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Abstract— The present study aims to build a hybrid convolutional neural network and transformer UNet-based model, Trans-Swin-

UNet, to segment ischemic lesions of the plain computed tomography (CT) image. The model architecture is built based on TransUnet 

and has four main improvements. First, replace the decoder of TransUNet with a Swin transformer; second, add a Max Attention 

module into the skip connection; third, design a comprehensive loss function; and last, speed up the segmentation performance. The 

present study designs two experiments to evaluate the performance of the built model using both the self-collected and public plain 

CT image datasets. The model optimization experiment evaluates the improvements of Trans-Swin-UNet over TransUnet. The 

experimental results show that each improvement of the built model can achieve a better performance than TransUNet in terms of 

dice similarity coefficient (DSC), Jaccard coefficient (JAC), and accuracy (ACC). The comparison experiment compares the built 

model with four existing UNet-based models. The experimental results show that the built model had a DSC of 0.72±0.01, a JAC of 

0.78±0.04, an ACC of 0.75±0.03 using the self-collected plain CT image dataset and a DSC of 0.73±0.02, a JAC of 0.79±0.03, an ACC 

of 0.76±0.02 using the public plain CT image dataset, achieving the best segmentation performance among five UNet-based neural 

network models. The two experimental results conclude that the built model could accurately segment ischemic lesions of the plain 

CT image. The limitations and future work of this study are also discussed.  
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I. INTRODUCTION

Stroke is the second leading cause of death and the third 

leading cause of disability worldwide [1].Ischemic stroke 

due to the blockage of blood vessels in the brain causes 

nearly 6 million deaths worldwide every year and is the 
leading cause of death and disability in Chinese [2]. The 

medical image plays a crucial role in diagnosing ischemic 

stroke, and the plain computed tomography (CT) image is 

the primary examination method for ischemic stroke patients 

due to its accuracy in identifying the disease, fast imaging 

speed, and economical cost [3]. Precisely segmenting 

ischemic lesions in plain CT images is critical in diagnosing 

an ischemic stroke. Traditional segmentation through 

doctor’s scanning has problems, such as being time-

consuming and unstable.  

In recent years, automatic segmentation methods based on 

deep-learning neural networks models, such as convolutional 
neural networks (CNN) or Transformer, have been proposed 

and implemented in medical image segmentation [4]. 

However, the segmentation of a plain CT image of an 

ischemic lesion still faces many challenges, given the 

complex and varied imaging features of ischemic lesions, 

which are easily affected by other brain diseases [5]. 

UNet has been pivotal in medical image segmentation, 

especially for tasks with limited data availability [6]. Since it 

was initiated in 2015, many UNet-based neural network 
models have been proposed and applied to segmenting brain 

tumors, organs, and lesions [7]. The following content 

presents the trajectory of UNet's evolution within the last ten 

years, focusing on three major phases: the CNN-based 

UNets, the Transformer-based UNets, and the hybrid CNN-

Transformer UNets.  

A. CNN-based UNets

The first UNet architecture [6] consists of a contracting
path to capture context and a symmetric expanding path to 

enable precise localization. The contracting path repeats the 

application of two 3x3 CNNs called Encoder, and the 
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expanding path consists of samples of the feature map 

followed by a 2x2 CNN called Decoder. This innovative 

approach quickly set a new standard for medical image 

segmentation. 

The CNN-based UNet models subsequently introduce 

sophisticated features to enhance performance. For example, 

the UNet structure is enhanced with residual connections, 

facilitating deeper network training by improving feature 

propagation and gradient flow [8]. 3D UNet [9] enables the 

effective segmentation of volumetric data such as CT and 
MRI scans. V-Net [10] introduces a dice coefficient loss 

function optimized for 3D medical image data. UNet++ [11] 

is a revised architecture incorporating nested, dense skip 

pathways to improve the network's gradient flow and feature 

propagation, leading to more precise segmentation results. 

B. Transformer-based UNets 

When the Vision Transformer (ViT) [12] is incorporated 

into UNet architecture to replace CNN, the ViT UNet-based 
neural network models could increase cross-attention for 

medical image segmentation [13]. For example, UNETR [14]  

utilizes the transformer's strength in modeling complex 

dependencies across the entire volume of medical data, 

resulting in improved performance in segmenting 3D 

structures such as brain tumors and other organs. 

The Swin-Unet [15] incorporates the Swin Transformer 

into a UNet architecture to improve the image segmentation 

performance. The Swin Transformer provides a shift 

window mechanism to connect different parts of the image, 

rather than the sequence parts required in ViT, which 

facilitates the long-range dependency capture. Thus, Swin-
Unet could particularly segment delicate structures in 

medical images due to its ability to scale efficiently to 

different image resolutions. 

C. Hybrid CNN-Transformer UNets 

The hybrid CNN-Transformer UNets integrate both CNN 

and Transformer in UNet architectures. The goal is to 

leverage the local feature extraction capabilities of CNNs 

and the global dependency modeling of Transformers. For 
example, the pioneering hybrid UNet model [16] utilizes 

CNNs for initial feature extraction, followed by 

Transformers for deeper feature integration. This approach 

excels in various segmentation tasks, significantly improving 

the traditional model. Furthermore, TransBTS [17] leverages 

multiple CNN layers to capture local features and 

Transformer layers to capture the global context in the 

encoder. By effectively integrating the spatial relationships 

across different imaging modalities, TransBTS highlights the 

potential of Transformers in handling the complexities of 

multimodal medical data. The hybrid model of Xie et al. [18] 

could segment complex anatomical structures in 3D medical 
images, leveraging local and global information, while the 

hybrid model of Xu et al.[19] integrating a residual 

connection before and after the Transformer encoder reduces 

the information loss. Li et al. [20] developed one CNN-

Transformer hybrid network that offers robust segmentation 

capabilities under challenging imaging conditions, such as 

variations in noise, contrast, and deformations.  

The present study pays attention to the hybrid CNN-

Transformer UNet, TransUNet [21]. The architecture of 

TransUNet begins with a CNN-based feature extractor that 

reduces the spatial dimensions of the input image while 

increasing the feature dimensions. The resultant feature 

maps are then flattened and fed into Transformer blocks, 

which further process these features through self-attention 

mechanisms. Specifically, the Transformer used in 

TransUNet follows the encoder design from the Vision 

Transformer (ViT), which processes sequences of linear 
embeddings of patches of feature maps. Then, feature maps 

from various stages of the transformer encoder are passed to 

the corresponding layers in the decoder. The decoder 

consists of several up-sampling layers with applications of 

the 3x3 CNN that gradually reconstructs the spatial 

resolution of the feature maps. 

Applying more advanced Transformer models, such as 

those incorporating newer attention mechanisms or graph-

based approaches, could more accurately enhance 

understanding and segmenting of complex anatomical 

structures. Therefore, the present study aims to build and 
evaluate a UNet-based neural network model, Trans-Swin-

UNet. Its architecture adopts the above hybrid CNN-

Transformer UNets, TransUNet, but has four main 

improvements. The paper’s remaining contents first 

introduce the detailed architecture of the built Trans-Swin-

UNet model, present the preprocessing methods, and the two 

experiments designed to test the built model. Second, the 

paper presents the details of the results of the experiments. 

Last, the conclusion summarizes the main work of this study 

and indicates the feature work. 

II. MATERIALS AND METHOD  

The section first presents the details of the built Trans-

Swin-UNet model, which has four main improvements on 

the existing TransUNet model: using the Swin Transformer 

for the decoder, designing one new max-attention model, 

building a comprehensive loss function, and speeding up the 

segmentation. Then, the three methods of preprocessing 

plain CT images are presented. Last, the two experiments 

test the advantages of each improvement of Trans-Swin-
UNet over TransUNet and the super performance of Trans-

Swin-UNet over four existing UNet-based models. The CT 

image datasets for the test experiment include self-collected 

data from a local hospital and public CT images from the 

Kaggle website. 

A. Trans-Swin-UNet model 

Fig.1 illustrates the structure of the proposed Trans-Swin-

UNet model, which adopts an encoder-decoder UNet 

structure. The encoder consists of four down-sampling 
CNNs and Transformer modules, and the decoder comprises 

three Swin Transformer modules and three patch-expanding 

operations. The feature map size is doubled, and the Max 

Attention module concatenates with the original CNN 

segmented images. Finally, the predicted lesion mask is 

output, and the loss function is calculated to iterate the 

neural network model. 
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Fig. 1  The structure of the Trans-Swin-UNet model 

 

1)   Swin Transformer Decoder:  The Swin transformer 

has four modules: Layer Norm (LN) layer, W-MSA and 
SW-MSA, and 2-layer MLP layer [15], as shown in Fig. 2. 

The Swin transformer decoder in the improved model 

replaces the original TransUNet decoder, which has the 

following two advantages: 

 Expanding global information acquisition 

Exchanging information between windows at different 
levels ensures the model can capture global contextual 

details in the image, which is crucial for segmenting early 

cerebral infarction lesions. The Shifted Windows Multi Head 

Self Attention (SW-MSA) module is introduced, an 

improved version of W-MSA with offset processing. 

W-MSA restricts the attention calculation within a fixed 

window, while SW-MSA enables information interaction 

and transmission between adjacent windows through the 

shifted window approach. It helps the model capture richer 

contextual information and improve its performance. 

 Improving computational efficiency 

Swin transformers introduce a shifted window mechanism 

to limit self-attention computation within local windows. 

This mechanism allows the model to maintain efficient 

computational speed even when processing large-scale 

images. Thus, it could significantly reduce computational 

complexity. 
The W-MSA module first divides the input feature map 

into predetermined window sizes M, with each window 

having a width and height of M. This way, the original 

feature map with height h and width w will be divided into 

h/M ⅹ w/M windows. Subsequently, each window 

independently applies a multi-head attention module for self-

attention calculation. Just calculate the computational cost of 

the feature map with height h, width w, and depth c as 

follows: 4hwc2 + 2 (hw) 2c. Here, the height of each window 

is M, and the width is M, then the computational cost of the 

future map is 4(Mc)2 + 2 M4c.  

The W-MSA module achieves local self-attention 

calculation through window partitioning, improving 

computational efficiency. This improvement is significant 

for processing high-resolution images or large datasets, as it 

can significantly reduce the use of computing resources and 

memory while maintaining model performance. 

 
Fig. 2  The structure of the Swin transformer module 

1575



2)   Max Attention Model: The Max Attention module 

consists of an Attention Gate mechanism [16], [22] and a 

Pyramid Pooling module (PPM) [23]. Attention Gate is a 

mechanism used to fuse features of different scales in deep 

learning models. It can effectively reduce the loss of spatial 

information during the down-sampling process, especially 

when dealing with small and scattered features such as acute 

cerebral infarction lesions.  

3)   Max Attention Model: The Max Attention module 

consists of an Attention Gate mechanism [16], [22] and a 
Pyramid Pooling module (PPM) [23]. Attention Gate is a 

mechanism used to fuse features of different scales in deep 

learning models. It can effectively reduce the loss of spatial 

information during the down-sampling process, especially 

when dealing with small and scattered features such as acute 

cerebral infarction lesions.  

Fig. 3 shows the inside operation of the Max Attention 

module. First, g and x are operated in parallel, where g 
comes from the Decoder part of the model, and x comes 

from the CNN part. The size g is 1/2 of x, so x is down-

sampled, or g is up-sampled. Enable A and B to perform 

point-by-point "+" operations. G obtains A through Wg. X 

obtains B through Wx, followed by the operation of A+B to 

obtain C. Second, C performs the ReLU operation to obtain 

D. D performs ψ Operation yields E. E performs the Swish 

operation to obtain F. F obtains the attention coefficient 

through resampling α (Attention coefficient is the attention 

weight). Final attention coefficient α  multiplied by x to 

obtain the final result. 

 
Fig. 3  The structure of the Max Attention module 

 

The Swish function helps optimize the training process, 

making converging easier. Its design combines the 

advantages of Sigmoid and ReLU functions to provide better 

performance in deep learning. The output of the Swish 

function tends to approach 0 in negative regions, while it has 

a larger output in positive regions. This nonlinear 

characteristic enables the Swish function to fit complex 

nonlinear relationships better, thereby improving the model's 

expressive power. 
The smoothness characteristics of the Swish function also 

help accelerate the training convergence process. Since the 

Swish function is differentiable across the entire range of 

real numbers, it can avoid the problem of vanishing or 

exploding gradients during the training process. 

PPM is a technique used to capture multi-scale contextual 

information [19]. Its core idea is introducing pooling 

operations in convolutional neural networks at different 

scales to fuse multi-scale feature information. Fig. 4 shows 

the structure of the PPM module, which includes three 

processes. First, the pyramid pooling module performs 

pooling operations on the input feature maps at different 
scales, generating multiple feature maps of different sizes. 

By pooling at various scales (e.g., 1x1, 2x2, 3x3, 6x6), 

feature information of different resolutions can be captured, 

thereby enriching the model's ability to understand the 

context. 

Second, the pyramid pooling module up-samples feature 

maps of different scales to maintain their size consistent with 

the original feature map. The up-sampled feature map is 

concatenated with the original feature map in the channel 

dimension to form a composite feature map containing 

multi-scale information. 
Finally, the pyramid pooling module uses a convolutional 

layer to compress the channel dimension of the concatenated 

feature map, which could maintain the number of channels 

in the output feature map consistent with the original feature 

map. This convolutional layer can be a 1x1 convolution used 

to reduce the number of channels and fuse feature 

information of different scales. 

 
Fig. 4  The structure of the Pyramid Pooling module 

The model can capture global and local feature information 

through the pyramid pooling module, improving its 

recognition ability for targets of different scales. This is 

particularly important in image segmentation, as segmenting 

the lesions of a plain CT image requires the model to 

understand and process lesions of various sizes and shapes. 

4)   Loss Function: The present study builds a 

comprehensive loss function, the Total Loss function, which 

integrates two loss functions, Cross Entropy Loss and Dice 

Loss [24], shown in equation (1).  

 ����� ���� 	 0.7  ���� � ������������ ���� (1) 

Cross entropy loss measures the difference between the 

predicted probability distribution and the true probability 

distribution. When there is an imbalance between categories, 

the standard cross entropy loss may not be sufficient to 
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segment medical images accurately. Its definition is shown 

in equation (2):  

 � 	
�

�
∑ ���� log"��# � "1 � ��#  log "1 � ��#%�   (2) 

where yi is the sample label, pi indicates the probability of 

the i-th sample. 

Dice loss is a variation of the Dice coefficient used for loss 

calculation in optimization processes. The Dice coefficient 

measures the degree of overlap between predicted and true 
segmentation, as shown in equation (3). Dice loss is 

particularly effective in dealing with a class imbalance in 

medical image segmentation: 

 ���� 	
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where pred represents the set of predicted values, true means 

the set of true values. The numerator calculates the 

intersection size between the sets of pred and true. Still, due 

to the repeated calculation of these common elements by the 
denominator during the calculation process, it needs to be 

multiplied by 2 for correction. 

Although Dice loss is the preferred loss function for 

dealing with imbalanced classes, it may cause instability and 

oscillation during model training when the target area in the 

medical image is tiny (i.e., there are very few foreground 

pixels). Once a small portion of foreground pixels are 

misclassified, the Dice loss value will significantly change, 

leading to an unstable gradient. 

5)   Speed optimization of segmentation. The present 

study uses the first four modules of ResNet50 (STAGE0-
STAGE3) to replace the first three modules of ResNet50 of 

TransUnet (STAGE0-STAGE2) to increase the receptive 

field of the CNN module [25], [31]. CNN needs to set the 

receptive field reasonably based on the target size and 

content of the medical image. By adjusting the convolutional 

layer step size, convolutional kernel size, and pooling layer 

settings, the receptive field size can be controlled, improving 

the model's adaptability to targets of different sizes and the 

accuracy of image segmentation. The present study also 

reduces the number of Transformer modules of the 

TransUnet model from 12 to 8 to reduce computational 

complexity, accelerate training and inference speed, and 

minimize the risk of overfitting. 

B. Preprocessing plain CT images 

The plain CT image must be processed before being sent to 

the Trans-Swin-UNet model for training and prediction. The 

following three preprocessing steps are usually implemented, 

and sometimes, the noises in the CT image may need to be 

removed [26].  

1)   Histogram Equalization:  Histogram equalization 
involves statistical analysis of the frequency of each 

grayscale level in an image, then remapping each pixel's 

grayscale values based on this frequency information [27], 

[28]. Thus, pixels with similar grayscale values will be 

stretched apart after transformation, increasing the local 

contrast of the image. Meanwhile, as the transformation is 

global, it enhances the contrast of the entire image. This 

makes the details and contours in the image clearer and more 

visible.  Fig. 5 compares plain CT images before and after 

histogram equalization. Through this operation, the contrast 

of plain CT images is significantly enhanced, the clarity is 

improved, and the structural details are richer.  

2)   Skull Removal: The skull removal method based on 

contour evolution is a segmentation technique for plain CT 

images designed to extract brain tissue from brain images 

[29]. This method utilizes the continuity and consistency of 

brain tissue between adjacent image slices and brain tissue's 

strength probability density functions (PDFs) to guide the 

segmentation process. Fig. 6 compares plain CT images 

before and after skull removal. 

 
Fig. 5  The plain CT images before (left) and after (right) histogram 

equalization. 

 
Fig. 6  The plain CT images before (left) and after (right) skull removal. 

 
Fig. 7  The plain CT images before (left) and after (right) central region 

cropping. 

3)   Central Region Cropping: Central region cropping is 

an image processing technique commonly used in deep 

learning models to preprocess images [29]. The core idea of 

this technology is to crop out the central region from the 

original image and use it as input for the model. It could 
improve the performance of deep learning models since, in 

some cases, the central region in the image may contain the 

most important information, while the edge regions may 

contain noise or irrelevant information. By cropping out 

these edge regions, the model can focus more on crucial 

details in the image, thereby improving its accuracy. Fig. 7 

compares plain CT images before and after central region 

cropping. 

C. Experiment 

1)   Experiment Environment: The software and hardware 

used for the test experiment are shown in Table 1, which are 

installed on a server. 
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2)   Experiment Dataset: The experiment used two plain 

CT image datasets. The first dataset, consisting of 189 sets, 

was self-collected from one local rehabilitation hospital. 

Each set contained clear lesion labels annotated by two 

experienced radiologists. The second dataset, consisting of 

500 plain CT images with labeled lesions, was downloaded 

from the public Kaggle website. 

TABLE I 

THE SETTING FOR THE TEST ENVIRONMENT 

Name Configuration Parameters 

Processor CPU 3.2GHz (Intel Xeon E5-2680) 
Memory 256GB 
Graphics card NVIDIA RTX A6000 

OS ubuntu 20.04 
Software Python v3.8, Pytorch v 1.6.0 

4)   Experiment Design: The present study designs the 

first experiment to explore the optimization performance of 

Trans-Swin-UNet over TransUnet, which tests each of four 

improvements: the Swin Transformer decoder, the max-
attention module, the new loss function, and the optimized 

CNN layers. Then, the study designs the second experiment 

to compare the Trans-Swin-UNet with the current four 

UNet-based segmentation models, where each model’s 

performance is evaluated through five-fold cross-validation. 

These two experiments deploy the same evaluation metrics 

[30], including the Dice similarity coefficient (DSC), 

Jaccard coefficient (JAC), and Accuracy (ACC). 

III. RESULTS AND DISCUSSION 

The section first presents the experimental results of the 

model optimization based on the four improvements. Then, 

it describes the experimental results of comparing five UNet-

based segmentation models for the plain CT image. 

A. Results of Model Optimization Experiments 

1)   Experiment with Swin Transformer Decoder: Table 2 

and Table 3 show the experimental results comparing the 

performances between Trans-Swin-UNet and TransUnet, 

where the Swin Transformer decoder replaces the original 

Decoder. Although the Swin Transformer decoder increases 

computational complexity, the segmentation results are 

improved on both plain CT image datasets. The built model 

achieves a DSC value of 0.71±0.01, a JAC value of 
0.75±0.05, and an Accuracy of 0.75±0.03 in the first plain 

CT image dataset and a DSC value of 0.72± 0.03, a JAC 

value of 0.76± 0.01, and an Accuracy of 0.76±0.02 in the 

second plain CT image dataset. 

2)   Experiment with Max Attention Module: The present 

study designs the new Max Attention module and adds the 

module at the skip connection of TransUNet. The new 

module is supposed to help the model extract more critical 

information from the input plain CT image. Tables 4 and 5 

show the experimental results comparing the performances 

of four Trans-Swin-UNet models. The Max Attention 
module numbers used in the Trans-Swin-UNet are varied 

from 0 to 3. The results show that when the Max Attention 

module is added to all three skip connections, the model 

(Trans-Swin-UNet_D3) performs best on both plain CT 

image datasets. The built model with three Max Attention 

modules achieves a DSC value of 0.72±0.01, a JAC value of 

0.71±0.03, and an Accuracy of 0.73±0.03 in the first plain 

CT image dataset and a DSC value of 0.73± 0.03, a JAC 

value of 0.73± 0.02, and an Accuracy of 0.74±0.02 in the 

second plain CT image dataset. 

TABLE II 

THE COMPARISON BETWEEN TRANS-SWIN-UNET AND TRANSUNET AFTER 

REPLACING THE SWIN TRANSFORMER DECODER - FIRST DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria 

(Mean ± SD) 

DSC JAC ACC 

TransUNet 82.58 78.32 0.68 ± 

0.03 

0.69 

±0.03 

0.70 

±0.05 

Trans-

Swin-Unet 

120.32 116.15 0.71 

±0.02 

0.75 

±0.05 

0.75 

±0.03 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

TABLE III 

THE COMPARISON BETWEEN TRANS-SWIN-UNET AND TRANSUNET AFTER 

REPLACING THE SWIN TRANSFORMER DECODER - SECOND DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria (Mean 

± SD) 

DSC JAC ACC 

TransUNet 75.28 68.42 0.67 

±0.06 

0.68 

±0.04 

0.70 

±0.03 

Trans-

Swin-Unet 

110.92 103.23 0.72 

±0.03 

0.76 

±0.01 

0.76 

±0.02 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

TABLE IV 

THE COMPARISONS AFTER DEPLOYING THE MAX ATTENTION MODULE - FIRST 

DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria 

(Mean ± SD) 

DSC JAC ACC 

Trans-

Swin-

UNet_D0 

84.23 90.23   0.70 

± 0.03 

  0.70 

±0.04 

 0.71 

±0.02 

Trans-

Swin-

UNet_D1  

85.74 92.36 0.70 

±0.02 

  0.70 

±0.03 

 0.72 

±0.03 

Trans-

Swin-

UNe_D2 

86.21 95.52 0.71 

±0.03 

  0.70 

±0.02 

 0.72 

±0.03 

Trans-

Swin-

UNet_D3 

86.79 97.47 0.72 

±0.01 

  0.71 

±0.03 

 0.73 

±0.03 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy, and D0, D1, D2, D3 represent the number of 

Max-Attention module deployed in the Trans-Swin-UNet. 

TABLE V 

THE COMPARISONS AFTER DEPLOYING THE MAX ATTENTION MODULE - 

SECOND DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria (Mean 

± SD) 

DSC JAC ACC 

Trans-

Swin-

UNet_D0 

73.56 80.36 0.71 ±0. 

03 

0.71 

±0.05 

0.72 

±0.01 

Trans-

Swin-

UNet_D1  

73.98 81.45 0.71 

±0.05 

0.71 

±0.02 

0.73 

±0.03 

Trans-

Swin-

UNe_D2 

75.35 85.63 0.71±0.02 0.71 

±0.01 

0.73 

±0.02 

Trans-

Swin-

UNet_D3 

78.80 87.21 0.73 

±0.03 

0.73 

±0.02 

0.74 

±0.02 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy, and D0, D1, D2, D3 represent the number of 

Max-Attention module deployed in the Trans-Swin-UNet. 
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3)   Experiment with Total Loss Function: Tables 6 and 7 

compare the new Total Loss function and the conventional 

loss functions for the plain CT image segmentation, 

including Dice loss, Boundary loss, and Focal loss. The 

results indicate the Total Loss function performs best among 

all loss functions in segmenting CT images of cerebral 

infarction. The built model adopting the Total Loss function 

achieves a DSC value of 0.58±0.01, a JAC value of 

0.37±0.04, and an Accuracy of 0.71±0.03 in the first plain 

CT image dataset and a DSC value of 0.60± 0.02, a JAC 
value of 0.40± 0.04, and an Accuracy of 0.73±0.03 in the 

second plain CT image dataset. 

TABLE VI 

THE COMPARISONS AMONG FOUR LOSS FUNCTIONS - FIRST DATASET 

Model Evaluation criteria (Mean ± SD) 

DSC JAC ACC 

Dice   0.56±0.02   0.32±0.01  0.66±0.03 

Boundary Loss  0.56±0.04  0.34±0.05  0.67±0.02 

Focal Loss 0.57±0.03 0.36±0.01   0.66±0.03 

Total Loss 0.58±0.01  0.37±0.04 0.71±0.03 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

TABLE VII 

THE COMPARISONS AMONG FOUR LOSS FUNCTIONS– SECOND DATASET 

Model Evaluation criteria (Mean ± SD) 

DSC JAC ACC 

Dice   0.57±0.03   0.33±0.02  0.66±0.02 

Boundary Loss  0.58±0.03  0.34±0.03  0.65±0.01 

Focal Loss 0.58±0.01 0.35±0.01   0.65±0.02 

Total Loss 0.60±0.02  0.40±0.04 0.73±0.03 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

4)   Experiment with CNN Layers: A horizontal 

comparison was made between the results of TransUnet 

using ResNet101 and ResNet150 models after three and four 

down-sampling, respectively, to achieve the best 

segmentation effect: (1) ResNet50-D3 model, three down-

sampling; (2) ResNet50-D4 model, four down-sampling; (3) 

ResNet101-D3 model, three down sampling; (4) ResNet101-

D4 model, four down-sampling; (5) ResNet150-D3 model, 

three down-sampling; (6) ResNet150-D4 model, four down-

sampling. Tables 8 and 9 show the data results of ResNet50, 

ResNet101, and ResNet152 after three and four down-

samplings, respectively. The built model adopting 
ResNet50-D4 achieves a DSC value of 0.65±0.03, a JAC 

value of 0.37±0.03, and an Accuracy of 0.70±0.03 in the 

first plain CT image dataset and a DSC value of 0.65± 0.02, 

a JAC value of 0.37± 0.02, and an Accuracy of 0.71±0.03 in 

the second plain CT image dataset. 

B. Results of Comparing Multiple Segmentation Models 

This study compares multiple UNet-based segmentation 

models for plain CT images. Each model’s performance is 

evaluated through five-fold cross-validation. Tables 10 and 
11 show that the experiment results indicate that Tran-Swin-

UNet performs best among all comparison models. 

Specifically, compared to UNet [6], Attention UNet [22], 

ResNet [25], and Swin UNet [15], Tran-Swin-UNet has the 

best segmentation performances in terms of the Dice 

similarity coefficient, Jaccard coefficient, and Accuracy. 

Specifically, the results of the proposed Trans-Swin-UNet 

model achieve a DSC value of 0.72±0.01, a JAC value of 

0.78±0.04, and an Accuracy of 0.75±0.03 in the first (self-

collected) plain CT image dataset and a DSC value of 0.73± 

0.02, a JAC value of 0.79± 0.03, and an Accuracy of 

0.76±0.02 in the second (public) plain CT image dataset. 

TABLE VIII 

THE COMPARISON AMONG THREE CNN LAYERS AND TWO DOWN 

SAMPLINGS - FIRST DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria (Mean 

± SD) 

DSC JAC ACC 

ResNet50_D3 10.52 1.52 0.63 

±0.05 

0.36   

±0.05 

0.68   

±0.02 

ResNet50_D4 17.14 2.74 0.65 

±0.03 

0.37   

±0.03 

0.70   

±0.03 

ResNet101_D3 31.23 12.23 0.63  

±0.06 

0.38   

±0.02 

0.66   

±0.05 

ResNet101_D4 53.47 18.16 0.65  

±0.02 

0.38   

±0.03 

0.69   

±0.06 

ResNet150_D3 70.54 

 

25.32 

 

0.63  

±0.05 

0.39   

±0.04 

0.69   

±0.05 

ResNet150_D4 121.36 32.26 0.65 

±0.04 

0.38   

± 0.02 

0.69   

±0.03 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

TABLE IX 

THE COMPARISON AMONG THREE CNN LAYERS AND TWO DOWN 

SAMPLINGS - SECOND DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria (Mean ± SD) 

DSC JAC ACC 

ResNet50_D3 8.36 1.15 0.62 

±0.04 

0.35±0.01 0.67±0.01 

ResNet50_D4 11.34 1.23 0.65±0.

02 

0.37±0.02 0.71±0.03 

ResNet101_D

3 

25.67 8.22 0.61±0.

03 

0.33±0.04 0.65±0.04 

ResNet101_D

4 

32.47 17.54 0.64±0.

01 

0.32±0.05 0.66±0.07 

ResNet150_D

3 

50.13 21.38 0.63±0.

04 

0.34±0.03 0.65±0.04 

ResNet150_D

4 

80.26 26.56 0.62±0.

05 

0.34±0.01 0.63±0.02 

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

Fig. 8 shows the segmentation results of each model based 

on the self-collected plain CT image. The UNet model 

significantly differs from the gold standard and can only 

segment larger lesion areas. In contrast, the surrounding 

small lesion areas need to be recognized. Attention Unet has 

improved the segmentation accuracy of small lesion areas 

compared to UNet due to the introduction of the attention 
mechanism. Swin Unet has improved the segmentation 

accuracy of small lesion areas compared to UNet due to the 

use of the Swin Transformer module. ResNet slightly 

improves segmentation performance compared to UNet due 

to the increased down-sampling times. However, the above 

four UNet-based models have a significant gap in 

segmentation performance compared to the Trans-Swin-

UNet model (see Table X) since the built model integrates 

the main features used in each of the four UNet-based 

models. Such integration supports the built model in 

effectively and accurately detecting the small lesion areas. In 
summary, the segmentation performance of the Trans-Swin-

UNet model is best aligned with the gold standard. 
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Fig. 8  The comparisons of segmentation results 

 

TABLE X 

THE COMPARISON BETWEEN TRANS-SWIN-UNET AND FOUR EXISTING 

MODELS FOR CT IMAGE SEGMENTATION - FIRST DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria (Mean ± SD) 

DSC JAC ACC 

Unet 20.36 21.52 0.70±0.05 0.73±0.01 0.65±0.02 

Attention 

UNet 

50.14 90.32 0.69 

±0.03 

0.78±0.03 0.72 

±0.05 

Swin 

UNet 

100.23 103.21 0.68 

±0.06 

0.72 

±0.04 

0.73 

±0.04 

ResNet 95.23 105.32 0.69 

±0.02 

0.72 

±0.05 

0.73 

±0.05 

Trans-

Swin-

UNet 

120.21 130.12 0.72 

±0.01 

0.78 

±0.04 

0.75 

±0.03

  

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

TABLE XI 

THE COMPARISON BETWEEN TRANS-SWIN-UNET AND FOUR EXISTING 

MODELS FOR CT IMAGE SEGMENTATION – SECOND DATASET 

Model No. of 

variables 

(M) 

Computing 

Quantity 

(GFlops) 

Evaluation criteria (Mean ± SD) 

DSC JAC ACC 

Unet   18.25   20.33 0.68    

±0.03 

0.74      

±0.03 

0.68     

±0.02 

Attention 

UNet 

48.14   83.26 0.70 

±0.02 

0.77      

±0.02 

0.73 

±0.01 

Swin 

UNet 

95.23 100.15 0.67 

±0.07 

0.73 

±0.01 

0.73 

±0.05 

ResNet 90.15 108.23 0.68 

±0.02 

0.73 

±0.02 

0.74 

±0.03 

Trans-

Swin-

UNet 

115.29 125.37 0.73 

±0.02 

0.79 

±0.03 

0.76 

±0.02

  

Note: DSC is the Dice Similarity Coefficient, JAC is the Jaccard Coefficient, 

and ACC is the Accuracy. 

IV. CONCLUSION 

The present study builds a UNet-based neural network 

model, Trans-Swin-UNet, for segmenting ischemic lesions 

of the plain CT image. The neural network model is built 

based on the four main improvements on TransUNet. The 

optimization experiment shows that each improvement could 

perform better than the original setup. The comparison 

experiment finds that Trans-Swin-UNet could achieve the 

best segmentation performance among the five UNet-based 

neural network models regarding the three evaluation 
indicators: Dice similarity coefficient, Jaccard coefficient, 

and Accuracy.  

The present study had limited plain CT image datasets 

trained and tested in the experiments. Future work could 

apply the proposed model to segment more public CT image 

datasets. Moreover, research into model compression and 

efficient training techniques will play a vital role in the 

practical deployment of the hybrid CNN-Transformer UNet 

model of segmenting medical images in clinic settings. 

ACKNOWLEDGMENT 

This research was funded by a matching grant between 

Foshan University, China, and Multimedia University, 

Malaysia (Grant No. MMUE/230034). 

REFERENCES 

[1] V. L. Feigin et al., “Pragmatic solutions to reduce the global burden 

of stroke: a World Stroke Organization–Lancet Neurology 

Commission,” Dec. 01, 2023, Elsevier Ltd. 10.1016/S1474-

4422(23)00277-6. 

[2] M. Zhou et al., “Mortality, morbidity, and risk factors in China and 

its provinces, 1990–2017: a systematic analysis for the Global 

Burden of Disease Study 2017,” The Lancet, vol. 394, no. 10204, pp. 

1145–1158, Sep. 2019, 10.1016/S0140-6736(19)30427-1. 

[3] J. Vymazal, A. M. Rulseh, J. Keller, and L. Janouskova, 

“Comparison of CT and MR imaging in ischemic stroke,” Dec. 01, 

2012, Springer Verlag. 10.1007/s13244-012-0185-9. 

[4] H. Abbasi, M. Orouskhani, S. Asgari, and S. S. Zadeh, “Automatic 

brain ischemic stroke segmentation with deep learning: A review,” 

Neuroscience Informatics, vol. 3, no. 4, p. 100145, Dec. 2023, 

10.1016/j.neuri.2023.100145. 

[5] M. Soltanpour, R. Greiner, P. Boulanger, and B. Buck, 

“Improvement of automatic ischemic stroke lesion segmentation in 

CT perfusion maps using a learned deep neural network,” Comput 

Biol Med, vol. 137, Oct. 2021, 10.1016/j.compbiomed. 2021.104849. 

[6] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional 

networks for biomedical image segmentation,” in Lecture Notes in 

Computer Science (including subseries Lecture Notes in Artificial 

Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 

2015, pp. 234–241. 10.1007/978-3-319-24574-4_28. 

[7] M. Malik, B. Chong, J. Fernandez, V. Shim, N. K. Kasabov, and A. 

Wang, “Stroke Lesion Segmentation and Deep Learning: A 

Comprehensive Review,” Bioengineering, vol. 11, no. 1, Jan. 2024, 

10.3390/bioengineering11010086. 

[8] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, 

“The Importance of Skip Connections in Biomedical Image 

Segmentation,” Aug. 2016, [Online]. Available: 

http://arxiv.org/abs/1608.04117 

[9] A. Annotation¨ozgün, C. ¸ Içek, A. Abdulkadir, S. S. Lienkamp, T. 

Brox, and O. Ronneberger, “3D U-Net: Learning Dense Volumetric 

1580



Segmentation from Sparse Annotation¨Ozgün,” 2016. [Online]. 

Available: http://lmb.informatik.uni-

freiburg.de/resources/opensource/unet.en.html 

[10] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully 

Convolutional Neural Networks for Volumetric Medical Image 

Segmentation,” in 2016 Fourth International Conference on 3D 

Vision (3DV), IEEE, Oct. 2016, pp. 565–571. 10.1109/ 3DV.2016.79. 

[11] Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang, 

“UNet++: A Nested U-Net Architecture for Medical Image 

Segmentation,” 2018, pp. 3–11. 10.1007/978-3-030-00889-5_1. 

[12] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: 

Transformers for Image Recognition at Scale,” Oct. 2020, [Online]. 

Available: http://arxiv.org/abs/2010.11929 

[13] O. Petit, N. Thome, C. Rambour, and L. Soler, “U-Net Transformer: 

Self and Cross Attention for Medical Image Segmentation,” in 

Lecture Notes in Computer Science, vol. 12966, 2021. 10.1007/978-

3-030-87589-3_28. 

[14] A. Hatamizadeh et al., “UNETR: Transformers for 3D Medical 

Image Segmentation,” in 2022 IEEE/CVF Winter Conference on 

Applications of Computer Vision (WACV), Mar. 2022, pp. 1748–

1758. 10.1109/WACV51458.2022.00181. 

[15] H. Cao et al., “Swin-Unet: Unet-like Pure Transformer for Medical 

Image Segmentation,” in Lecture Notes in Computer Science, vol. 

13803, 2021, pp. 205–218. 10.1007/978-3-031-25066-8_9. 

[16] J. M. J. Valanarasu, P. Oza, I. Hacihaliloglu, and V. M. Patel, 

“Medical Transformer: Gated Axial-Attention for Medical Image 

Segmentation,” in Lecture Notes in Computer Science, vol. 12901, 

2021. 0.1007/978-3-030-87193-2_4. 

[17] W. Wang, C. Chen, M. Ding, J. Li, H. Yu, and S. Zha, “TransBTS: 

Multimodal Brain Tumor Segmentation Using Transformer,” Mar. 

2021, 10.1007/978-3-030-87193-2_11. 

[18] Y. Xie, J. Zhang, C. Shen, and Y. Xia, “CoTr: Efficiently Bridging 

CNN and Transformer for 3D Medical Image Segmentation,” in 

Lecture Notes in Computer Science, vol. 12903, 2021, pp. 171–180. 

10.1007/978-3-030-87199-4_16. 

[19] Z. Xu and C. Ding, “Combining convolutional attention mechanism 

and residual deformable Transformer for infarct segmentation from 

CT scans of acute ischemic stroke patients,” Front Neurol, vol. 14, 

2023, 10.3389/fneur.2023.1178637. 

[20] Z. Li et al., “TFCNs: A CNN-Transformer Hybrid Network for 

Medical Image Segmentation,” in Artificial Neural Networks and 

Machine Learning – ICANN 2022, 2022, pp. 781–792. 10.1007/978-

3-031-15937-4_65. 

[21] J. Chen et al., “TransUNet: Transformers Make Strong Encoders for 

Medical Image Segmentation,” 2021. [Online]. Available: 

https://github.com/Beckschen/ 

[22] O. Oktay et al., “Attention U-Net: Learning Where to Look for the 

Pancreas,” Apr. 2018, [Online]. Available: 

http://arxiv.org/abs/1804.03999 

[23] Z. Zhang, H. Tian, Z. Xu, Y. Bian, and J. Wu, “Application of a 

pyramid pooling Unet model with integrated attention mechanism 

and Inception module in pancreatic tumor segmentation,” J Appl Clin 

Med Phys, vol. 24, no. 12, Dec. 2023, 10.1002/acm2.14204. 

[24] M. Yeung, E. Sala, C. B. Schönlieb, and L. Rundo, “Unified Focal 

loss: Generalising Dice and cross entropy-based losses to handle 

class imbalanced medical image segmentation,” Computerized 

Medical Imaging and Graphics, vol. 95, Jan. 2022, 

10.1016/j.compmedimag.2021.102026. 

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for 

Image Recognition,” in 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), Dec. 2015, pp. 770–778. 

10.1109/CVPR.2016.90. 

[26] K. L. Lew, C. Y. Kew, K. S. Sim, and S. C. Tan, “Adaptive Gaussian 

Wiener Filter for CT-Scan Images with Gaussian Noise Variance,” 

Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 169–

181, Feb. 2024, 10.33093/jiwe.2024.3.1.11. 

[27] W. T. Chan, “Conditional Noise Filter for MRI Images with Revised 

Theory on Second-order Histograms,” International Journal on 

Robotics, Automation and Sciences, vol. 3, pp. 25–32, Nov. 2021, 

10.33093/ijoras.2021.3.5. 

[28] H. Çiğ, M. T. Güllüoğlu, M. B. Er, U. Kuran, and E. C. Kuran, 

“Enhanced Disease Detection Using Contrast Limited Adaptive 

Histogram Equalization and Multi-Objective Cuckoo Search in Deep 

Learning,” Traitement du Signal, vol. 40, no. 3, pp. 915–925, Jun. 

2023, 10.18280/ts.400308. 

[29] J. Muschelli, “Recommendations for Processing Head CT Data,” 

Front Neuroinform, vol. 13, Sep. 2019, 10.3389/fninf.2019.00061. 

[30] D. Müller, I. Soto-Rey, and F. Kramer, “Towards a guideline for 

evaluation metrics in medical image segmentation,” Dec. 01, 2022, 

BioMed Central Ltd. 10.1186/s13104-022-06096-y. 

[31] C. C. Chai, W. H. Khoh, Y. H. Pang, and H. Y. Yap, “A Lung 

Cancer Detection with Pre-Trained CNN Models,” Journal of 

Informatics and Web Engineering, vol. 3, no. 1, pp. 41–54, Feb. 2024, 

doi: 10.33093/jiwe.2024.3.1.3. 

 

1581




