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Abstract—Hiragana is one of the primary alphabets used in Japanese. Hiragana is a phonetic symbol; each letter represents one syllable. 

Hiragana letters are formed from curved lines and strokes. However, detecting Hiragana letters causes many errors because people still 

rely on their vision to detect the letters, especially people familiar with them for the first time. It will be difficult and not very clear to 

read the letters. Therefore, a Convolutional Neural Network (CNN) method is used to detect handwritten Hiragana letters and help 

people who first get to know Hiragana letters when the letters are too complicated for human eyes to detect. This research uses the 

YOLOv8 model as a handwritten Hiragana letter detection algorithm. The Hiragana letters to be detected are basic letters with 46 

characters. This research uses the YOLOv8 model run on Google Collaboratory with the Ultralytics library version 8.0.20 using the 

Python programming language. The dataset is collected from the internet and annotated using the Roboflow framework and dataset 

4600 Hiragana letters. From the test results, the best model is YOLOv8l using SGD optimizer and learning rate 0.01 with a precision 

value of 98.5%, recall value of 95.7%, f1-score value of 97.1%, and mAP value of 95.5%. In the future, we aim to expand the number 

of datasets and employ a broader range of hyperparameter values to optimize the classification precision and accuracy of the Hiragana 

Letter Detection system. 
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I. INTRODUCTION

In today's modern era, finding foreign languages online is 
easy. Various kinds of letters make some languages unique 
and have their characteristics. One is Japanese, which has 
many artworks such as anime, manga, and novels. Many are 
fond of Japanese art, not only Indonesian people but also the 
whole world, from students to workers, making Japan one of 
the places to study and work. Japanese has a sentence 
structure consisting of the letter’s Hiragana, Katakana, and 
Kanji [1]. These three types of letters have their own writing 
rules. The letter hiragana is a phonetic symbol. Each letter is 
one mention of syllable Hiragana letters are formed from 
curved lines and strokes.  

There are 46 characters of Hiragana letters; it is very 
challenging to research because the writing of Hiragana 
letters has many forms, and each human who writes it has its 
characteristics. Many people ignore the writing rules as long 
as the writing looks similar to the character, which makes the 
Hiragana letters written by each person varied and different 
[2]. As a result, it isn't easy to detect the writing for people 
new to Hiragana letters for the first time. Some research has 
been done to detect Hiragana handwriting. Research 

conducted by [2] using a combined CNN-SVM method to 
detect Hiragana and katakana handwriting. The dataset used 
was taken from respondents using a questionnaire. The results 
of this study using the system using only the CNN method 
have an accuracy of 87.82%, and the results obtained by the 
combined CNN and SVM method are 88.21%. A previous 
study by [3] conducted research using the CNN method to 
detect Hiragana letters. The dataset was taken from the 
internet and included as many as 1000 images. The study 
results achieved 95% accuracy with 950 images as training 
data and 50 as test data. 

Research has been conducted using the YOLOv8 method 
by [4] using the YOLOv8 model to detect protective masks. 
The dataset is taken from Kaggle, which has 690 images using 
masks, 686 images without masks, and 703 images using 
masks incorrectly. The total dataset is 2079 images. The 
results of this study obtained several performances from 
YOLOv8, namely Precision 95%, Recall 95%, mAP (0.5) 
96% and mAP (0.95) 93% using 200 epochs. 

Based on earlier studies, this research will detect Hiragana 
letter objects using CNN with the YOLOv8 algorithm. 
YOLOv8 is the latest model of YOLO, designed to be fast, 
accurate, easy to use, and the right choice for detecting 
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Hiragana letter objects and analyzing the system's 
performance. YOLOv8 system performance includes 
Accuracy, Recall, Precision, F1-score, and Mean Average 
Precision (mAP). 

II. MATERIALS AND METHODS 

A. Hiragana Characters  
Hiragana is one of the basic letters of the kanji form. When 

it first began to develop, Hiragana was not immediately used 
by Japanese people because the Japanese aristocrats at the 
time refused to use Hiragana and only wanted to use kanji 
[27]. Historically, Hiragana was popularly used only by 
women and was also called onnade letters (women's letters). 
The Hiragana letters total 104 letters consisting of 46 basic 
letters, 25 tentenmaru letters, and 33 mixed letters. Hiragana 
letters have rules for writing letters because they considerably 
affect the shape of the letter itself [2]. 

B. Deep Learning 
Deep learning, a machine learning type involving multiple 

layers of nonlinear data processing, is used forfeiture 
extraction, pattern recognition, and classification [5]. Deep 
learning is very good for supervised and unsupervised 
learning in various applications such as image recognition, 
voice, text classification, and so on [6]. Supervised learning is 
a model that learns to input images with labels, while 
unsupervised learning learns to input images without needing 
to label the data. 

C. Convolutional Neural Network 
NeoCognitron, the term used to describe the Convolutional 

Neural Network (CNN), was created by Kunihiko Fukushima, 
an expert at NHK Broadcasting Science Research 
Laboratories in Tokyo, Japan [7]. Convolutional neural 
network (CNN) is a Neural Network method developed and 
inspired by human nerves that can distinguish and recognize 
objects [8]. Convolutional Neural Network can be considered 
included in the Neural Network because it has a considerable 
depth that can be used as an implication in an image [9]. CNN 
is unique because it has a hidden layer that is only connected 
to a subset of neurons from the previous layer [30]. CNN is 
formed from neurons arranged to form a filter with a length 
and height with weight, bias, and activation, but overall, CNN 
is not much different from other deep learning algorithms 
[10]. 

The CNN architecture is divided into two main parts: the 
hidden and fully connected layers (MLP). The hidden layer 
converts input images into functions that contain numbers 
representing the image. In the fully connected layer, the 
feature map of the hidden layer, in the form of a matrix, is 
converted into one row so it can be linearly classified [23], 
[24]. The Convolutional Neural Network architecture is 
shown in Fig. 1. 

 

 
Fig. 1  Convolutional neural network layer model 

D. Convolutional Network 
The convolutional layer is the core part of a CNN, where 

the convolution operation occurs between the input image and 
the kernel (filter) that produces a new pixel. The 
convolutional layer technique helps clarify the input image 
pixels by replacing the image pixel values with values close 
to the image's original pixels. Using convolution does not 
change the dimension of the image. The convolutional layer 
has input consisting of length × height × depth. The 
convolution process is shown in Fig. 2; the input image is 
5×5×1 with the kernel having a 3×3×1 matrix; because the 
stride value is 1 then, the kernel will shift nine times. 
 

 
Fig. 2  Convolution matrix 5×5×1 input with 3×3×1 kernel 

E. Pooling 
Pooling, also called downsampling, reduces the matrix size 

of the input, which is helpful for a more effective model 
training process. There are two types: average pooling and 
max pooling [25]. Many people generally use max pooling 
because it selects the maximum value of the matrix region, 
while average pooling takes the average value [26]. The 
pooling process can be seen in Fig. 3. 
 

 
Fig. 3  Max Pooling and Average Pooling 

F. Stride 
The stride is a parameter that determines how far the kernel 

(filter) moves to get information from the input image. If the 
stride value is 1, then the kernel (filter) moves by 1 pixel 
horizontally and then vertically. If the stride value is small, 
more accurate information is obtained from the input image, 
but it requires longer computation time when compared to 
using a larger stride value [11], [31]. The 1×1 stride process 
is shown in Fig. 4. 

 
Fig. 4  Stride 1x1 
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G. Padding 
Padding is a parameter added to each side of the input pixel 

that is 0. This step manipulates the output so that the resulting 
output does not lose information when convolution is running 
[12]. The addition of 1×1 padding is shown in Fig. 5. 

 
Fig. 5  Padding addition 1x1 

H. Rectified Linear Unit (ReLU) 
Rectified Liner Unit (ReLU) is a form of activation 

function widely used in deep learning. This activation 
function converts the negative pixel value in an image into 0 
[13], which can be calculated using (1). 

 ���� � max �0, �� (1) 

I. Python 
Guido Van Rossum is a Dutch computer programmer who 

created Python. Python was first released in 1991; the naming 
of this programming language was obtained from Monty 
Python's Flying Circus show because Guido Van Rossum was 
very fond of the show. Python can operate on various 
platforms: WindowsOS, MacOS, Linux and Raspberry Pi. 
Python is a versatile and user-friendly language, while other 
languages can be challenging to understand, with an emphasis 
on simple code [14], [21]. This makes Python very easy for 
beginners and those who have been learning programming 
languages for a long time. Python has a vast library to help 
programmers create sophisticated applications using simple 
source code [15]. 

J. YOLOv8 
YOLO is an object detection algorithm [22], and YOLOv8 

is the latest model of YOLO released in January 2023 and 
developed by Ultralytics, the developer of YOLOv5. Similar 
to YOLOv5, the architecture of YOLOv8 consists of a body 
and a head, which provides a new architecture with a better 
convolutional layer and an improved detector, which will 
become the first choice of many people for real-time object 
detection [16], [20]. YOLOV8 is still under development until 
this research is conducted, so other researchers may still make 
improvements, modify, or add new features. 

K. YOLOv8 Architecture 
YOLOv8 is a single-stage detector model that consists of 

two main parts: the backbone network and the head network. 
It uses a backbone network like YOLOv5 with some changes 
to the CSP layer, which is now called the C2f module. The 
C2f module helps improve detection accuracy. The YOLOv8 
model uses a modified CSPDarknet53 architecture to become 
the backbone network. CSPDarknet53 has 53 convolution 
layers to extract essential features from the input image. 

L. YOLOv8 Models 
YOLOv8 offers five versions: YOLOv8n (nano), 

YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), 
and YOLOv8x (extra-large) [16], [17]. The difference 
between all models is in the computation. The bigger the 
model, the longer the calculation. The specifications of each 
model are shown in Table 1. 

TABLE I 
YOLO V8 MODELS 

Model 
YOLO 

v8n v8s v8m v8l v8x 

Depth 0.33 0.33 0.67 1.00 1.00 
Width 0.25 0.50 0.75 1.00 1.25 
MaxChan
nels 

1024 1024 768 512 512 

Ratio 2.0 2.0 1.5 1.0 1.0 
Layer 225 225 295 365 365 

Parameter 
31572
00 

111665
60 

259026
40 

436915
20 

682296
48 

Gradient 
31571
84 

111665
44 

259026
24 

436915
04 

682296
32 

GFlops 8.9 28.8 79.3 165.7 258.5 

M. Non-Maximum Suppression 
Non-maximum suppression (NMS) is an object detection 

algorithm that reduces overlapping bounding boxes, resulting 
in varying confidence values [29]. This leads to incorrect 
placement of detected objects. This algorithm often creates 
several bounding boxes around the same object with different 
confidence values [16]. Non-maximum suppression works by 
taking the highest confidence value and eliminating the 
confidence value below it. The way non-maximum 
suppression works can be seen in Fig. 6. 
 

 
Fig. 6  Non-Maximum Suppression 

N. Intersection Over Union 
The object detection algorithm produces an output as a 

bounding box according to the system's prediction of the 
detected object in the input. To evaluate the overlapping 
bounding box values in the trained model, we can use the 
Intersection over Union (IoU) method. IoU is the ratio of the 
intersection area to the total area bounding box of the 
detection result and the ground truth [16][19]. Intersection 
over union can be seen in Fig. 7.  

 
Fig. 7  Intersection Over Union 
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Mathematically, intersection over union can be calculated 
using (2). 

 IoU = 
�
 ∩ ��

�� ∪ ��
 (2) 

where GT is Ground True, DR is Detection Result, and IoU is 
Intersection Over Union. 

O. YOLOv8 Design 
This final project aims to design a Hiragana letter detection 

system using a convolutional neural network with the 
YOLOv8 algorithm. 
 

 
Fig. 8  YOLOv8 design 

 

In the system that will be designed, as shown in Fig. 8, the 
detection will start from the configuration process of 5 types 
of YOLOv8, followed by the training process to train the 
model and fine-tuning, which aims to optimize the trained 
model to minimize overfitting. Then enter the model testing 
process, detect hiragana letters, and calculate performance 
parameters. Once the configuration has been completed, it is 
possible to test alternative hyperparameter values, including 
learning rate, batch size, channels, and max batches. 

P. Performance Parameters 
This step calculates the performance of the YOLOv8 

model for detecting handwritten Hiragana letters. The 
performance parameters include Accuracy, Recall, Precision, 
F1-Score, and mAP. 

1) Confusion Matrix: The confusion matrix, or error 
matrix, provides information about how the model's 
classification results compare with the actual results [28]. Itrix 
contains a table with four different combinations of model 

classification results and real results. The confusion matrix is 
shown in Figure 9. 

 
Fig. 9  Confusion Matrix 

 

The confusion matrix has 4 terms that represent the results of 
the classification process, namely true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN). 

2) Accuracy:  Accuracy is a parameter used to 
determine how accurate the system correctly detects objects. 
The accuracy can be calculated with equation (3). 

 Accuracy = 

� � 
�


� � �� � �� � 
�
 � 100% (3) 

Where TP means for true positive, TN means for true 
negative, FP means for false positive, and FN stands for false 
negative. 

3) Recall:  Recall is the success of a model in re-
detecting information. Recall can be calculated with equation 
(4). 

 Precision = 

�


� � ��
 (5) 

Where TP means for true positive and FP means for false 
negative. 

4) F1-Score:  F1-Score is the average comparison of 
precision and recall values. F1-Score has the highest value of 
1 and the lowest of 0, if the F1-Score value is closer to 1, it 
shows that the system performance works well. F1-Score can 
be calculated with equation (6). 

 F1-Score = 2 � 
������ ������ �!"

������ ������ �!"
 � 100% (6) 

5) Mean Average Precision (mAP):  The mean average 
precision is the average of precision values of all classes and 
measures how well the performance of weights from training 
data results. Before calculating mAP, adjusting the threshold 
on the IoU is necessary to validate the detected object. mAP 
can be calculated by equation (7). 

 mAP = 
#

"
 ∑ A&'

'("
'(#  (7) 

III. RESULTS AND DISCUSSION 
This study aims to test and analyze the performance 

parameters of detecting handwritten hiragana letter objects 
using the YOLOv8 model. The dataset comprises 46 classes 
of hiragana letters from the internet by the author. For 
annotated authors using Roboflow[18]. The Hiragana letter 
dataset comprises 46 letters, with a division of 70% training 
data, 20% validation data, and 10% test data. The dataset 
comprises 4,600 letters, with 3,240 included in the training 
set, 950 in the validation set, and 410 in the test set. This test 
encompasses several performance parameters, including 
mAP, recall, f1-score, and precision. This test used several 
optimizers, such as SGD and Adam. The learning rates used 
are 0.01, 0.001, and 0.0001. This test is conducted to see how 
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optimal the mAP, precision, recall, and f1-score values are on 
each YOLOv8 model using an epoch value of 150. 

A. Testing On YOLOv8n 
Table 2 shows the performance when testing the YOLOv8n 

model for the SGD optimizer. All learning rates can run to 
completion without any obstacles. Still, at a learning rate of 
0.0001, overfitting occurs, so the results are low because the 
smaller the learning rate, the faster the dataset becomes, 
burdening the computation.  

TABLE II 
TESTING ON YOLOV8N 

Optimizer 
Learning 

Rate 
Precision Recall 

F1-

Score 
mAP 

SGD 
0.01 97.5% 96.2% 96.8% 94.7% 
0.001 97.4% 94.4% 95.9% 93.7% 
0.0001 56.2% 63.5% 59.6% 67.7% 

Adam 
0.01 94.7% 90.4% 92.5% 88.6% 
0.001 98.5% 95.8% 97.1% 94.8% 
0.0001 97.1% 95.4% 96.2% 93.8% 

 
In contrast to Adam's optimizer, at learning rates 0.01 and 

0.0001, overfitting occurs, which results in stopping 
computation at epoch 106 for learning rate 0.01 and epoch 
120 for learning rate 0.0001 because the use of a significant 
learning rate will cause learning at the beginning to be faster 
before the rate is updated and when using a small learning rate 
will slow down learning when the data is trained. The best 
system for testing the YOLOv8n model is the Adam optimizer 
with a learning rate of 0.001, a Precision value of 98.5%, a 
Recall value of 95.8%, an F1-score value of 97.1%, a mAP 
value of 94.8%. 

B. Testing On YOLOv8s 
Table 3 shows the performance when testing the YOLOv8s 

model for all optimizers. Learning rates run smoothly, and the 
fit of the hyperparameters with this model is perfect because 
none of them occur overfitting when the simulation is run.  

TABLE III 
TESTING ON YOLOV8S 

Optimizer 
Learning 

Rate 
Precision Recall 

F1-

Score 
mAP 

SGD 
0.01 97.8% 95.7% 96.7% 94.9% 
0.001 97.9% 94.4% 96.1% 94.8% 
0.0001 97.2% 94.5% 95.8% 93.7% 

Adam 
0.01 98.3% 95.4% 96.8% 94.5% 
0.001 98.4% 95.9% 97.1% 94.9% 
0.0001 97.9% 96.0% 96.9% 94.8% 

 
The SGD optimizer with a learning rate of 0.01 and the 

Adam optimizer with a learning rate of 0.001 have the same 
mAP value of 94.9%, meaning that both hyperparameters get 
similar performance and fit this model. Still, for other values, 
the Adam optimizer is higher than the SGD optimizer. The 
best system from this model is the Adam optimizer, with a 
learning rate of 0.001 a precision value of 98.4%, a recall 
value of 95.9%, an f1-score value of 97.1% and a mAp value 
of 94.9%. 

C. Testing On YOLOv8m 
Table 4 shows the performance when testing the 

YOLOv8m model; the SGD optimizer experienced a decrease 
in value, and at a learning rate of 0.001, overfitting occurred, 

which only lasted at epoch 110. This is due to the model's 
incompatibility with channel depth and channel widening.  

TABLE IV 
TESTING ON YOLOV8M 

Optimizer 
Learning 

Rate 
Precision Recall 

F1-

Score 
mAP 

SGD 
0.01 97.4% 96.4% 96.9% 95.2% 
0.001 97.4% 96.6% 97.0% 95.4% 
0.0001 96.9% 95.0% 95.9% 94.9% 

Adam 
0.01 96.3% 97.5% 96.9% 94.7% 
0.001 98.3% 96.4% 97.3% 95.1% 
0.0001 97.5% 95.5% 96.5% 95.0% 

 
Adam optimizer has the best mAP value at a learning rate 

of 0.001 out of 95.1%; this learning rate is the best value of 
Adam optimizer. The best system of this model is the SGD 
optimizer with a learning rate of 0.01, a precision value of 
97.4%, a recall value of 96.4%, an f1-score value of 96.9%, 
and a mAP value of 95.2%. 

D. Testing On YOLOv8l 
It can be seen in Table 5 performance when testing the 

YOLOv8l model. The SGD optimizer experiences overfitting 
at a learning rate of 0.001, which only lasts at epoch 147, and 
a learning rate of 0.0001 at epoch 138. This is due to a 
mismatch in the number of iterations, channel depth, and large 
channel widening. Adam's optimizer has no problem, and a 
learning rate of 0.001 is higher than other learning rates due 
to the hyperparameters' fit with channel depth and channel 
widening.  

TABLE V 
TESTING ON YOLOV8L 

Optimizer 
Learning 

Rate 
Precision Recall 

F1-

Score 
mAP 

SGD 
0.01 98.5% 95.7% 97.1% 95.5% 
0.001 97.8% 95.3% 96.5% 94.8% 
0.0001 97.4% 95.9% 96.6% 94.6% 

Adam 
0.01 97.6% 95.8% 96.7% 95.0% 
0.001 97.2% 97.1% 97.1% 95.4% 
0.0001 97.6% 94.7% 96.1% 94.8% 

 
The best system from this model is the SGD optimizer with 

a learning rate of 0.01, a precision value of 98.5%, a recall 
value of 95.7%, an f1-score value of 97.1%, and a mAP value 
of 95.5%. 

E. Testing On YOLOv8x 
Table 6 shows that when testing the YOLOv8x model, 

overfitting occurs in the SGD optimizer with a learning rate of 
0.001, which survives at epoch 144, and the Adam optimizer 
with a learning rate of 0.0001, which survives at epoch 139. 
This is because the hyperparameter value used does not match 
the channel depth and channel widening that occurs. 

TABLE VI 
TESTING ON YOLOV8X 

Optimizer 
Learning 

Rate 
Precision Recall 

F1-

Score 
mAP 

SGD 
0.01 98.1% 95.8% 96.9% 95.3% 
0.001 98.6% 95.2% 96.9% 95.3% 
0.0001 98.1% 94.9% 96.5% 95.4% 

Adam 
0.01 97.4% 96.2% 96.8% 94.5% 
0.001 98.5% 95.4% 96.9% 95.1% 
0.0001 97.9% 96.3% 97.1% 95.3% 
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The best system from this model is the SGD optimizer with 
a learning rate of 0.0001, which has a precision value of 
98.1%, a recall value of 94.9%, an f1-score value of 96.5%, 
and a mAP value of 95.4%. 

F. Comparison of Map Improvement in Each Model 
Table 7 shows that the most optimal model is YOLOv8l 

with an SGD optimizer and learning rate of 0.01, with a mAP 
value of 95.5%. The mAP value decreases in the YOLOv8x 
model because the channel widening value and channel depth 
increase, resulting in overfitting during testing.  

TABLE VII 
COMPARISON OF MAP IMPROVEMENT IN EACH MODEL 

Model Optimizer Learning Rate mAP 

YOLOv8n Adam 0.001 94.8% 
YOLOv8s Adam 0.001 94.9% 
YOLOv8m SGD 0.01 95.2% 
YOLOv8l SGD 0.01 95.5% 
YOLOv8x SGD 0.0001 95.4% 

 
YOLOv8n, YOLOv8s and YOLOv8m have an increase in 

the mAP value because the value of channel depth and 
channel widening is increasing for each model, causing more 
precise testing even though it causes an increasing 
computational burden as well. It can be seen in Table 4.6 that 
the Adam optimizer excels in the YOLOv8n and YOLOv8s 
models, which have a small channel depth and channel 
widening, but the SGD optimizer excels in the YOLOv8m, 
YOLOv8l, and YOLOv8x models which have a larger 
channel depth and channel widening. 

G. YOLOv8 Model Test Results 
The test results of this model test carried out on the 

YOLOv8l model with the SGD optimizer and learning rate of 
0.01 show that the model selection is based on the test results 
for the most optimal mAP value. 

TABLE VIII 
TEST RESULTS OF ALL CLASS YOLOV8L MODELS 

Class Precision Recall F1-score mAP 

ALL 98.3% 96.4% 97.1% 95.5% 
あ= A 88.8% 100% 94.2% 92.1% 
い= I 96.3% 100% 99.6% 97.1% 
う= U 99.1% 100% 99.8% 87.8% 
え= E 95.2% 100% 89.6% 92.3% 
お= O 100% 89.8% 93.8% 92.7% 
か= KA 100% 90.6% 93.3% 96.7% 
き= KI 100% 97.9% 98.1% 96.7% 
く= KU 96.6% 92.6% 93.5% 92.4% 
け= KE 100% 95.8% 91.8% 96.2% 
こ= KO 100% 89.5% 94.0% 93.7% 
さ= SA 96.7% 100% 99.1% 98.8% 
し= SHI(SI) 99.1% 100% 99.6% 91.4% 
す= SU 98.3% 100% 99.1% 98.7% 
せ= SE 98.1% 100% 98.8% 99.0% 
そ= SO 98.7% 100% 99.6% 94.3% 
た= TA 98.6% 100% 99.1% 99.5% 
ち= CHI(TI) 97.6% 100% 99.2% 95.1% 
つ= TSU(TU) 96.7% 100% 99.6% 93.3% 
て= TE 100% 95.3% 99.6% 97.6% 
と= TO 99.6% 100% 99.7% 91.9% 
な= NA 100% 95.6% 93.0% 97.7% 
に= NI 100% 88.6% 93.9% 96.6% 

Class Precision Recall F1-score mAP 

ぬ= NU 98.7% 100% 99.5% 96.0% 
ね= NE 100% 95.3% 96.3% 99.2% 
の= NO 99.1% 100% 97.4% 97.9% 
は= HA 84.4% 100% 99.0% 98.7% 
ひ= HI 99% 100% 99.7% 95.1% 
ふ= FU(HU) 97.8% 100% 98.0% 93.6% 
へ= HE 99.5% 100% 99.8% 90.3% 
ほ= HO 100% 95.2% 99.9% 95.6% 
ま= MA 100% 85.5% 95.0% 97.6% 
み= MI 100% 94.9% 93.3% 98.1% 
む= MU 100% 90.5% 93.2% 92.6% 
め= ME 100% 89.6% 94.2% 98.7% 
も= MO 100% 84.1% 91.4% 98.8% 
や= YA 99% 100% 99.8% 92.2% 
ゆ= YU 98.4% 100% 99.1% 93.2% 
よ= YO 98.5% 100% 99.5% 89.9% 
ら= RA 100% 98% 96.5% 97.8% 
り= RI 98.4% 100% 98.2% 95.9% 
る= RU 96.3% 92.3% 95.0% 93.9% 
れ= RE 100% 84.3% 96.4% 98.7% 
ろ= RO 99.4% 100% 99.7% 99.5% 
わ= WA 96.3% 100% 98.4% 95.8% 
を= WO 99.1% 100% 99.7% 95.1% 
ん= N 96.5% 88.6% 91.3% 95.1% 

 
The highest mAP value is in the class "TA" and "RO" of 

99.5% indicating that the model used is very suitable for the 
test, the learning carried out by YOLOv8 is very good for 
these two letters. There are some letters with low mAP values 
with the lowest value of 87.8% found in class "U", this is 
because the dataset used is handwritten and also some 
hiragana letters are unique because they have their own rules 
in writing, which causes the letter to have many forms. 

H. Comparison of Results 
In previous research using 2 models, namely the CNN 

model and the CNN-SVM combined model, the mAP value 
was 87.82% and 88.21% using the Handwritten dataset. In 
this Final Project the author uses datasets collected from 
various sources with more variety.  

TABLE IX 
COMPARISON OF PREVIOUS RESEARCH RESULTS 

Model Dataset mAP 

CNN Handwritten Hiragana 87.82% 
CNN-SVM Handwritten Hiragana 88.21% 
YOLOv8 Handwritten Hiragana 95.50% 

 
This research uses the latest model from YOLO, namely 

YOLOv8, and gets the most optimal results in YOLOv8l 
using the SGD optimizer with a learning rate of 0.01 and an 
mAP value of 95.5%. In this test, the authors succeeded in 
increasing the mAP from previous studies, namely 87.82% 
and 88.21%, to 95.5% by using the YOLOv8l model using 
similar datasets to previous studies. 

IV. CONCLUSION 
This study discussed the analysis of the classification of 

handwritten Hiragana letters, focusing on the efficacy of 
different optimization techniques, namely SGD and Adam, 
and the use of three different learning rate values, 0.01, 0.001, 
and 0.0001. The analysis is conducted by comparing previous 
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research utilizing a CNN architecture, combined with a CNN- 
SVM, and the proposed YOLOv8 model. Upon testing the 
system, it can be concluded that the YOLOv8l model is the 
most effective model when tested using the SGD optimizer 
with a learning rate of 0.01, achieving a precision value of 
98.5%, a recall value of 95.7%, an F1 score value of 97.1% 
and a mAP value of 95.5%. In this study, the author 
demonstrated an improvement in the mAP value from the 
previous research conducted using the CNN model and the 
combined CNN-SVM model, with values of 87.82% and 
88.21%, respectively, to a mAP value of 95.5%, achieved 
using the YOLOv8l model. The objective of this research is 
to assist individuals in the accurate and precise identification 
of hiragana letters. In the future, we aim to expand the number 
of datasets and employ a broader range of hyperparameter 
values to optimize the classification precision and accuracy of 
the Hiragana Letter Detection system. 
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