
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Handwritten Hiragana Letter Detection Using CNN
Arya Fernandi a,*, Rita Magdalena a, Sofia Saidah a

a School of Electrical Engineering, Telkom University, Bandung, Indonesia

Corresponding author: *aryafernandi4@gmail.com

Abstract—Hiragana is one of the primary alphabets used in Japanese. Hiragana is a phonetic symbol; each letter represents one syllable.

Hiragana letters are formed from curved lines and strokes. However, detecting Hiragana letters causes many errors because people still

rely on their vision to detect the letters, especially people familiar with them for the first time. It will be difficult and not very clear to

read the letters. Therefore, a Convolutional Neural Network (CNN) method is used to detect handwritten Hiragana letters and help

people who first get to know Hiragana letters when the letters are too complicated for human eyes to detect. This research uses the

YOLOv8 model as a handwritten Hiragana letter detection algorithm. The Hiragana letters to be detected are basic letters with 46

characters. This research uses the YOLOv8 model run on Google Collaboratory with the Ultralytics library version 8.0.20 using the

Python programming language. The dataset is collected from the internet and annotated using the Roboflow framework and dataset

4600 Hiragana letters. From the test results, the best model is YOLOv8l using SGD optimizer and learning rate 0.01 with a precision

value of 98.5%, recall value of 95.7%, f1-score value of 97.1%, and mAP value of 95.5%. In the future, we aim to expand the number

of datasets and employ a broader range of hyperparameter values to optimize the classification precision and accuracy of the Hiragana

Letter Detection system.

Keywords—Hiragana characters; YOLOv8; Convolutional Neural Network (CNN); Python. mAP; recall; F1score; precision.

Manuscript received 11 Jun. 2024; revised 26 Aug. 2024; accepted 25 Oct. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

In today's modern era, finding foreign languages online is
easy. Various kinds of letters make some languages unique
and have their characteristics. One is Japanese, which has
many artworks such as anime, manga, and novels. Many are
fond of Japanese art, not only Indonesian people but also the
whole world, from students to workers, making Japan one of
the places to study and work. Japanese has a sentence
structure consisting of the letter’s Hiragana, Katakana, and
Kanji [1]. These three types of letters have their own writing
rules. The letter hiragana is a phonetic symbol. Each letter is
one mention of syllable Hiragana letters are formed from
curved lines and strokes.

There are 46 characters of Hiragana letters; it is very
challenging to research because the writing of Hiragana
letters has many forms, and each human who writes it has its
characteristics. Many people ignore the writing rules as long
as the writing looks similar to the character, which makes the
Hiragana letters written by each person varied and different
[2]. As a result, it isn't easy to detect the writing for people
new to Hiragana letters for the first time. Some research has
been done to detect Hiragana handwriting. Research

conducted by [2] using a combined CNN-SVM method to
detect Hiragana and katakana handwriting. The dataset used
was taken from respondents using a questionnaire. The results
of this study using the system using only the CNN method
have an accuracy of 87.82%, and the results obtained by the
combined CNN and SVM method are 88.21%. A previous
study by [3] conducted research using the CNN method to
detect Hiragana letters. The dataset was taken from the
internet and included as many as 1000 images. The study
results achieved 95% accuracy with 950 images as training
data and 50 as test data.

Research has been conducted using the YOLOv8 method
by [4] using the YOLOv8 model to detect protective masks.
The dataset is taken from Kaggle, which has 690 images using
masks, 686 images without masks, and 703 images using
masks incorrectly. The total dataset is 2079 images. The
results of this study obtained several performances from
YOLOv8, namely Precision 95%, Recall 95%, mAP (0.5)
96% and mAP (0.95) 93% using 200 epochs.

Based on earlier studies, this research will detect Hiragana
letter objects using CNN with the YOLOv8 algorithm.
YOLOv8 is the latest model of YOLO, designed to be fast,
accurate, easy to use, and the right choice for detecting

1916

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 1916-1922

Hiragana letter objects and analyzing the system's
performance. YOLOv8 system performance includes
Accuracy, Recall, Precision, F1-score, and Mean Average
Precision (mAP).

II. MATERIALS AND METHODS

A. Hiragana Characters
Hiragana is one of the basic letters of the kanji form. When

it first began to develop, Hiragana was not immediately used
by Japanese people because the Japanese aristocrats at the
time refused to use Hiragana and only wanted to use kanji
[27]. Historically, Hiragana was popularly used only by
women and was also called onnade letters (women's letters).
The Hiragana letters total 104 letters consisting of 46 basic
letters, 25 tentenmaru letters, and 33 mixed letters. Hiragana
letters have rules for writing letters because they considerably
affect the shape of the letter itself [2].

B. Deep Learning
Deep learning, a machine learning type involving multiple

layers of nonlinear data processing, is used forfeiture
extraction, pattern recognition, and classification [5]. Deep
learning is very good for supervised and unsupervised
learning in various applications such as image recognition,
voice, text classification, and so on [6]. Supervised learning is
a model that learns to input images with labels, while
unsupervised learning learns to input images without needing
to label the data.

C. Convolutional Neural Network
NeoCognitron, the term used to describe the Convolutional

Neural Network (CNN), was created by Kunihiko Fukushima,
an expert at NHK Broadcasting Science Research
Laboratories in Tokyo, Japan [7]. Convolutional neural
network (CNN) is a Neural Network method developed and
inspired by human nerves that can distinguish and recognize
objects [8]. Convolutional Neural Network can be considered
included in the Neural Network because it has a considerable
depth that can be used as an implication in an image [9]. CNN
is unique because it has a hidden layer that is only connected
to a subset of neurons from the previous layer [30]. CNN is
formed from neurons arranged to form a filter with a length
and height with weight, bias, and activation, but overall, CNN
is not much different from other deep learning algorithms
[10].

The CNN architecture is divided into two main parts: the
hidden and fully connected layers (MLP). The hidden layer
converts input images into functions that contain numbers
representing the image. In the fully connected layer, the
feature map of the hidden layer, in the form of a matrix, is
converted into one row so it can be linearly classified [23],
[24]. The Convolutional Neural Network architecture is
shown in Fig. 1.

Fig. 1 Convolutional neural network layer model

D. Convolutional Network
The convolutional layer is the core part of a CNN, where

the convolution operation occurs between the input image and
the kernel (filter) that produces a new pixel. The
convolutional layer technique helps clarify the input image
pixels by replacing the image pixel values with values close
to the image's original pixels. Using convolution does not
change the dimension of the image. The convolutional layer
has input consisting of length × height × depth. The
convolution process is shown in Fig. 2; the input image is
5×5×1 with the kernel having a 3×3×1 matrix; because the
stride value is 1 then, the kernel will shift nine times.

Fig. 2 Convolution matrix 5×5×1 input with 3×3×1 kernel

E. Pooling
Pooling, also called downsampling, reduces the matrix size

of the input, which is helpful for a more effective model
training process. There are two types: average pooling and
max pooling [25]. Many people generally use max pooling
because it selects the maximum value of the matrix region,
while average pooling takes the average value [26]. The
pooling process can be seen in Fig. 3.

Fig. 3 Max Pooling and Average Pooling

F. Stride
The stride is a parameter that determines how far the kernel

(filter) moves to get information from the input image. If the
stride value is 1, then the kernel (filter) moves by 1 pixel
horizontally and then vertically. If the stride value is small,
more accurate information is obtained from the input image,
but it requires longer computation time when compared to
using a larger stride value [11], [31]. The 1×1 stride process
is shown in Fig. 4.

Fig. 4 Stride 1x1

1917

G. Padding
Padding is a parameter added to each side of the input pixel

that is 0. This step manipulates the output so that the resulting
output does not lose information when convolution is running
[12]. The addition of 1×1 padding is shown in Fig. 5.

Fig. 5 Padding addition 1x1

H. Rectified Linear Unit (ReLU)
Rectified Liner Unit (ReLU) is a form of activation

function widely used in deep learning. This activation
function converts the negative pixel value in an image into 0
[13], which can be calculated using (1).

 ���� � max �0, �� (1)

I. Python
Guido Van Rossum is a Dutch computer programmer who

created Python. Python was first released in 1991; the naming
of this programming language was obtained from Monty
Python's Flying Circus show because Guido Van Rossum was
very fond of the show. Python can operate on various
platforms: WindowsOS, MacOS, Linux and Raspberry Pi.
Python is a versatile and user-friendly language, while other
languages can be challenging to understand, with an emphasis
on simple code [14], [21]. This makes Python very easy for
beginners and those who have been learning programming
languages for a long time. Python has a vast library to help
programmers create sophisticated applications using simple
source code [15].

J. YOLOv8
YOLO is an object detection algorithm [22], and YOLOv8

is the latest model of YOLO released in January 2023 and
developed by Ultralytics, the developer of YOLOv5. Similar
to YOLOv5, the architecture of YOLOv8 consists of a body
and a head, which provides a new architecture with a better
convolutional layer and an improved detector, which will
become the first choice of many people for real-time object
detection [16], [20]. YOLOV8 is still under development until
this research is conducted, so other researchers may still make
improvements, modify, or add new features.

K. YOLOv8 Architecture
YOLOv8 is a single-stage detector model that consists of

two main parts: the backbone network and the head network.
It uses a backbone network like YOLOv5 with some changes
to the CSP layer, which is now called the C2f module. The
C2f module helps improve detection accuracy. The YOLOv8
model uses a modified CSPDarknet53 architecture to become
the backbone network. CSPDarknet53 has 53 convolution
layers to extract essential features from the input image.

L. YOLOv8 Models
YOLOv8 offers five versions: YOLOv8n (nano),

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large),
and YOLOv8x (extra-large) [16], [17]. The difference
between all models is in the computation. The bigger the
model, the longer the calculation. The specifications of each
model are shown in Table 1.

TABLE I
YOLO V8 MODELS

Model
YOLO

v8n v8s v8m v8l v8x

Depth 0.33 0.33 0.67 1.00 1.00
Width 0.25 0.50 0.75 1.00 1.25
MaxChan
nels

1024 1024 768 512 512

Ratio 2.0 2.0 1.5 1.0 1.0
Layer 225 225 295 365 365

Parameter
31572
00

111665
60

259026
40

436915
20

682296
48

Gradient
31571
84

111665
44

259026
24

436915
04

682296
32

GFlops 8.9 28.8 79.3 165.7 258.5

M. Non-Maximum Suppression
Non-maximum suppression (NMS) is an object detection

algorithm that reduces overlapping bounding boxes, resulting
in varying confidence values [29]. This leads to incorrect
placement of detected objects. This algorithm often creates
several bounding boxes around the same object with different
confidence values [16]. Non-maximum suppression works by
taking the highest confidence value and eliminating the
confidence value below it. The way non-maximum
suppression works can be seen in Fig. 6.

Fig. 6 Non-Maximum Suppression

N. Intersection Over Union
The object detection algorithm produces an output as a

bounding box according to the system's prediction of the
detected object in the input. To evaluate the overlapping
bounding box values in the trained model, we can use the
Intersection over Union (IoU) method. IoU is the ratio of the
intersection area to the total area bounding box of the
detection result and the ground truth [16][19]. Intersection
over union can be seen in Fig. 7.

Fig. 7 Intersection Over Union

1918

Mathematically, intersection over union can be calculated
using (2).

 IoU =
�
 ∩ ��

�� ∪ ��
 (2)

where GT is Ground True, DR is Detection Result, and IoU is
Intersection Over Union.

O. YOLOv8 Design
This final project aims to design a Hiragana letter detection

system using a convolutional neural network with the
YOLOv8 algorithm.

Fig. 8 YOLOv8 design

In the system that will be designed, as shown in Fig. 8, the
detection will start from the configuration process of 5 types
of YOLOv8, followed by the training process to train the
model and fine-tuning, which aims to optimize the trained
model to minimize overfitting. Then enter the model testing
process, detect hiragana letters, and calculate performance
parameters. Once the configuration has been completed, it is
possible to test alternative hyperparameter values, including
learning rate, batch size, channels, and max batches.

P. Performance Parameters
This step calculates the performance of the YOLOv8

model for detecting handwritten Hiragana letters. The
performance parameters include Accuracy, Recall, Precision,
F1-Score, and mAP.

1) Confusion Matrix: The confusion matrix, or error
matrix, provides information about how the model's
classification results compare with the actual results [28]. Itrix
contains a table with four different combinations of model

classification results and real results. The confusion matrix is
shown in Figure 9.

Fig. 9 Confusion Matrix

The confusion matrix has 4 terms that represent the results of
the classification process, namely true positive (TP), true
negative (TN), false positive (FP) and false negative (FN).

2) Accuracy: Accuracy is a parameter used to
determine how accurate the system correctly detects objects.
The accuracy can be calculated with equation (3).

 Accuracy =

� �
�

� � �� � �� �
�
 � 100% (3)

Where TP means for true positive, TN means for true
negative, FP means for false positive, and FN stands for false
negative.

3) Recall: Recall is the success of a model in re-
detecting information. Recall can be calculated with equation
(4).

 Precision =

�

� � ��
 (5)

Where TP means for true positive and FP means for false
negative.

4) F1-Score: F1-Score is the average comparison of
precision and recall values. F1-Score has the highest value of
1 and the lowest of 0, if the F1-Score value is closer to 1, it
shows that the system performance works well. F1-Score can
be calculated with equation (6).

 F1-Score = 2 �
������ ������ �!"

������ ������ �!"
 � 100% (6)

5) Mean Average Precision (mAP): The mean average
precision is the average of precision values of all classes and
measures how well the performance of weights from training
data results. Before calculating mAP, adjusting the threshold
on the IoU is necessary to validate the detected object. mAP
can be calculated by equation (7).

 mAP =
#

"
 ∑ A&'

'("
'(# (7)

III. RESULTS AND DISCUSSION
This study aims to test and analyze the performance

parameters of detecting handwritten hiragana letter objects
using the YOLOv8 model. The dataset comprises 46 classes
of hiragana letters from the internet by the author. For
annotated authors using Roboflow[18]. The Hiragana letter
dataset comprises 46 letters, with a division of 70% training
data, 20% validation data, and 10% test data. The dataset
comprises 4,600 letters, with 3,240 included in the training
set, 950 in the validation set, and 410 in the test set. This test
encompasses several performance parameters, including
mAP, recall, f1-score, and precision. This test used several
optimizers, such as SGD and Adam. The learning rates used
are 0.01, 0.001, and 0.0001. This test is conducted to see how

1919

optimal the mAP, precision, recall, and f1-score values are on
each YOLOv8 model using an epoch value of 150.

A. Testing On YOLOv8n
Table 2 shows the performance when testing the YOLOv8n

model for the SGD optimizer. All learning rates can run to
completion without any obstacles. Still, at a learning rate of
0.0001, overfitting occurs, so the results are low because the
smaller the learning rate, the faster the dataset becomes,
burdening the computation.

TABLE II
TESTING ON YOLOV8N

Optimizer
Learning

Rate
Precision Recall

F1-

Score
mAP

SGD
0.01 97.5% 96.2% 96.8% 94.7%
0.001 97.4% 94.4% 95.9% 93.7%
0.0001 56.2% 63.5% 59.6% 67.7%

Adam
0.01 94.7% 90.4% 92.5% 88.6%
0.001 98.5% 95.8% 97.1% 94.8%
0.0001 97.1% 95.4% 96.2% 93.8%

In contrast to Adam's optimizer, at learning rates 0.01 and

0.0001, overfitting occurs, which results in stopping
computation at epoch 106 for learning rate 0.01 and epoch
120 for learning rate 0.0001 because the use of a significant
learning rate will cause learning at the beginning to be faster
before the rate is updated and when using a small learning rate
will slow down learning when the data is trained. The best
system for testing the YOLOv8n model is the Adam optimizer
with a learning rate of 0.001, a Precision value of 98.5%, a
Recall value of 95.8%, an F1-score value of 97.1%, a mAP
value of 94.8%.

B. Testing On YOLOv8s
Table 3 shows the performance when testing the YOLOv8s

model for all optimizers. Learning rates run smoothly, and the
fit of the hyperparameters with this model is perfect because
none of them occur overfitting when the simulation is run.

TABLE III
TESTING ON YOLOV8S

Optimizer
Learning

Rate
Precision Recall

F1-

Score
mAP

SGD
0.01 97.8% 95.7% 96.7% 94.9%
0.001 97.9% 94.4% 96.1% 94.8%
0.0001 97.2% 94.5% 95.8% 93.7%

Adam
0.01 98.3% 95.4% 96.8% 94.5%
0.001 98.4% 95.9% 97.1% 94.9%
0.0001 97.9% 96.0% 96.9% 94.8%

The SGD optimizer with a learning rate of 0.01 and the

Adam optimizer with a learning rate of 0.001 have the same
mAP value of 94.9%, meaning that both hyperparameters get
similar performance and fit this model. Still, for other values,
the Adam optimizer is higher than the SGD optimizer. The
best system from this model is the Adam optimizer, with a
learning rate of 0.001 a precision value of 98.4%, a recall
value of 95.9%, an f1-score value of 97.1% and a mAp value
of 94.9%.

C. Testing On YOLOv8m
Table 4 shows the performance when testing the

YOLOv8m model; the SGD optimizer experienced a decrease
in value, and at a learning rate of 0.001, overfitting occurred,

which only lasted at epoch 110. This is due to the model's
incompatibility with channel depth and channel widening.

TABLE IV
TESTING ON YOLOV8M

Optimizer
Learning

Rate
Precision Recall

F1-

Score
mAP

SGD
0.01 97.4% 96.4% 96.9% 95.2%
0.001 97.4% 96.6% 97.0% 95.4%
0.0001 96.9% 95.0% 95.9% 94.9%

Adam
0.01 96.3% 97.5% 96.9% 94.7%
0.001 98.3% 96.4% 97.3% 95.1%
0.0001 97.5% 95.5% 96.5% 95.0%

Adam optimizer has the best mAP value at a learning rate

of 0.001 out of 95.1%; this learning rate is the best value of
Adam optimizer. The best system of this model is the SGD
optimizer with a learning rate of 0.01, a precision value of
97.4%, a recall value of 96.4%, an f1-score value of 96.9%,
and a mAP value of 95.2%.

D. Testing On YOLOv8l
It can be seen in Table 5 performance when testing the

YOLOv8l model. The SGD optimizer experiences overfitting
at a learning rate of 0.001, which only lasts at epoch 147, and
a learning rate of 0.0001 at epoch 138. This is due to a
mismatch in the number of iterations, channel depth, and large
channel widening. Adam's optimizer has no problem, and a
learning rate of 0.001 is higher than other learning rates due
to the hyperparameters' fit with channel depth and channel
widening.

TABLE V
TESTING ON YOLOV8L

Optimizer
Learning

Rate
Precision Recall

F1-

Score
mAP

SGD
0.01 98.5% 95.7% 97.1% 95.5%
0.001 97.8% 95.3% 96.5% 94.8%
0.0001 97.4% 95.9% 96.6% 94.6%

Adam
0.01 97.6% 95.8% 96.7% 95.0%
0.001 97.2% 97.1% 97.1% 95.4%
0.0001 97.6% 94.7% 96.1% 94.8%

The best system from this model is the SGD optimizer with

a learning rate of 0.01, a precision value of 98.5%, a recall
value of 95.7%, an f1-score value of 97.1%, and a mAP value
of 95.5%.

E. Testing On YOLOv8x
Table 6 shows that when testing the YOLOv8x model,

overfitting occurs in the SGD optimizer with a learning rate of
0.001, which survives at epoch 144, and the Adam optimizer
with a learning rate of 0.0001, which survives at epoch 139.
This is because the hyperparameter value used does not match
the channel depth and channel widening that occurs.

TABLE VI
TESTING ON YOLOV8X

Optimizer
Learning

Rate
Precision Recall

F1-

Score
mAP

SGD
0.01 98.1% 95.8% 96.9% 95.3%
0.001 98.6% 95.2% 96.9% 95.3%
0.0001 98.1% 94.9% 96.5% 95.4%

Adam
0.01 97.4% 96.2% 96.8% 94.5%
0.001 98.5% 95.4% 96.9% 95.1%
0.0001 97.9% 96.3% 97.1% 95.3%

1920

The best system from this model is the SGD optimizer with
a learning rate of 0.0001, which has a precision value of
98.1%, a recall value of 94.9%, an f1-score value of 96.5%,
and a mAP value of 95.4%.

F. Comparison of Map Improvement in Each Model
Table 7 shows that the most optimal model is YOLOv8l

with an SGD optimizer and learning rate of 0.01, with a mAP
value of 95.5%. The mAP value decreases in the YOLOv8x
model because the channel widening value and channel depth
increase, resulting in overfitting during testing.

TABLE VII
COMPARISON OF MAP IMPROVEMENT IN EACH MODEL

Model Optimizer Learning Rate mAP

YOLOv8n Adam 0.001 94.8%
YOLOv8s Adam 0.001 94.9%
YOLOv8m SGD 0.01 95.2%
YOLOv8l SGD 0.01 95.5%
YOLOv8x SGD 0.0001 95.4%

YOLOv8n, YOLOv8s and YOLOv8m have an increase in

the mAP value because the value of channel depth and
channel widening is increasing for each model, causing more
precise testing even though it causes an increasing
computational burden as well. It can be seen in Table 4.6 that
the Adam optimizer excels in the YOLOv8n and YOLOv8s
models, which have a small channel depth and channel
widening, but the SGD optimizer excels in the YOLOv8m,
YOLOv8l, and YOLOv8x models which have a larger
channel depth and channel widening.

G. YOLOv8 Model Test Results
The test results of this model test carried out on the

YOLOv8l model with the SGD optimizer and learning rate of
0.01 show that the model selection is based on the test results
for the most optimal mAP value.

TABLE VIII
TEST RESULTS OF ALL CLASS YOLOV8L MODELS

Class Precision Recall F1-score mAP

ALL 98.3% 96.4% 97.1% 95.5%
あ= A 88.8% 100% 94.2% 92.1%
い= I 96.3% 100% 99.6% 97.1%
う= U 99.1% 100% 99.8% 87.8%
え= E 95.2% 100% 89.6% 92.3%
お= O 100% 89.8% 93.8% 92.7%
か= KA 100% 90.6% 93.3% 96.7%
き= KI 100% 97.9% 98.1% 96.7%
く= KU 96.6% 92.6% 93.5% 92.4%
け= KE 100% 95.8% 91.8% 96.2%
こ= KO 100% 89.5% 94.0% 93.7%
さ= SA 96.7% 100% 99.1% 98.8%
し= SHI(SI) 99.1% 100% 99.6% 91.4%
す= SU 98.3% 100% 99.1% 98.7%
せ= SE 98.1% 100% 98.8% 99.0%
そ= SO 98.7% 100% 99.6% 94.3%
た= TA 98.6% 100% 99.1% 99.5%
ち= CHI(TI) 97.6% 100% 99.2% 95.1%
つ= TSU(TU) 96.7% 100% 99.6% 93.3%
て= TE 100% 95.3% 99.6% 97.6%
と= TO 99.6% 100% 99.7% 91.9%
な= NA 100% 95.6% 93.0% 97.7%
に= NI 100% 88.6% 93.9% 96.6%

Class Precision Recall F1-score mAP

ぬ= NU 98.7% 100% 99.5% 96.0%
ね= NE 100% 95.3% 96.3% 99.2%
の= NO 99.1% 100% 97.4% 97.9%
は= HA 84.4% 100% 99.0% 98.7%
ひ= HI 99% 100% 99.7% 95.1%
ふ= FU(HU) 97.8% 100% 98.0% 93.6%
へ= HE 99.5% 100% 99.8% 90.3%
ほ= HO 100% 95.2% 99.9% 95.6%
ま= MA 100% 85.5% 95.0% 97.6%
み= MI 100% 94.9% 93.3% 98.1%
む= MU 100% 90.5% 93.2% 92.6%
め= ME 100% 89.6% 94.2% 98.7%
も= MO 100% 84.1% 91.4% 98.8%
や= YA 99% 100% 99.8% 92.2%
ゆ= YU 98.4% 100% 99.1% 93.2%
よ= YO 98.5% 100% 99.5% 89.9%
ら= RA 100% 98% 96.5% 97.8%
り= RI 98.4% 100% 98.2% 95.9%
る= RU 96.3% 92.3% 95.0% 93.9%
れ= RE 100% 84.3% 96.4% 98.7%
ろ= RO 99.4% 100% 99.7% 99.5%
わ= WA 96.3% 100% 98.4% 95.8%
を= WO 99.1% 100% 99.7% 95.1%
ん= N 96.5% 88.6% 91.3% 95.1%

The highest mAP value is in the class "TA" and "RO" of

99.5% indicating that the model used is very suitable for the
test, the learning carried out by YOLOv8 is very good for
these two letters. There are some letters with low mAP values
with the lowest value of 87.8% found in class "U", this is
because the dataset used is handwritten and also some
hiragana letters are unique because they have their own rules
in writing, which causes the letter to have many forms.

H. Comparison of Results
In previous research using 2 models, namely the CNN

model and the CNN-SVM combined model, the mAP value
was 87.82% and 88.21% using the Handwritten dataset. In
this Final Project the author uses datasets collected from
various sources with more variety.

TABLE IX
COMPARISON OF PREVIOUS RESEARCH RESULTS

Model Dataset mAP

CNN Handwritten Hiragana 87.82%
CNN-SVM Handwritten Hiragana 88.21%
YOLOv8 Handwritten Hiragana 95.50%

This research uses the latest model from YOLO, namely

YOLOv8, and gets the most optimal results in YOLOv8l
using the SGD optimizer with a learning rate of 0.01 and an
mAP value of 95.5%. In this test, the authors succeeded in
increasing the mAP from previous studies, namely 87.82%
and 88.21%, to 95.5% by using the YOLOv8l model using
similar datasets to previous studies.

IV. CONCLUSION
This study discussed the analysis of the classification of

handwritten Hiragana letters, focusing on the efficacy of
different optimization techniques, namely SGD and Adam,
and the use of three different learning rate values, 0.01, 0.001,
and 0.0001. The analysis is conducted by comparing previous

1921

research utilizing a CNN architecture, combined with a CNN-
SVM, and the proposed YOLOv8 model. Upon testing the
system, it can be concluded that the YOLOv8l model is the
most effective model when tested using the SGD optimizer
with a learning rate of 0.01, achieving a precision value of
98.5%, a recall value of 95.7%, an F1 score value of 97.1%
and a mAP value of 95.5%. In this study, the author
demonstrated an improvement in the mAP value from the
previous research conducted using the CNN model and the
combined CNN-SVM model, with values of 87.82% and
88.21%, respectively, to a mAP value of 95.5%, achieved
using the YOLOv8l model. The objective of this research is
to assist individuals in the accurate and precise identification
of hiragana letters. In the future, we aim to expand the number
of datasets and employ a broader range of hyperparameter
values to optimize the classification precision and accuracy of
the Hiragana Letter Detection system.

REFERENCES
[1] A. H. Mawaddah, C. Atika Sari, D. R. Ignatius Moses Setiadi, and E.

Hari Rachmawanto, “Handwriting Recognition of Hiragana
Characters using Convolutional Neural Network,” 2020 International
Seminar on Application for Technology of Information and
Communication (iSemantic), pp. 79–82, Sep. 2020,
doi:10.1109/isemantic50169.2020.9234211.

[2] N. E. W. Nugroho and A. Harjoko, “Transliteration of Hiragana and
Katakana Handwritten Characters Using CNN-SVM,” IJCCS
(Indonesian Journal of Computing and Cybernetics Systems), vol. 15,
no. 3, p. 221, Jul. 2021, doi: 10.22146/ijccs.66062.

[3] C. Umam, A. D. Krismawan, and R. R. Ali, “CNN for Image
Identification of Hiragana Based on Pattern Recognition using CNN,”
Journal of Applied Intelligent System, vol. 6, no. 2, pp. 62–71, Dec.
2021, doi: 10.33633/jais.v6i2.4586.

[4] Tamang, S., Sen, B., Pradhan, A., Sharma, K., & Singh, V. K. (2023).
Exploring YOLOv8 Object Detection for Accurate Face Mask
Classification. Ijisae, 2023(2), 892–897.

[5] M. M. Taye, “Understanding of Machine Learning with Deep
Learning: Architectures, Workflow, Applications and Future
Directions,” Computers, vol. 12, no. 5, p. 91, Apr. 2023,
doi:10.3390/computers12050091.

[6] I. H. Sarker, “Deep Learning: A Comprehensive Overview on
Techniques, Taxonomy, Applications and Research Directions,” SN
Computer Science, vol. 2, no. 6, Aug. 2021, doi: 10.1007/s42979-021-
00815-1.

[7] K. Kaplan, Y. Kaya, M. Kuncan, and H. M. Ertunç, “Brain tumor
classification using modified local binary patterns (LBP) feature
extraction methods,” Medical Hypotheses, vol. 139, p. 109696, Jun.
2020, doi: 10.1016/j.mehy.2020.109696.

[8] A. Anton, N. F. Nissa, A. Janiati, N. Cahya, and P. Astuti,
“Application of Deep Learning Using Convolutional Neural Network
(CNN) Method For Women’s Skin Classification,” Scientific Journal
of Informatics, vol. 8, no. 1, pp. 144–153, May 2021,
doi:10.15294/sji.v8i1.26888.

[9] Y. A. Suwitono and F. J. Kaunang, “Implementasi Algoritma
Convolutional Neural Network (CNN) Untuk Klasifikasi Daun
Dengan Metode Data Mining SEMMA Menggunakan Keras,” Jurnal
Komtika (Komputasi dan Informatika), vol. 6, no. 2, pp. 109–121,
Nov. 2022, doi: 10.31603/komtika.v6i2.8054.

[10] M. S. Elsayed, H. Z. Jahromi, M. M. Nazir and A. D. Jurcut, "The role
of CNN for intrusion detection systems: An improved CNN learning
approach for SDNs", Proc. Int. Conf. Future Access Enablers
Ubiquitous Intell. Infrastructures, pp. 91-104, 2021.

[11] F. Alantali, Y. Halawani, B. Mohammad, and M. Al-Qutayri, “SLID:
Exploiting Spatial Locality in Input Data as a Computational Reuse
Method for Efficient CNN,” IEEE Access, vol. 9, pp. 57179–57187,
2021, doi: 10.1109/access.2021.3071409.

[12] A. R. Fauzy. “Implementasi Metode Region Convolutional Neural
Network Dalam Mendiagnosa Anomali Pneumonia Pada Foto
Thorax”, Elibrary Unikom. PhD diss., Universitas Komputer
Indonesia, 2019.

[13] R. B. J. Simanjuntak, Y. Fu’adah, R. Magdalena, S. Saidah, A. B.
Wiratama, and I. D. S. Ubaidah, “Cataract Classification Based on
Fundus Images Using Convolutional Neural Network,” JOIV :
International Journal on Informatics Visualization, vol. 6, no. 1, p. 33,
Mar. 2022, doi: 10.30630/joiv.6.1.856.

[14] V. Cutting, & N. Stephen. “A Review on Using Python as A Preferred
Programming Language for Beginners”. International Research

Journal of Engineering and Technology, 2021, vol. 8, no. 8, pp.4258–
4263.

[15] J. Terven and D. Cordova-Esparza. (2023). A comprehensive review
of YOLO architectures in computer vision: from YOLOV1 to
YOLOV8 and YOLO-NAS,” arXiv (Cornell University),
doi:10.48550/arxiv.2304.00501.

[16] E. Panja, H. Hendry, and C. Dewi, “YOLOv8 Analysis for Vehicle
Classification Under Various Image Conditions,” Scientific Journal of
Informatics, vol. 11, no. 1, pp. 127–138, Feb. 2024,
doi:10.15294/sji.v11i1.49038.

[17] Q. Xu, Y. Wei, J. Gao, H. Yao, and Q. Liu, “ICAPD Framework and
simAM-YOLOv8n for Student Cognitive Engagement Detection in
Classroom,” IEEE Access, vol. 11, pp. 136063–136076, 2023,
doi:10.1109/access.2023.3337435.

[18] J. M. Kimeu, M. Kisangiri, H. Mbelwa, and J. Leo, “Deep learning-
based mobile application for the enhancement of pneumonia medical
imaging analysis: A case-study of West-Meru Hospital,” Informatics
in Medicine Unlocked, vol. 50, p. 101582, 2024,
doi:10.1016/j.imu.2024.101582.

[19] U. Ali, M. A. Ismail, R. A. Ariyaluran Habeeb, and S. R. Ali Shah,
“Performance Evaluation of YOLO Models in Plant Disease
Detection,” Journal of Informatics and Web Engineering, vol. 3, no. 2,
pp. 199–211, Jun. 2024, doi: 10.33093/jiwe.2024.3.2.15.

[20] P.-W. Chin, K.-W. Ng, and N. Palanichamy, “Plant Disease Detection
and Classification Using Deep Learning Methods: A Comparison
Study,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp.
155–168, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.10.

[21] K. Chromiński, Ľ. Benko, Z. J. Hernández-Figueroa, J. D. González-
Domínguez, and J. C. Rodríguez-del-Pino, “Python Fundamentals,”
Nov. 2021, doi: 10.17846/fpvai-2021-14.

[22] M. S. Z. Ahmad, N. A. Ab. Aziz, and A. K. Ghazali, “Development of
Automated Attendance System Using Pretrained Deep Learning
Models,” International Journal on Robotics, Automation and Sciences,
vol. 6, no. 1, pp. 6–12, Apr. 2024, doi: 10.33093/ijoras.2024.6.1.2.

[23] P. G. Solanellas. “Designing Convolutional Neural Networks for
Classification of Metastatic Tissue in the Lymph Nodes”. Bachelor's
thesis, Universitat Politècnica de Catalunya, 2022.

[24] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Completely Automated
CNN Architecture Design Based on Blocks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1242–1254,
Apr. 2020, doi: 10.1109/tnnls.2019.2919608.

[25] A. Wisnu, and H. Solichul, “Multichannel convolutional neural
network model to improve compound emotional text classification
performance,” IAENG International Journal of Computer Science,
vol. 50, no. 3, pp. 866–874, 2023.

[26] A. Zafar et al., “A Comparison of Pooling Methods for Convolutional
Neural Networks,” Applied Sciences, vol. 12, no. 17, p. 8643, Aug.
2022, doi: 10.3390/app12178643.

[27] H. Kunert, “Contemporary Loanwords inhiragana: An Analysis of
Typical Traits and Contexts,” Japanese Studies, vol. 40, no. 1, pp. 21–
40, Jan. 2020, doi: 10.1080/10371397.2019.1682935.

[28] D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić, “Multi-label
Classifier Performance Evaluation with Confusion Matrix,” Computer
Science & Information Technology, Jun. 2020,
doi:10.5121/csit.2020.100801.

[29] S. Jiang, T. Xu, J. Li, B. Huang, J. Guo, and Z. Bian, “IdentifyNet for
Non-Maximum Suppression,” IEEE Access, vol. 7, pp. 148245–
148253, 2019, doi: 10.1109/access.2019.2944671.

[30] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically
Designing CNN Architectures Using the Genetic Algorithm for Image
Classification,” IEEE Transactions on Cybernetics, vol. 50, no. 9, pp.
3840–3854, Sep. 2020, doi: 10.1109/tcyb.2020.2983860.

[31] M. Helmy, T. T. Truong, E. Jul, and P. Ferreira, “Deep learning and
computer vision techniques for microcirculation analysis: A review,”
Patterns, vol. 4, no. 1, p. 100641, Jan. 2023,
doi:10.1016/j.patter.2022.100641.

1922

