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Abstract—The classification of skin cancer is crucial as the chance of survival increases significantly with timely and accurate 

treatment. Convolution Neural Networks (CNNs) have proven effective in classifying skin cancer. However, CNN models are often 

regarded as "black boxes”, due to the lack of transparency in the decision-making. Therefore, explainable artificial intelligence (XAI) 

has emerged as a tool for understanding AI decisions. This study employed a CNN model, VGG16, to classify five skin lesion classes. 

The hyperparameters were adjusted to optimize its classification performance. The best hyperparameter settings were 50 epochs, a 

0.1 dropout rate, and the Adam optimizer with a 0.001 learning rate. The VGG16 model demonstrated satisfactory classification 

performance. The Local Interpretable Model-Agnostic Explanations (LIME) method was implemented as the XAI tool to justify the 

predictions made by VGG16. The LIME explanation revealed that the correct predictions made by VGG16 were owing to its truthful 

extraction of the cancer or lesion area, especially for the “vascular lesion” class. Meanwhile, inaccurate classifications were attributed 

to VGG16 extraction of the background and insignificant parts of the skin as core features. In conclusion, The LIME model allowed 

visual inspection of the features selected by VGG16, paving the way for improving the CNN model for better feature extraction and 

classification of skin lesions, offering a promising direction for future research. 
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I. INTRODUCTION

A skin lesion is an abnormal growth of skin cells that 
could be caused by exposure to ultraviolet light, 
environmental hazards, or genetic risk factors [1]. Skin 
lesions such as actinic keratoses, dermatofibroma, and 
seborrheic Keratoses are benign [2], while melanoma, basal 
cell carcinoma, and squamous cell carcinoma are usually 
malignant [3]. About 104,930 new melanoma cancer cases 
are estimated for the year 2023 in the United States [4]. The 
5-year survival rate of skin cancer is as high as 94% when
the cancer is still localized but is drastically reduced to 32% 
after metastasis [4], emphasizing the importance of early 
detection. The early diagnosis of skin lesions typically 
involves visual examination before histopathological 
analysis; nevertheless, classifying skin lesions is challenging 
due to the high variabilities in the appearance of the skin 

lesions [5]. The outcomes of diagnostics frequently rely on 
the dermatologist's skill and expertise, which can sometimes 
be subjective [6]. The accuracy of skin cancer diagnosis was 
about 60% (non-dermoscopic image) to 84 % (dermoscopic 
image) [3]. This shortcoming has motivated the introduction 
of artificial intelligence (AI) in skin lesion diagnosis. Deep 
neural networks like Convolutional Neural Networks (CNNs) 
possess remarkable feature extraction and classification 
capabilities. As a result, they have witnessed extensive 
adoption in skin lesion classification in recent years, 
including application in [7], [8], [9]. Table 1 summarizes 
several studies that employ CNNs for classifying and 
detecting skin diseases. Works from the literature suggest 
that CNNs excel at learning complicated patterns in images, 
rendering CNNs ideal for analyzing skin lesions where 
features are sometimes subtle. In other words, CNNs can 
capture details that may not be easily discernible to the 
human eye.  
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TABLE I 
REPORTED WORKS OF CNNS IN SKIN DISEASE DETECTION 

Method Dataset Key Results  Ref 

Model used: VGG16, 
ResNet50, Inception-v3 
and Ensemble.  
Binary cross-entropy 
loss function 

Monkey 
Pox Skin 
Lesion 
Dataset  
(self-
prepared) 

[VGG16] 
Accuracy:  81.48% 
Precision: 0.85  
Recall:0.81  
F1 score: 0.83 
[ResNet50] 
Accuracy 82.96 % 
Precision: 0.87  
Recall: 0.83  
F1 score: 0.84 

[7] 

Model used: AlexNet, 
VGG16, ResNet-18 
and fusion CNN 
models with Support 
Vector Machine. 
Fuse the deep features 
from various layers of 
CNNs 

ISIC 
image 
archive 

[AlexNet]  
Avg. AUC: 89.73% 
[VGG16] 
Avg. AUC: 88.76% 
[ResNet-18] 
Avg. AUC: 88.51% 

[10] 

Model used: Inception-
v3, VGG19, 
SqueezeNet and 
ResNet50 
Use the .NET 
framework with the C# 
language to enable a 
web service for users 

ISIC 
image 
archive 

[Inception V3] 
Avg. accuracy: 93%  
[VGG19] 
Avg. accuracy: 94.%  
[ResNet50] 
Avg. accuracy: 97%  
[SqueezeNet] 
Avg. accuracy: 96%  

[11] 

Model used: ResNet50, 
Xception and 
Inception-ResNet-v2, 
DenseNet121 and 
Inception-v3 
Employ global average 
pooling followed by a 
1x1 convolution  
Instead of a fully 
connected layer  

Xiangya-
Derm 
(self-
prepared) 

[ResNet50]  
Avg. precision: 63% 
[Inception-v3]  
Avg. precision:64% 
[DenseNet121]  
Avg. precision:69% 
[Xception]  
Avg. precision:68% 
[InceptionResNetv2]  
Avg. precision:71% 

[12] 

 
The implementation of CNNs has proven to be effective 

in skin lesion classification. However, despite their success, 
CNN models come with certain limitations, most notably 
being regarded as "black boxes”, which refers to the low 
level of transparency and interpretability in the decision-
making of CNNs [13]. CNNs do not provide explicit 
explanations or justifications for their classification. When 
dealing with critical applications such as medical diagnosis, 
being informed of the logic behind a model's decision is 
crucial for building the trust and confidence of the medical 
practitioners in AI [14].  

Furthermore, more advanced and robust CNN 
architectures have been developed in recent years for various 
tasks. Recent published CNN models continue to grow more 
complex, with some models already operating with trillions 
of parameters. As a consequence, the clarity and 
interpretability of these emerging CNNs were compromised, 
making it harder to comprehend the prediction process and 
internal mechanisms [15]. Additionally, In situations where 
a CNN model makes incorrect predictions, it is often 
challenging to diagnose the exact cause of the failure [16].  

Amid all these limitations, explainable artificial 
intelligence (XAI) has arisen as a framework and tool for 
understanding and interpreting AI decisions. XAI generally 
refers to all techniques and solutions that enable humans to 

understand AI models. In other words, XAI allows the 
understanding of the reasons behind the decisions made by 
the AI [15]. Some common XAI techniques include 
Gradient-weighted Class Activation Mapping (GRAD-Cam), 
Local Interpretable Model-Agnostic Explanations (LIME) 
and Shapley Additive Explanations (SHAP) [17], [18], [19], 
[20]. Nguyen et al. [21] have compared LIME, SHAP, and 
CAM in describing the ResNet50 CNN in the image 
classification problem. Considering the hummingbird shown 
in Fig. 1, which has 49 clusters, all the tested XAI were able 
to highlight the core feature used by ResNet50 in the 
classification. As shown in Fig. 2, LIME identifies core 
features using superpixel regions, SHAP employs weighted 
color regions, and CAM utilizes heatmaps to highlight 
essential features. 
 

 
Fig. 1  A hummingbird image with 49 clusters for classification. 

 

 
Fig. 2  XAI explanation using (a) LIME, (b) SHAP and (c) CAM [21] 

 
XAI in medicine has been presented in the literature. 

Yong et al. employed both Grad-CAM and Kernel SHAP 
techniques on a CNN-based classification of melanoma and 
benign naevus (moles) [17]. This work's significance lies in 
using Grad-CAM and Kernel SHAP to perform sanity check 
experiments, including reproducibility, model dependence, 
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and sensitivity tests. Yong et al. conducted an extensive 
analysis, performing 30 model training on 15 randomly 
selected subclasses of 818 data each. The obtained 
performance metrics showcase a good 85% mean Area 
Under Curve (AUC), 1.8% variance, and an 87% recall. The 
sanity check experiments showed that GradCAM and SHAP 
were reproducible, model-dependent, and mostly sensitive, 
but occasionally marked irrelevant features as necessary. 
The study introduces initial insights connecting accuracy and 
interpretability in the classification of skin lesions. In the 
year 2021, the LIME and SHAP models were proposed and 
compared by Ong et al. to explain COVID-19 diagnoses via 
X-ray images [18]. A 14-layer SqueezeNet CNN model was 
first applied to classify the X-rays into trio classes, namely 
pneumonia, COVID-19, and normal lung, followed by the 
implementation of XAI based on visual evaluation. Both 
LIME and SHAP were able to mark the region of interest 
(ROI) that leads to accurate or inaccurate classification. 
LIME used superpixel to mark ROI, while SHAP used green 
and red to mark positive and negative accuracy areas. The 
author concludes that SHAP is a relatively better XAI for the 
application as SHAP could always identify the lung region, 
which is the core feature of an X-ray.  The work has 
provided insight into essential features marked by the CNN 
network.  

Grad-CAM has also been applied to image segmentation 
models, as demonstrated by Xiao et al. [19]. This study 
utilized Grad-CAM with several segmentation-deep learning 
models: MCGU-Net, R2U-Ne, and Double U-Net to 
segment datasets containing images of colorectal polyps, 
liver, and skin melanoma. The ROI was presented in the 
form of heat maps. The heatmaps generated by Grad-CAM 
revealed distinct insights. For example, in the case of 
colorectal polyp images, Double U-Net emphasized pixels at 
the polyp's edge during segmentation, assigning the highest 
importance to the edge's left and right ends. In contrast, 
pixels across the whole polyp region were prioritized by 
R2U-Net, with increasing significance towards the polyp's 
center. MCGU-Net focused on the center alongside the 
pixels on the lower edges of the polyp. Regardless, Grad-
Cam has effectively identified the image regions that 
command the primary focus of medical image segmentation 
models. In short, XAI is emerging in medical image analysis. 
Table 2 summarizes some reported work of XAI in medical 
applications. 

TABLE II 
REPORTED WORKS OF XAI IN MEDICAL APPLICATIONS 

Application Description XAI Ref 

COVID-19 
diagnosis 

Dataset from 
Covidx. 
Employed 
SqueezenNet 
classifier. 

LIME and SHAP 
to give a 
qualitative visual 
evaluation  

[18] 

Melanoma 
detection 

Dataset from 
HAM10000. 
Employed 
Inception 
classifier 

Grad-CAM and 
KernelSHAP to 
give qualitative 
visual inspection 
and quantitative 
Structural 
Similarity Index 
(SSIM)comparison 

[17] 

Segmentation Datasets: Grad-CAM to give [19] 

Application Description XAI Ref 

of medical 
images 
consisting of 
colorectal 
polyps, liver CT 
and melanoma 

CVC-Clinic, 
3Dircadb, 
Lesion 
Boundary 
Segment. 
Employed  
MCGU-Net, 
R2U-Net and 
Double U-Net 
segmentation 

a qualitative visual  
inspection 

Adverse Drug 
Event (ADE) 
prediction 

Dataset from 
Swedish 
Health Record 
Research 
Bank. 
Employed  
RNN: 
RETAIN and 
RNN-GRU 
model 

SHAP for 
qualitative 
inspection 

[20] 

 
Previous studies have established the potential of XAI; 

nevertheless, its application in skin lesion classification 
remains limited. This challenge is amplified by the absence 
of extensive datasets that could fully represent the variations 
in skin lesions. Considering these gaps, our study developed 
a CNN model for skin lesion classification. The evaluation 
of the CNN model's performance is followed by 
implementing an XAI model LIME to provide justifications 
for the decisions made by the CNN model. To ensure the 
robustness of our approach, we have employed a well-
established CNN architecture: VGG16. To address the need 
for sufficient training and validation data, we used the 
multiple-dataset approach where skin lesion images from 4 
different sources were included for this study. LIME 
presented in this study offers an understanding of the 
reasoning behind the CNN model's decisions. 

II. MATERIALS AND METHOD 

A. Dataset and Image Pre-Processing 

Four datasets were incorporated into our project. The first 
dataset was sourced from the Kaggle public dataset 'Skin 
Cancer ISIC' by Andrey Katanskiy, extracted from The 
International Skin Imaging Collaboration (ISIC) [22]. The 
remaining datasets of gold standard lesion diagnosis images, 
accessible from ISIC archives [23], were derived from the 
combination of HAM1000 datasets [24], MSK dataset [25] 
and BCN_20000 Dataset [26]. The combined dataset was 
then split into train-validation data and test data. The number 
of test images per class was set at 200. At the same time, the 
train-validation data went through augmentation (including 
RandomApply, RandomCrop, RandomRotation, 
GaussianBlur, RandomAdjustSharpness etc.) or random 
deletion to reach a uniform 1800 images per class. The train: 
validation: test ratio of the dataset was 1600:200:200, giving 
2000 images per class, as shown in Table 3.  
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TABLE III 
NUMBER OF DATA PER SKIN LESION CLASS 

 
The VGG16 architecture was selected for this study due 

to its remarkable performance of top-5 test accuracy of 93% 
on ImageNet, a dataset with over 14 million images 
distributed among 1000 classes. Furthermore, its robustness 
has been extensively demonstrated in various detection and 
classification tasks [27][28][29]. Images were pre-processed 
into 224 × 224 to suit the VGG16 input requirements. The 
dataset was normalized as a common pre-processing step in 
CNNs. The dataset normalization involved scaling the input 
pixel values to achieve a mean of 0 and a variance of 1. 
Normalizing data offers several advantages including faster 
convergence, improved generalization performance, and 
reduced sensitivity to input changes [30]. 

B. Hyperparameters Selection and Performance Metrics 

Several hyperparameters, including the dropout rate, 
number of epochs, and type of optimizers, were evaluated to 
enhance the performance of the CNN models. The dropout 
rate refers to the ratio of randomly eliminated neurons 
during training to reduce overfitting. The number of epochs 
refers to how often the complete dataset is fed through CNN 
during training. Optimizers adjust the learning rate to 
minimize the loss function, helping the CNN model to 
converge. These hyperparameters play critical roles in 
optimizing CNNs for better performance. The values 
assessed and the description of the hyperparameters are 
shown in Table 4.  

Quantitative analysis was performed to evaluate the 
performance of the CNN models. A range of performance 
metrics, including Accuracy, recall score, Precision score, 
F1 score, and the Matthews correlation coefficient (MCC) 
were employed. Descriptions of these metrics are provided 
in Table 5. Additionally, the loss function of the training and 
validation sets, which characterize the training process and 
the potential for overfitting/underfitting, was also examined. 

TABLE IV 
HYPERPARAMETERS EVALUATED 

Hyper-

parameter 

Description Value  

Epochs The number of epochs refers to 
how often the complete dataset is 
fed through the CNN during 
training. It affects the training time 
and the model's performance. The 
number of epochs has to be 
sufficient to allow CNN to learn 
the data features, but an overly 
high epoch can lead to overfitting  

10, 30, 
50, 90 

Dropout 
rate 

The dropout rate is a regularization 
technique that randomly drops 
nodes or neurons in CNN layers to 
reduce the dependence on specific 

0.1, 0.5, 
0.7 

Hyper-

parameter 

Description Value  

nodes. Tuning the dropout helps to 
prevent the overfitting of the CNN 
models. 

Type of 
optimizer 

The optimizer is in control of 
updating the weights of the neural 
network based on the calculated 
gradients of the loss function. 
Different optimizers use various 
algorithms to perform weight 
updates which can affect the 
performance of the CNN and 
therefore require evaluation. 

Adam, 
SGD, 
NAdam 

TABLE V 
PERFORMANCE METRICS 

Analysis Equation and Description  

Accuracy �� + ��
�� + �� + �� + ��

   (1) 

 
To measure the correctly classified data 
across all data.  

 

Recall 
  

��
�� + ��

  

 
(2) 

 To measure total actual positive data 
detected over total positive data. Likewise 
understood as true positive rate or 
sensitivity. 

 

Precision  ��
�� + ��

 (3) 

 
To measure actual predicted positive data 
out of all predicted positive data. 

 

F1 score 2 � 	
�� � �	
������
	
�� + �	
������

  (4) 

 
To measure the balance between recall 
score and precision 

 

MCC ����� − �����

�(�� + ��)(�� + ��)(�� + ��)(�� + ��)
 (5) 

 
To measure the correlation between the 
actual and predicted classifications, 
considering quad results (false/true 
negatives and false/true positives) to 
provide a balanced assessment. 

 

TN = True Negative, FN = False Negative, TP = True Positive, 
FP = False Positive 

C. XAI Application: LIME  

LIME was introduced in 2016 by M. T. Ribeiro, S. Singh, 
and C. Guestrin in their publication titled "Why Should I 
Trust You? Explaining the Predictions of Any Classifier" 
[31]. LIME aims to approximate the black-box model locally, 
making it a post hoc XAI method which does not influence 
the CNN’s training process. Instead. When applying LIME 
to skin lesion classification, the XAI begins by segmenting 
the skin lesion image into superpixels, which are pixel 
clusters with alike characteristics such as colour and 

Skin Lesion Class Train Valid Test Total 
Actinic Keratosis (AK) 1600 200 200 2000 
Basal Cell Carcinoma 
(BCC) 

1600 200 200 2000 

Melanoma (MEL) 1600 200 200 2000 
Melanocytic Nevus (NV) 1600 200 200 2000 
Vascular Lesion (VASC) 1600 200 200 2000 
Total 8000 1000 1000 10000 
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intensity, as shown in Fig. 3(a) [32]. Next, perturbed 
versions of the original image are generated by randomly 
masking out a subset of superpixels, creating images with 
masked regions, as shown in Fig. 3(b). These perturbed 
images are employed in LIME model training. The 
superpixels with the highest positive coefficients are 
considered to have contributed significantly to the prediction 
of skin lesion type. Local explanations from LIME are 
accurate within the immediate context or vicinity of the skin 
lesion image under consideration. 

 

 
Fig. 3 (a) Skin lesion image segmented into superpixels and (b) Perturbed 
image to investigate the importance of a specific region  

III. RESULTS AND DISCUSSION 

A. Hyperparameter Selection 

Hyperparameter selection is imperative for a CNN as a 
suboptimal setting could significantly reduce the 
classification performance [33]. Parameters, including the 
number of epochs, rate of dropout, and type of optimizer, 
were evaluated to enhance VGG16's performance in 
classifying skin cancers. Firstly, dropout rates of 0.1, 0.5, 
and 0.7 (representing 10%, 50%, and 70% of discarded 
nodes, respectively) were tested. Fig. 4 illustrates the impact 
of the dropout rate on accuracy, precision, recall, F1-score, 
and MCC.  

 

 
Fig. 4 The effect of dropout rate on classification performance. A 0.1 
dropout rate balances preventing overfitting and allowing sufficient learning. 
 

It was observed that the 0.1 dropout rate gave the best 
performance metrics. Dropouts randomly eliminated neurons 
and connections during training to prevent rapid adjustment 
and overfitting. A dropout rate 1.0 indicates that all neurons 
are dropped and no training occurs, while a rate of 0 means 
no neuron is dropped, possibly leading to overfitting. For 
this study, a 0.1 dropout rate appeared to be a reasonable 
balance where some neurons were eliminated to prevent 
overfitting while still enabling the model to learn essential 

features [34]. Fig. 5 demonstrates the effect of epochs on 
classification performance. Epochs represent one complete 
pass through the training dataset. A CNN model with low 
epochs may struggle with underfitting [35], as evidenced by 
the subpar classification performance observed with only 10 
epochs. On the contrary, excessive epochs could lead to 
overfitting, where CNN memorizes the training sets and 
cannot generalize on unseen data. For this study, both 50 and 
90 epochs reached convergence, but 50 epochs presented the 
best classification performance and were thus chosen for 
subsequent analysis.  
 

 
Fig. 5  The impact of epoch on classification performance. Training for 50 
epochs yielded optimal convergence and performance. 
 

Optimizers are used to minimize errors between predicted 
and actual outputs. An optimizer computes the gradient 
based on the loss function to adjust the weights in the CNN 
model for better performance. Different optimizers present 
varying weight adjustments that can substantially affect the 
classification performances. The optimizers evaluated in this 
project were Adam, SDG, and Nadam: The Adam optimizer 
updates the CNN models by looking at past gradients, SGD 
optimizer uses gradient descent on a random point from the 
entire dataset for parameter updates, reducing redundant 
work on large datasets while Nadam optimizer combines 
Adam and Nesterov's accelerated gradient descent method, 
boosting learning by considering both past and current 
gradient trends [36]. A comparison of these optimizers 
shows that Adam outperformed the other optimizers, as 
illustrated in Fig. 6.  
 

 
Fig. 6 The influence of optimizer on classification performance. Adam is 
effective in practice and performs favorably compared to other stochastic 
optimization methods 
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This observation is consistent with works reported in the 
literature, such as that from Kingma et al., which concluded 
that Adam works well with sparse gradients and is robust for 
a wide range of non-convex optimization problems using 
deep learning [36]. Lastly, it is worth noting that the learning 
rate was consistently set to 0.001 for this study, which is the 
default value in the PyTorch application of optimizer Adam. 
This value is commonly used in deep learning frameworks 
and was observed to be optimal in previous works [37][38]. 

B. Performance Analysis of CNNs in Skin Lesion 

Classification 

The classification of the CNN models was assessed 
quantitatively using the individual class classification report 
and measurements, including accuracy, recall, precision, 
MCC, and F1 score. According to the results in Fig.7, the 
VASC class was the easiest to classify, displaying 
consistently high (> 0.8) precision, recall, and F1-score. This 
ease of classification is likely due to its distinct blushing and 
flushing area that a trained VGG16 can easily recognize [39]. 
On the other hand, the performance of VGG16 in classifying 
the MEL categories was mediocre, with performance metrics 
ranging between 0.57 and 0.7. This could be due to the 
dynamic nature of Melanoma lesions that change over time 
and have several variants [40]This makes it challenging to 
capture all stages and variants in a dataset for comprehensive 
training of VGG16 to classify MEL.  

 

 
Fig. 7 The performance of the CNN in classifying different skin lesions. 
VASC class has the highest classification accuracy. 
 

Despite this, it is safe to conclude that the CNN model's 
classification of skin cancer/lesions is satisfactory, with an 
overall precision, recall, F1 score, and accuracy of 0.716, 
0.712, 0.724, and 0.711, respectively. The MCC was adapted 
to measure the overall quality of the classification, as high 
scoring is only produced when the classifier accurately 
predicts the majority of the negative and positive cases 
[41]The CNN's MCC was 0.639, indicating a moderately 
strong level of agreement between the predictions and the 
actual labels of the skin images. Overall, the CNN model 
performs reasonably well, with room for improvement. 

The training and validation loss were also examined as 
they visually represent how the VGG16 was learning over 
time. The decreasing loss as shown in Fig.8 indicates that the 
VGG16 model was improving its performance on the 
training data. The validation loss has an overall decreasing 
trend alongside the training loss, showing that the model was 
capable of generalizing to new data [42]; The fluctuation 

observed in the validation loss suggested the CNN model 
was adjusting its parameters to prevent overfitting and to 
reach optimal solutions with the unseen data [43].  

 

 
Fig. 8  The loss function of the VGG16 model. Decreasing loss indicates 
that the CNN model was learning and improving its ability to make accurate 
predictions  

C. The Application of XAI 

The VGG16's ability to classify skin cancer/lesion was 
poorly understood; it was unclear why some images were 
misclassified. To investigate the features VGG16 used for 
classification, the test set from the dataset was used for XAI 
visualization. The saved VGG16 checkpoint was loaded for 
prediction—the LIME model explained by highlighting 
segmented areas using superpixel segmentation and feature 
masking. The segmented regions by LIME made the features 
used by VGG16 to identify skin cancer classes explainable. 

According to the classification report discussed in section 
B, VGG16 could classify the VASC class well, while it 
performed poorly on the MEL class. This observation aligns 
with the LIME segmented explanation, which showed that 
VGG16 was trained to extract the core area of VASC, as 
shown in Fig. 9, for accurate classification but struggled 
with MEL where irrelevant background was extracted, as 
depicted in Fig. 10. Table 6 provides additional correct and 
incorrect predictions with remarks. Overall, LIME enabled 
visual inspection to explain VGG16's decisions. Despite 
some misclassifications, the CNN model was on the right 
track in distinguishing between different skin lesion classes. 
Improvements to the CNN architecture or adding a feature 
extraction algorithm before CNN classification could 
enhance classification performance. 

 

 
Fig. 9  Superpixels graph and mask graph for VASC correct prediction. 

LIME shows that VGG16 extracted core features. 
…………………………………………………………. 
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Fig. 10  Superpixels graph and mask graph for MEL incorrect prediction. 
The image was classified as BCC due to the irrelevant feature extraction by 

VGG16. 

TABLE VI 
XAI EXPLANATION OF CNN CLASSIFICATION 

Prediction Superpixels Graph vs Masked Graph 
Correct 
Actual: 
BCC 
Predicted: 
BCC 

  

Remarks: 

LIME segmented areas of the image in which VGG16 
has utilized as the core feature. Despite not having the 
entire carcinoma extracted, the feature extracted 
(probably the redness) was sufficient to allow VGG16 to 
predict the BCC class correctly. 

Correct  
Actual: 
MEL 
Predicted: 
MEL 

  

Remarks: 

LIME segmentation shows that VGG16 has extracted a 
large area of the skin lesion for the correct classification 
of MEL. 

Incorrect 
Actual: 
AK 
Predicted: 
NV 

Remark: 

LIME shows that irrelevant background and a pigmented 
skin area were extracted leading to incorrect 
classification. VGG16 may have viewed the pigmented 
skin (bottom left corner) area as NV. 

Prediction Superpixels Graph vs Masked Graph 
Incorrect 
Actual: 
NV 
Predicted: 
BCC 

Remark: 

LIME shows that irrelevant background was extracted 
leading to incorrect classification. VGG16 may have 
viewed the lighter skin area as BCC. 

 
Some improvements can be made to this study. Firstly, 

different CNN models, such as EfficientNet and DenseNet, 
could be employed in skin lesion classification to realize 
better results. Further research should also explore additional 
hyperparameter tuning to optimize model performance 
effectively. Bayesian hyperparameter tuning could be 
explored to efficiently examine the hyperparameter space 
and automate finding the best hyperparameters with minimal 
manual intervention. Additionally, segmenting the skin 
lesion outline before training could enhance training 
accuracy. Besides, incorporating various XAI models, such 
as SHAP and Grad-CAM, into CNN models should be 
considered for future studies. SHAP takes a team-like 
approach to explain how models make predictions. It helps 
to explain how each feature contributes to the decisions 
made, giving AI users valuable insights using colored 
weighted zones; meanwhile, CAM, being an intrinsic model, 
analyzes the final convolutional layer of a CNN to 
understand which parts of the image activate the neurons 
corresponding to the skin lesion class. It can enhance the 
interpretability of CNNs by providing heatmaps highlighting 
essential features.   

In addition, quantitative evaluation of XAI models using 
metrics like fidelity and stability scores should also be 
explored in future work. The fidelity score measures how 
closely the explanation matches CNN’s decision-making 
process. In contrast, the stability score measures how 
consistent the XAI explanation is across data of the same 
class. Another recommendation for future work is to present 
XAI explanations using weightage for each feature instead 
of only visual explanations. While visual explanations can 
be helpful, they do not always clearly indicate the relative 
importance of specific features in the decision-making 
process. Therefore, by explicitly stating the weightage of 
each feature, the most influential or substantial features 
affecting the decision of CNNs are made known to the users. 
In short, exploring different CNN models, implementing 
Bayesian optimization, comparing different XAI methods, 
and instigating quantitative XAI explanations can 
collectively enhance the interpretability of CNN models in 
skin lesion classification, paving the way for more 
transparent AI systems in healthcare. 
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IV. CONCLUSION 

In conclusion, this study has evaluated the classification 
performance of a VGG16 CNN model in classifying five 
classes of skin conditions, including three classes of 
cancerous lesions and two classes of non-cancerous lesions. 
Upon the optimization of hyperparameters including dropout 
rate, number of epochs, and optimizer, the VGG16 model 
achieved satisfactory classification performance, with an 
average accuracy, precision, recall, F1 score, and MCC of 
0.711, 0.716, 0.712, 0.724, and 0.639, respectively. LIME, 
the post hoc XAI method, was applied to explain the 
decision made by the VGG16 in skin lesion classification. 
The LIME explanations use superpixel to demonstrate the 
features extracted by the VGG16 model visually. LIME 
showed that accurate predictions by VGG16, particularly the 
VASC class, were attributed to the truthful extraction of 
cancer or lesion areas. At the same time, inaccurate 
classifications were linked to the extraction of background 
and insignificant parts of the skin as core features. Overall, 
integrating the LIME with the VGG16 model has allowed 
visual inspection and justification of the model's predictions, 
providing a pathway for enhancing the CNN model's 
performance, particularly in feature extraction. Future work 
could use quantitative XAI to give specific weight to each 
feature and highlight its importance in classification.  
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