

deep learning classification techniques. However, its 

effectiveness is constrained by its substantial dependence on 

supervised learning, which requires labeled samples. Rahman 

et al. [8] explored the use of CNN architectures for 

recognizing pests and disease in crops. Their research yielded 

the best performance with a fine-tuned VGG16 model. 
Malathi et al. [9] employed SoftMax classification techniques 

to classify pests in rice plants. They achieved the highest 

accuracy with the ResNet-50 model, which was further fine-

tuned for their specific task. Our previous studies have shown 

that these methods, when applied to our dataset, yield a 

reasonably high level of accuracy [6]. However, these 

methods predominantly rely on highly complex models, 

leading to high computational costs. As a result, they are not 

suitable for deployment on devices with low specifications. 

Several research studies have proposed the use of a simple 

CNN architecture for classifying images of pests and diseases 
in rice plants using a SoftMax classifier. One such study was 

conducted also by Rahman et al. [8], who proposed a simple 

CNN for classifying pests and diseases in paddies. 

Petchiammal et al. [10] proposed optimized deep CNN model 

architectures, such as PaddyNet, for classifying paddy 

diseases. They used dropout to reduce overfitting problem. 

Other studies have proposed an optimized approach that does 

not use CNNs as feature extractors for finding diseases in rice 

plants. Instead, these studies use a classical image processing 

approach, and the extracted features are fed into neural 

networks. For instance, Ramesh et al. [11] proposed the 

JAYA algorithm. They removed the image background using 
a fusion thresholded image saturation part of HSV and RGB 

images and then extracted color features and texture features 

using GLCM from the segmented image from k-MEANS. A 

simple neural model is then used to classify rice leaf diseases 

based on these features. Lu et al. [12] employed a method that 

combined histogram equalization, median filtering, and edge 

segmentation to process images of rice sheath disease. They 

combined color and texture features as the input for 

backpropagation (BP) neural network by concatenating them. 

Despite its innovative approach without CNN, these methods 

may not fully capture complex image patterns due to its 

limited feature representation. Additionally, high-
dimensional input data can lead to the curse of dimensionality 

and overfitting. Moreover, AI algorithms used for image 

classification are based on deep learning techniques, such as 

SoftMax classification. SoftMax classification that employ 

cross-entropy loss are not well-suited where there is 

significant variation within classes and limited variation 

between classes in the input data distribution [13].  

In this paper, we propose the DML technique, which is 

trained to recognize similarities in images by mapping data 

onto latent representations that can handle high intraclass and 

low interclass variances. DML also can find new classes 
without retraining the model, making it suitable for 

identifying the numerous pests and diseases found in nature. 

Additionally, unlike traditional classification methods, DML 

can be used for image retrieval applications because it can 

query databases for similar images. We propose the 

FADMAKA-KD algorithm, which compress the complex 

DML teacher model using augmented latent fusion from our 

previous research [6] to the lightweight MobileNetV3s 

student model through knowledge distillation (KD) 

technique. Our experiments focus on improving the accuracy 

of lightweight student model by using the robust large teacher 
model so that enables deployment on low-specific hardware 

and achieving effective results. At the end of this research, we 

also deployed the model to a smart portable device for pests 

and disease identification in rice crops using an edge device 

integrated with a high-resolution camera and touchscreen 

display. In Table 1, we present comparative study between 

existing research conducted by earlier researchers in the 

context of pest or disease identification and the features of our 

proposed research. The paper is organized as follows: Section 

2 provides an in-depth explanation of the proposed approach, 

Section 3 discusses the experimental setup, results, and 

analysis, and Section 4 concludes with a summary of the main 
insights.  

TABLE I 

RESEARCH COMPARATION ON PADDY PEST AND DISEASE CLASSIFICATION APPROACH USING COMPUTER VISION TECHNIQUE 

Authors Approach 
Lightweight 

model 

Model feature Model deployment feature 

Pest Disease Implementation method 
Offline 

Usage 

Follow-up 

recommendation 

Darmawan et al. 
[6] 

DML with augmented latent 
fusion: FADMAKA 

– ✓ ✓ Web-based application 
with cloud deployment 
model 

– ✓ 

Ni et al. [7] SoftMax classification: 
RepVGG_ECA 

– ✓ ✓ – – – 

Rahman et al. 
[8] 

SoftMax classification: VGG16 
(fine-tuned) 

– ✓ ✓ – – – 

Malathi et al. 
[9] 

SoftMax classification: ResNet-
50 

– ✓ – – – – 

Rahman et al. 
[8] 

SoftMax classification: 
SimpleCNN 

✓ ✓ ✓ – – – 
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Authors Approach 
Lightweight 

model 

Model feature Model deployment feature 

Pest Disease Implementation method 
Offline 

Usage 

Follow-up 

recommendation 

Petchiammal et 
al. [10] 

SoftMax classification: 
PaddyNet 

✓ – ✓ – – – 

Ramesh et al. 
[11] 

Classical algorithm for feature 
extraction and fed it into neural 
network model: JAYA 
algorithm 

✓ – ✓ – – – 

Lu et al. [12] Classical algorithm for feature 
extraction and fed it into neural 

network model 

✓ – ✓ – – – 

Ours Model compression for DML 

with augmented latent fusion: 

FADMAKA-KD 

✓ ✓ ✓ Portable device with 

edge inference system 

✓ ✓ 

 

II. MATERIALS AND METHODS 

The entire research framework is shown in Fig. 1, with six 

main components, is explained in that follows: (1) acquiring 

images, enhancing using augmentation techniques, and 

preprocessing; (2) training the teacher model; (3) obtaining 

the enhanced latent fusion image as soft latent labels from the 

teacher model and training the student model; (4) k-NN 

retrieval modeling; (5) accuracy testing and comparing to 

baseline and state-of-the-art (SOTA) techniques; (6) edge 

device deployment.  

 

 
Fig. 1  Research framework workflow diagram 

 

A. Dataset Preparation and Preprocessing 

In our study, we used the same dataset previously 

employed in our previous research that used to be teacher 

models in this research [6]. This dataset comprises six distinct 

classes: three related to rice diseases (rice blast, brown spot, 

yellow rice borer) and three associated with pests (bacterial 

leaf blight, brown planthopper, rice leafhopper). The dataset 

is partitioned into 8,859 training samples, 2,224 validation 

samples, and 600 test samples [6]. To collect this data, we 
sourced information from various channels, including web 

scraping from Google Images, the IP102 pest dataset from 

field environments, rice plant disease images from field 

environments, and a rice leaf disease dataset with a white 
background. Additionally, we performed manual analysis to 

increase the dataset. This involved cropping images into 

square shapes and separating those having multiple diseases, 

thereby increasing the overall sample size. We also corrected 

mislabeled images and showed and removed duplicates. 

Importantly, we ensured that the test dataset remained distinct 

from the validation data to prevent any data leakage. Our 

dataset served as the foundation for training and evaluating 

our proposed method, as well as for reimplementing existing 

approaches for direct comparison. Fig. 2 visually depicts the 

distribution of the dataset.  

 

 
Fig. 2  Sample distribution with visual example of each class 

 

During the training process, we also applied image 

augmentation techniques, including blurring, random 

rotation, and horizontal flipping. These techniques enhanced 

the diversity of the training data, mitigating overfitting and 
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improving generalizability. Furthermore, we preprocessed the 

images by enhancing contrast and normalizing the image 

using the standard deviation and mean from the ImageNet 

dataset. Our base network for student models leveraged 

pretrained weights from IMAGENET1K_V1.  

B. Distill and Relation-based Knowledge Transfer 

In our earlier work, we introduced a novel method known 
as “latent fusion augmented images”, which utilizes DML as 

the teacher model [6]. This method is characterized by the 

augmentation of input images during the inference process, 

followed by the computation of the average of the resulting 

latent representations. The final latent representation serves as 

the soft latent labels, i.e., � �� , produced by the teacher model, 

which the student model learns to mimic. We used an offline 
distillation training approach, where the teacher model is 

trained first and then used to train the student model, as shown 

in Fig. 3.  

 

 
Fig. 3  Knowledge distillation on DML with augmented latent fusion 

 

Algorithm 1: FADMAKA-KD 

1 Input: 

Training set �� � 	
��� , ��������� , 

Validation set �� � 	
��� , ��������� , 

Holdout set �� � 	
��� , ��������� , 
2 Data augmentation and preprocessing 

- Augment ��  using blur, random rotation, and 

horizontal flip 

- Preprocess ��� , ��� , ���  using contrast stretching and 

image normalization 

3 Train student model to mimic teacher model 

- Load � �, �′ the pretrained teacher model �
�� 

- Define the student model �
�� using MobileNetv3s 

and load �� , �� from ImageNet and produce � ∈ !" 

- Collect soft latent labels using �
���� ���� �  	�
���; � �, �′� | ��� ∈ ���  ��%� � 	�
!&�'�(
��� , γ�;  � �, �′� | ��� ∈ ���  ��"� �  	�
*+,-.
����; � �, �′� | ��� ∈ ���  ��/� � 	�01ℎ-3�0��� , 
4., 45�6; � �, �′6 | ��� ∈ ��� ���� �  14 
���� 9 ��%� 9 ��"� 9 ��/�� 

- Collect soft latent predictions using �
���� ��� �  	�
���; �,: ��� | ��� ∈ ���  
- Define ℒ< from Eq. (4) using distance metric from 

Eq. (1) to Eq. (3) 

- Optimize �
�� to achieve final �� ′, ��′ using SGD 

or AdamW to solve Eq. (1) 

- Validate and checkpoint �
�� using ��� 

4 - Compute latent for training and validation set �= �  	�
���; W, b� | ��� ∈ ���  �@ �  	�
��� ; �,: ��� | ��� ∈ ��� 

- Find the best A value for maximizing �� accuracy 

in �= 

- Compute latent for holdout set �� �  	�
���; �, �� | ��� ∈ ��� 
- Classify the z�  using k-NN in ��  and measure 

accuracy with �� as the labels 

Output: predicted class of ���  
 

We assigned the teacher model as  �
�� , which the 

parameters were previously trained with FADMAKA 

algorithm, denoted as � �, �′ . We obtained the soft latent 

labels, i.e., � � , using the average value of the latent 

representation from different input images using the teacher 

model. After that, we optimize the parameters of the student 

model, i.e., �, �, using the distillation loss defined by Eq. (1). 

The objective of the distillation loss is to align the student 

model's soft latent predictions with the teacher model's soft 

latent labels. C is a specific similarity metric defined by Eq. 

(2)-Eq. (4). �,: �� �  ℒ<D� ,E�F%G H��
 

(1) ℒ< � I J-K LC0���� , ���6MN
���  

C. Training a Student Model Using a Response-based 

Knowledge Scheme 

The loss function measures the error between the prediction 

and the label [14]. To mimic the teacher model's soft latent 
labels, the student model was trained with a distillation loss 

function, optimizing weights and biases during 

backpropagation [15]. The whole method for our 

FADMAKA-KD is outlined in Algorithm 1. The similarity 

metrics used in this study are the Euclidean distance (Eq. 2), 

cosine distance (Eq. 3), and Pearson correlation (Eq. 4). 

The distillation loss metric is determined in accordance 

with what is used to optimize the teacher model [6]. We also 

employed the same specific optimizers, AdamW and SGD, 
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which were used to train the teacher model. These were 

implemented using 0.001 initial learning rate and 16 batch 

size. 

C
��� , ��� � OI  "
Q�� 0�Q�� − �Q� 6S

 (2) 

C
��� , ��� � 1 − I �Q���Q�"
Q��

TI 
�Q���S"
Q�� U 
�Q� �S"Q��

 

(3) 

C
��� , ���
� 1 − I 
�Q�� − ���VVVV�
�Q� − ��W �"

Q��
TI 
�Q�� − ���VVVV�S"

Q�� U 
�Q� − ��W �S"Q��
 (4) 

 

The number of training epochs was 100 for 16-dimensional 

and 200 for 256-dimensional latent representations. We did 

not use the 1024-dimensional representation due to its low 

performance in previous research and to minimize processing 
time on edge devices. Moreover, k-NN classifier uses high-

dimensional data can increase computation also suffer from 

the curse of dimensionality [16].  

D. Teacher‒student Network Architecture 

We employed ResNet-50 and ResNet-152 as the teacher 

networks due to their extensive number of parameters, which 

also contribute to their high accuracy. The base model 

ResNet-50, employed as a teacher in this study, boasts as 

many as 25,557,032 parameters with 8.26 giga floating point 
operations per second (GFLOPs). Moreover, the ResNet-152 

model possesses an even larger parameter count, totaling 

60,192,808 with 23.21 GFLOPs. GFLOPs is a measure of the 

computational complexity of a neural network model. 

Generally, the inference time of the neural network model 

tends to increase linearly with the number GFLOPs. Thus, 

higher GFLOPs will take longer inference times [17]. In 

addition, the teacher model that used ResNet base model 

performed augmented latent fusion during inference using 

four different image characteristics, resulting in a 

computational cost that scales linearly with the number of 
images [6]. On the other hand, we selected MobileNetV3s as 

the student model due to its ability to reduce the number of 

parameters and computations needed to process the image. 

The base model MobileNetV3s has a parameter count of 

927,008 with 0.12 GFLOPs. This makes it an ideal choice for 

mobile and embedded systems with limited computational 

resources [18]. Remarkably, we trained the student model 

only using one input image, which can significantly reduce 

the computational time during inference since we don’t need 

to augment the image to do latent fusion.  

E. Classifier and retrieval task 

The trained student model creates augmented latent from a 

single image and uses k-NN to classify them, calculating 

distances to all training data latent and ranking nearest 

neighbors. Within the scope of finding pests and diseases, the 

k-NN algorithm enables users to verify predictions by 

comparing input images with corresponding images from the 

database. We conducted dimensionality reduction on the 

latent representation generated by the student model using the 

t-SNE algorithm, with an automatically optimized learning 

rate and a perplexity of 15. Based on Fig. 4, there is an overlap 

between the groups representing rice blast and brown spot. 

This suggests that some images may contain more than one 

type of disease, which aligns with previous research findings 
that images of brown spot can also show indications of rice 

blast on the same leaf [6]. Furthermore, the brown 

planthopper cluster also contained overlapping points from 

the rice leafhopper sample. This could be due to similarities 

in wing features between the two classes, as they share 

anatomical similarities. 

 
Fig. 4  Latent space from student model with t-SNE 

 

We also conducted a quantitative analysis of silhouette 

scores across three distinct scenarios. The first scenario 

involved the best model from previous research without latent 

fusion [6], which was a ResNet50 optimized with Pearson 
correlation using AdamW and a 16-dimensional latent. This 

model achieved a silhouette score of 0.918. The second 

scenario was the best teacher model from earlier research [6], 

with latent fusion, which achieved a silhouette score of 0.900. 

The third scenario was FADMAKA-KD using the 

MobileNetV3s base model, which achieved a silhouette score 

of 0.878. A decrease in the silhouette score with augmented 

latent fusion can occur because this technique involves 

calculating the mean of the data points, which are altered 

through augmentation. The silhouette score evaluates how 

well a data point is grouped within its own cluster relative to 

other clusters, tends to decrease when this means significantly 
deviates from the center of the original cluster due to 

augmentation. Meanwhile, the student model that attempts to 

mimic the augmented latent fusion only uses a single input, 

causing the model to struggle to align closely with the teacher 

cluster that utilizes multiple inputs. This results in a 

diminished ability of the model to maintain cohesion within 

its own cluster, reflected in the lowered silhouette score.  

F. Experimental Modeling and Performance Comparison 

We tested various knowledge distillation modeling 

schemes on the small MobileNetV3s student model, which 

transferred knowledge from the ResNet-50 and ResNet-152 

teacher models and was optimized with Euclidean distance, 

cosine distance, and Pearson correlation metrics. We also 
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evaluated the performance of MobileNetV3s, used as the base 

model of the FADMAKA algorithm, in the two best scenarios 

from our previous research [6] to examine the effectiveness of 

the FADMAKA-KD algorithm. These were Pearson 

correlation with the AdamW optimizer and 16-dimensional 

latent space and Euclidean distance with the AdamW 

optimizer and 256-dimensional latent space, with the 

objective function in Eq. (5) [19].  �′,: ��′ �  ℒXD��,E��F%G H��
 ℒX� I max \C \ 3
]�; �̂ ′, ��′�,3
]_;  �̂ ′, �� ′�`   N

���− C \3
]�;  �̂′, ��′�,3
]�; �̂ ′, ��′�` 9 J, 0` 

(5) 

We also compared the performance of the SoftMax 

classifier with supervised learning objective loss in Eq. 6 to 
determine the effectiveness of the FADMAKA-KD against 

SoftMax classification approach. 

 ℒb � − 1c I  N
��� I  d

e�� �elog 0.�e6 (6) 

Furthermore, we compared the results of FADMAKA-KD 

with SOTA models previously studied in the context of paddy 

plant pests and disease classification, all of which were 

reimplemented using our dataset. We also assessed the 

inference computation time on a Raspberry Pi 4B edge device, 

which is the device intended for deployment. Given that the 

image classification task involves balanced class categories in 

the holdout set, we used accuracy as the primary metric to 

compare the best performance across different approaches. 

The accuracy is calculated by Eq. 7 [20].  Accuracy � X%n�op/qX%n�N�GX%n�op/qrFs/�op/qX%n�N�GqrFs/�N�G  (7) 

G. Model Implementation on Edge Devices 

Few studies have implemented models for end-user 
applications. In this study, we deployed the best-performing 

student model on a Raspberry Pi 4B edge device as shown in 

Fig. 5, enabling farmers to use it in the field without relying 

on internet connectivity [21]. The Raspberry Pi 4B features a 

Broadcom BCM2711 SoC, which integrates four Cortex-A72 

cores running at 1.5 GHz, along with 4 GB of LPDDR4-3200 

RAM [22]. In our application, we integrated biological agent 

recommendations to reduce the reliance on chemical 

pesticides.  

 
Fig. 5  Smart portable device alpha version 

 

This aligns with the Indonesian Ministry of Agriculture’s 

goal to preserve the ecosystem by minimizing pesticide use, 
protecting natural predators, and reducing harmful residues. 

This system is invaluable for promptly identifying and 

managing the health of paddy fields, helping farmers protect 

their crops effectively. The device employs an Arducam 64 

MP camera complemented by compact LCD touchscreen. 

This combination enhances the device's portability. 

III. RESULTS AND DISCUSSION 

This section presents the evaluation of the model's training 
results. Furthermore, we conducted comparative analysis to 

show the effectiveness of FADMAKA-KD by comparing it 

against other methods used in the paddy pests and disease 

classification.  

A. Model Checkpointing on the Validation Set and Classifier 

Selection 

Our first experiment aimed to determine the best k-value 

from the validation set, evaluating k-values within the range A ∈ 	1,6,11, 16. . . ,201� to achieve the highest accuracy on 
the student model. Fig. 6 shows the k-NN accuracy on the 

latent representation validation set, varying k-values and 

different similarity metrics for each scenario of the student 

model.  

 

 
Fig. 6  Validation set accuracy of FADMAKA-KD with different k-NN configurations across all schemes 

1708



Fig. 6 illustrates that the selection of k profoundly 

influences the accuracy [23]. An optimal k-value is required 

to balance accuracy and computational efficiency, as a lower 

k-value increases noise sensitivity, while a higher k-value 

increases computational complexity. The trends in Fig. 6 

resemble those of the teacher model in previous research, 

suggesting successful knowledge transfer from the teacher to 

the student. The Euclidean distance metric performs well 

when the student model is optimized using SGD, achieving an 

average accuracy of 0.916. However, this is still lower than 
the accuracy achieved with AdamW. Specifically, the SGD 

optimizer results in lower accuracies with the cosine metric at 

0.821 and the Pearson metric at 0.813.  

In general, AdamW yields superior validation accuracy 

across all metrics, achieving 0.928 for Euclidean, and 0.966 

for both cosine and Pearson. The choice of optimizer and 

similarity metric significantly changes the performance of a 

DML model [24]. Adaptive learning rate and weight decay in 

AdamW is probably effective with distance metrics sensitive 

to the size of the weights, such as the cosine distance and 

Pearson correlation. In contrast, SGD stays effective with the 

Euclidean distance, which are less sensitive to weight 

magnitudes 

B. Analysis on the Unseen Data/holdout Data 

In this subsection, we evaluate the classification 

performance using the optimal k value obtained during 

validation testing. Subsequently, we apply this model to 

previously unseen data and present the results in Tables 2 and 

3. Table 2 summarizes the accuracy results for the 

FADMAKA-KD student model with the teacher model for 

ResNet-50.  

TABLE II 

FADMAKA-KD HOLDOUT SET ACCURACY WITH RESNET-50-TEACHER MOBILENETV3S-STUDENT ON THE BEST K-NN SETTINGS 

Optimizer 
Latent 

dims 

Max 

epochs 

Triplet cosine Triplet Euclidean Triplet Pearson 

Teacher Student Teacher Student Teacher Student 

k Acc k Acc k Acc k Acc k Acc k Acc 

SGD 
16 100 46 0.679 16 0.627 31 0.730 76 0.635 31 0.690 61 0.613 

256 200 1 0.733 1 0.587 11 0.752 16 0.67 1 0.723 1 0.593 

AdamW 
16 100 106 0.745 16 0.74 16 0.745 36 0.738 36 0.772 166 0.782 

256 200 31 0.740 171 0.745 21 0.742 21 0.695 16 0.712 41 0.742 

TABLE III 

FADMAKA-KD HOLDOUT SET ACCURACY WITH RESNET-152-TEACHER MOBILENETV3S-STUDENT THE BEST K-NN SETTINGS 

Optimizer 
Latent 

dims 

Max 

epochs 

Triplet cosine Triplet Euclidean Triplet Pearson 

Teacher Student Teacher Student Teacher Student 

k Acc k Acc k Acc k Acc k Acc k Acc 

SGD 
16 100 96 0.723 31 0.62 26 0.733 26 0.673 86 0.710 21 0.628 

256 200 1 0.667 1 0.583 11 0.750 21 0.687 1 0.715 1 0.612 

AdamW 
16 100 21 0.783 6 0.708 6 0.713 16 0.73 6 0.755 6 0.741 

256 200 6 0.733 86 0.753 31 0.785 11 0.691 6 0.760 201 0.733 

 

Meanwhile, Table 3 provides the outcomes for the teacher 

model ResNet-152. During these evaluations, we explored 

various hyperparameters, including optimizers (SGD and 

AdamW), latent dimensions (16 and 256), and epochs (100 

and 200). Additionally, we incorporated checkpoint 

mechanisms and early stopping. The loss function employed 

similarity metrics such as Cosine, Euclidean, and Pearson. 

On average, the AdamW optimizer outperformed SGD 

across all the metrics, achieving mean accuracies of 0.737, 

0.714, and 0.750 for the cosine distance, Euclidean distance, 
and Pearson correlation, respectively. In contrast, SGD 

yielded mean accuracies of 0.604, 0.666, and 0.612 for the 

same metrics. Thus, the AdamW optimizer with the Pearson 

correlation metric generally provides higher accuracy in 

unseen data. Our best model, derived from a ResNet50-

teacher and MobileNetV3s-student setup, achieved the 

highest accuracy of 0.782 using AdamW and the Pearson 

correlation metric, with a latent dimension of 16 and k=166. 

This shows a 1.3% accuracy improvement over the teacher 

model, compared to the highest single-input accuracy of 0.772 

on ResNet50 base model [6]. The optimal model from the 

ResNet152-teacher and MobileNetV3s-student setup 

achieved a peak accuracy of 0.753 with AdamW and the 

cosine distance metric at a latent dimension of 256 and k=86. 

Meanwhile, the teacher model has the highest accuracy for 

ResNet152 with latent dimensions of 256, using Euclidean 

distance and AdamW, achieving 0.785. However, this didn’t 

translate to high accuracy in FADMAKA-KD scheme due to 

training differences, as the student model mimics the latent 

fusion from augmented inputs, not just a single pure teacher’s 

output which produces accuracy of 0.691. Therefore, the 

teacher model’s highest accuracy does not necessarily 
translate to the highest student model accuracy, particularly 

when using augmented latent fusion during model training. 

FADMAKA-KD can introduce added diversity and 

robustness into the learning process, as the student model is 

exposed to a wider variety of data representations.  

In this paper, we also re-implemented vanilla DML 

(without augmented during inference) and FADMAKA 

techniques using the MobileNetV3s base model. 

Additionally, we compared the performance of these methods 

with the best accuracy achieved by teacher models based on 

ResNet-50 and ResNet-152. We proved a new k-value from 

the validation set, and the results are shown in Table 4.  
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TABLE IV 

UNSEEN DATA ACCURACY OF FADMAKA ALGORITHM VS FADMAKA-KD ALGORITHM WITH MOBILENETV3S INFERENCE ON RASPBERRY PI 4B  

Teacher 

model 
Base model KD 

Distance 

Triplet loss 

Total 

parameters 
GFLOPs Augmented inference 

Latent 

dims 
k 

Inf. Time 

(ms) 
Acc 

– ResNet-50 – Pearson 25,573,050 8.26 – 16 36 576.368 0.772 
– ResNet-50 – Pearson 25,573,050 33.04 Rotation, shift, flip 16 36 2312.472 0.920 
– ResNet-152 – Euclidean 60,241,986 23.21 – 1024 6 2342.7 0.789 
– ResNet-152 – Euclidean 60,241,986 92.84 Rotation, shift, flip 1024 6 9375.829 0.878 
– MobileNetV3s – Pearson 936,242 0.12 – 16 26 39.387 0.767 

– MobileNetV3s – Pearson 936,242 0.36 Rotation, shift, flip 16 26 124.977 0.78 
– MobileNetV3s – Cosine 1,074,722 0.12 – 256 6 70.463 0.763 
– MobileNetV3s – Cosine 1,074,722 0.48 Rotation, shift, flip 256 6 155.607 0.765 

ResNet-50 MobileNetV3s ✓ Pearson 936,242 0.12 – 16 166 38.911 0.782 

ResNet-152 MobileNetV3s ✓ Cosine 1,074,722 0.12 – 256 86 65.027 0.753 

 

The FADMAKA algorithm on the MobileNetV3s base 
model achieved the best accuracy of 0.78 using the Pearson 

metric. Meanwhile, the accuracy without augmented latent 

fusion was 0.767, the difference is not very significant. 

Meanwhile, on the teacher model with ResNet-50 base model, 

the highest accuracy without augmented latent fusion was 

0.772 and 0.92 with augmented latent fusion [6]. For the 

ResNet-152, it was 0.789 without augmented latent fusion and 

0.878 with it [6]. The ResNet-based model significantly 

improved the accuracy when implemented with augmented 

latent fusion, while the accuracy of the MobileNetV3-based 

model did not significantly increase. This could be due to the 

ResNet50 and ResNet152, which have deeper layer, capture 
more complex and abstract features [25]. In contrast, 

MobileNetV3s architecture, which prioritizes efficient 

inference on mobile devices over accuracy due to its 
simplicity and fewer layers. Among the various scenarios 

tested, the highest accuracy using the base model 

MobileNetV3 Small was achieved in the FADMAKA-KD 

scenario, which utilized a ResNet-50 teacher model and a 

latent dimension of 16. This configuration resulted in an 

accuracy of 0.782 and a significantly faster inference time of 

just 38.911 milliseconds, outperforming other approaches. 

C. Comparison with SoftMax Baseline and SOTA Models 

We also reimplemented MobileNetV3s base model trained 
using softmax classifier approach as shown in Table 5. We 

explored four scenarios: fine-tuning and non-fine-tuning 

conditions, evaluating both the AdamW and SGD optimizers.  

TABLE V 

UNSEEN DATA ACCURACY OF BASELINE AND SOTA MODELS VS FADMAKA-KD INFERENCE ON RASPBERRY PI 4B 

Method 
Image augmentation during 

training 

Total 

parameters 
GFLOPs Optimizer Inf. time (ms) Acc 

MobileNetV3s Rotation, flip, blur 930,470 0.12 AdamW 30.655 0.643 
MobileNetV3s Rotation, flip, blur 930,470 0.12 SGD 31.785 0.422 
MobileNetV3s with fine 
tuning 

Rotation, flip, blur 930,470 0.12 AdamW 36.224 0.739 

MobileNetV3s with fine 

tuning 

Rotation, flip, blur 930,470 0.12 SGD 37.695 0.602 

FADMAKA ResNet-50 
(teacher model) [6] 

Rotation, flip, blur 25,573,050 33.04 AdamW 2312.472 0.920 

FADMAKA ResNet-152 [6] Rotation, flip, blur 60,241,986 92.84 AdamW 9375.829 0.878 
 RepVGG_ECA [7] Contrast, saturation, blur, flip 86,476,990 41.04 Adam 3895.03 0.716 
VGG16 [8] Shear, contrast, skew, flip, rotation 14,717,766 30.80 Adam 2553.405 0.804 
ResNet-50 [9] Shear, zoom, shift, flip, rotation 27,796,358 8.27 Adam 1127.673 0.811 
Simple CNN [8] Shear, contrast, skew, flip, rotation 275,406 0.22 Adam 155.676 0.722 

PaddyNet [10] Rotation, shift, flip, shear 255,686 0.90 Adam 297.328 0.334 
Jaya [11] - 806 1.752e-06 Adam  3.455 0.51 
ANN [12] - 675,906 0.0134 SGD 8.642 0.313 
Ours (student model) Rotation, flip, blur 936,242 0.12 AdamW 38.911 0.782 

 

The highest accuracy for these scenarios is 0.739 with 

AdamW fine-tuning, with a computation time of 

approximately 36.224 ms. In contrast, FADMAKA-KD 

derived from ResNet-50 teacher and MobileNetV3s student 

scenario, achieved a higher accuracy of 0.782 with a 
computation time of approximately 38.911 ms. Furthermore, 

as shown in Table 4, the classification accuracy of the DML 

and k-NN models, both utilizing the MobileNetV3 small base 

model, exceeds the results achieved by the standard SoftMax 

classifier shown in Table 5. Specifically, the DML and k-NN 

models achieved a peak accuracy of 0.767, which further 

improved to 0.78 when used augmented latent fusion. 

However, it’s worth noting that the computational cost of k-

NN-based classification is higher due to the added time 

required for nearest neighbor computations across all training 

data points [26]. This differs from the SoftMax classification 
approach, where predictions are directly obtained from the 

neural network’s output. In DML, the output takes the form 

of latent representations [27]. Despite this computational 

trade-off, the DML and k-NN classifiers consistently 

outperform the standard SoftMax classifier. Our findings 

align with earlier research where the DML model with k-NN 
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classification outperformed the SoftMax classifiers, and the 

accuracy further improved with augmented inference [6]. 

Additionally, DML and k-NN models based on augmented 

latent fusion (FADMAKA) require longer computation times 

compared to vanilla DML and k-NN models. This is due to 

the need to extract latent features from each augmented image 

and then calculate their averages before classification with k-

NN. The FADMAKA-KD method improves computational 

efficiency by learning the latent features from the fusion of 

several augmented image processes using only a single input 
image. This approach reduces computation time significantly, 

by up to 68.9%, while maintaining similar accuracy. 

Meanwhile, the process of knowledge distillation from the 

teacher model to the student model can reduce computation 

time by up to 98.3%. However, this comes with a decrease in 

accuracy of 15%. Despite this reduction in accuracy, this 

approach is more effective and efficient compared to the 

SoftMax classifier method with the same model complexity.  

We also compared FADMAKA-KD’s performance with 

SOTA methods, which were reimplemented using our dataset 

as shown in Table 5. These SOTA models, which focus on 
pests or disease classification in paddy research, were also 

retested for inference times on a Raspberry Pi to assess 

competitiveness. Most complex base models, such as VGG16, 

ResNet, and RepVGG, trained with SoftMax classification 

achieved high accuracy but also high inference times. Simpler 

models such as Simple CNN, PaddyNet, neural network 

without CNN layer such as Jaya and BP ANN, despite 

following the hyperparameters mentioned in their respective 

papers, yielded faster inference time but lower accuracy than 

our model.  

During our computational testing, we explored an approach 
that combines classical image processing techniques, such as 

Jaya [11] and ANN [12]. Our focus was on GFLOPs and 

inference time. We did not specifically test preprocessing 

time, if data had already undergone preprocessing, similar to 

the other methods. One notable insight from Table 5 is that 

the number of GFLOPs doesn’t always have a direct 

correlation with the number of parameters. In other words, 

having a high number of parameters does not necessarily 

result in higher GFLOPs. This discrepancy arises because 

they are not strictly related since GFLOPs measure 

computational cost meanwhile parameters are the size of the 

model [28]. For instance, SimpleCNN [8] and PaddyNet [10] 
have fewer parameters than our model (FADMAKA-KD), yet 

they yield higher GFLOPs. This difference can be attributed 

to variations in hyperparameter configurations within the 

CNN layers, such as kernel size and network design efficiency 

[29]. Our base network is built upon MobileNet, which 

incorporates depthwise separable convolutions. This 

innovation reduces the number of GFLOPs while supporting 

or slightly increasing the number of parameters [30]. In this 

research, we address a critical gap in the field of machine 

learning by focusing on the deployment of our best model on 

edge devices. This approach is particularly significant given 
the current trend where many studies conclude with 

theoretical papers without practical implementation. Our 

work bridges the divide between research and real-world 

application, demonstrating that advanced AI technologies can 

be made accessible and practical in resource-limited 

environments [31]. Our proposed research leverages 

computational efficiency and effective base model design to 

achieve remarkable improvements. We improved the image 

classification method, achieving accuracy surpassing that of 

fine-tuned SoftMax classifiers in deep learning, all while 

supporting similar GFLOPs and computation time with 

remarkable 5.82% improvement. Importantly, we address the 

internet connectivity issues met in previous studies that relied 

on online cloud computing for deployment. By enabling 

offline functionality, our approach helps on-site processing, 

which is particularly helpful for applications such as the early 
detection of pests and diseases in agricultural settings. 

IV. CONCLUSION 

We introduce FADMAKA-KD to find paddy pests and 

diseases, which leverages DML with augmented latent fusion 

and response-based knowledge distillation. Our approach 

involves training the student model with soft latent labels that 

are derived from four distinct augmented images from the 
teacher model. The student model demonstrated superior 

accuracy, achieving 0.973 on the validation set and 0.782 on 

unseen data, outperforming both SoftMax classification at 

0.739 and DML with k-NN classification at 0.78 using the 

same base model. Unlike SoftMax classification, metric 

learning focuses on developing meaningful embeddings, 

which can be more effective for fine-grained visual tasks. 

Additionally, the augmented latent fusion technique exposes 

the model to diverse data representations during training, 

enhancing its ability to generalize to unseen data. Inference 

times were also significantly reduced by up to 98.3%, from 

2312.472 ms to 38.911 ms, compared to the teacher model. 
Our method enhances computational efficiency by learning 

latent features from a fusion of several augmented image 

processes using just a single input image. This makes it highly 

suitable for deployment on edge devices with limited 

computational resources and memory. We successfully 

deployed the best-performing model on a Raspberry Pi 4B 

edge device, bridging the gap between theoretical research 

and real-world application. This addresses a critical need in 

the field, where many studies conclude without practical 

implementation. Future studies could experiment with 

lightweight architectures for the student model and apply 
quantization and pruning techniques to reduce model size. 

Additionally, exploring multi-teacher distillation and 

continuous learning could enhance performance. Developing 

methods for on-device fine-tuning would also enable better 

adaptation to local conditions. 

NOMENCLATURE C
��: distance metric function �
��: student model �
��: teacher model �, �: student’s weights and biases � �, �′: teacher’s weights and biases �: latent representation �: image input : image’s label ℒ<: distillation loss ℒb: cross-entropy loss 
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