

VOL 1 (2017) NO 3

e-ISSN : 2549-9904

ISSN : 2549-9610

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

83

Bike Sharing Prediction using Deep Neural Networks

Chandrasegar Thirumalai#, Ravisankar Koppuravuri#

School of Information Technology and Engineering, VIT University, India

E-mail: chandru01@gmail.com, koppuravuri.ravisankar2013@vit.ac.in

Abstract— In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We

will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning

techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the

way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique

available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing

usage of a rental company to make sure they can take good business decisions based on previous years data.

Keywords: Accuracy, Artificial Intelligence, Neural network, Deep learning, Hidden layer, Sharing

I. INTRODUCTION

Artificial Intelligence has been everyone’s dream from

decades, but we are not able to reach that stage due to lack of

computation power and data, but today in the present world

environment where the internet is playing a key role we are

generating a lot of data and processors which can do complex

tasks has been developed and in future we can see quantum

computers too, so with these emerging trends and

technologies AI has come into limelight and it has been used

(or) implemented in various domains and the best present AI

available is MachineLearning.It is quite the reverse way of

traditional programming practice, normally we will try to tell

the program how it needs to implement calculations and

functions to get the required outcome, but here we will

develop a model to which we will give original data as input

and we will allow it to take decisions. Here we can tell the

machine what we want to do with the data (or) we will allow

the machine to take decisions itself. And there are 3 types of

learning methods

1) Supervised Learning: Here model will do what we

want it to do. We will clearly specify the input variables, data

types and what type of operations to be done. We will specify

the model, what we are expecting as output from the system.

This is a sort of normal way of programming style.

 Eg: Linear regression, Logistic regression etc.

2) Unsupervised Learning: This is the most useful and

unorthodox way of machine Learning, here we won't specify

the model what to be done clearly (or) what we are expecting

as output, here pure raw data will be given as input and model

will decide itself of what to be done with data, this can be

possible only with intelligent way of programming since here

some decisions has to be solely taken by model itself. This is

the most required one too because the data generated these

days is mostly unstructured and its almost impossible for

humans to label these huge datasets.

 Eg: clustering etc.

3) Reinforcement Learning: this is one of the places

huge amount of development has been going on, mainly in

automated chat bots and game bots, where a move will be

taken by the model and depending upon the result of that

move next step will be taken and the previous move will be

learned by the model and it will use that knowledge in next

attempts.

Eg: Google Alpha go, IBM Watson.

Neural networks are built using smaller units called

neurons (or) perceptrons which will work like neurons in our

brain and thus named neural nets and just they will do some

calculation and data they got and will pass the output of that

operation to other. Deep Learning is a type of Deep Neural

Networks.

This enlightening dataset [10] is used as the commitment to

figure the direct relapse [2], [31], [32] and Pearson [11], [15],

[19], [21], [27], [29]. In the present days, there are colossal

measures of data recorded by the banks and examining them

requires complex estimations. A few machine learning

calculations [1], [3], [4], [5], [6], [7], [8], [9], [45], assumes

an imperative part in settling on an astute choice to anticipate

the bicycle sharing data. We played out the item metric

examination on the given instructive gathering. From the data

examination [13], [14], [17], [22], [23], [25] we can pick

which property can be viewed as and which quality can be

disregarded. For instance, in the Pearson procedure if the

84

estimation of r is more than 0.5 then the attributes are thought

to be immovably related and if it is underneath 0.3 the

characteristics are insufficiently related. A part of the past

procedures to appraise the decisions in perspective of their

relationship of value are Spearman [6], Analytical

Hierarchical Process (AHP) [12], [18], [20] and Traveling

Salesman Problem (TSP) [43]. The sensitive information's

among various substances [24], [26], [33], [35], [37], [29], [31]

among the bank stock model are dealt with by late secured

strategies [28], [30], [34], [36], [38], [40], [42], [44]..

Fig. 1. Fig. 1. Deep Learning Architecture.

Perceptron: Data is fed into a network of interconnected

nodes. These individual nodes are called perceptron’s or

neurons, and they are the basic unit of a neural network. Each

one looks at input data and decides how to categorize that data.

In the example above, the input either passes a threshold for

grades and test scores or doesn't and so the two categories are:

yes (passed the threshold) and no (didn't pass the threshold).

These categories then combine to form a decision.

We will multiply the data coming into perceptrons with

some value called weights. When input data comes into a

perceptron, it gets multiplied by a weight value that is

assigned to this particular input. For example, the perceptron

having two inputs will have two individual weights for each

input, so it has two associated weights that can be adjusted

individually. These weights start out as random values, and as

the neural network learns more about what kind of input data

leads to a student being accepted into a university, the

network adjusts the weights based on any errors in

categorization that the previous weights resulted in. This is

called training the neural network.

A higher weight means the neural network considers that

input more important than other inputs, and lower weight

means that the data is considered less important. Now a bike

sharing company’s previous data will be taken to find out

what business decisions needed to be taken in future by

applying Deep neural nets

TABLE I. DATASET PART-1

instant day season Year Month Hour

1 1/1/2011 1 0 1 0

2 1/1/2011 1 0 1 1

3 1/1/2011 1 0 1 2

4 1/1/2011 1 0 1 3

5 1/1/2011 1 0 1 4

6 1/1/2011 1 0 1 5

7 1/1/2011 1 0 1 6

8 1/1/2011 1 0 1 7

9 1/1/2011 1 0 1 8

TABLE II: DATASET PART-2

holida

y

weekda

y

working

day

weather

s

tem

p
temp

0 6 0 1 0.24 0.287

9 0 6 0 1 0.22 0.272

7 0 6 0 1 0.22 0.272

7 0 6 0 1 0.24 0.287

9 0 6 0 1 0.24 0.287

9 0 6 0 2 0.24 0.257

6 0 6 0 1 0.22 0.272

7

The process of building neural network can be called as

model building also. We will build our model in small steps

to make sure everything is going well. Technically two

important processes are needed to be implemented.

1) Forward pass: multiplying weights with input data

and adding those products together with bias and passing that

output to next neuron.

2) Backward pass: in this phase, we will calculate the

error and then we will backpropagate the error to update the

weights.

1) Load and prepare data

This dataset has the number of riders for each hour of

each day from January 1, 2011, to December 31, 2012. The

number of riders is split between casual and registered,

summed up in the cnt column. You can see the first few

rows of the data above. Below is a plot showing the number

of bike riders over the first 10 days in the data set. You can

see the hourly rentals here. This data is pretty complicated!

The weekends have lower overall ridership and there are

spikes when people are biking to and from work during the

week. Looking at the data above, we also have information

about temperature, humidity, and wind speed, all of this

likely affecting the number of riders.

Fig. 2. Chart showing number of riders over first 10 days

85

2) Dummy variables

Here we have some categorical variables like season,

weather, and month. To include these in our model, we'll need

to make binary dummy variables. This is simple to do with

Pandas using a function called get_dummies().

 TABLE III. DIFFERENT WEEKS OF BIKE SHARING.

Wday

0

Wday

1

Wday

2

Wday

3

Wday

4

Wday

5

Wday

6 0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

3) Scaling target variables

To make training the network easier, we'll standardize each

of the continuous variables. That is, we'll shift and scale the

variables such that they have zero mean and a standard

deviation of 1. The scaling factors are saved so we can go

backward when we use the network for predictions.

4) Splitting the data into training, testing, and

validation sets

We'll save the last 21 days of the data to use as a test set

after we've trained the network. We'll use this set to make

predictions and compare them with the actual number of

riders. We'll split the data into two sets, one for training and

one for validating as the network is being trained. Since this

is time series data, we'll train on historical data, then try to

predict on future data (the validation set).

5) Building Neural net

The network has two layers, a hidden layer, and an output

layer. The hidden layer will use the sigmoid function for

activations. The output layer has only one node and is used

for the regression, the output of the node is the same as the

input of the node. That is, the activation function is f(x)=x. A

function that takes the input signal and generates an output

signal, but takes into account the threshold, is called an

activation function. We work through each layer of our

network calculating the outputs for each neuron. All of the

outputs from one layer become inputs to the neurons on the

next layer. This process is called forward propagation. We use

the weights to propagate signals forward from the input to the

output layers in a neural network. We use the weights to also

propagate error backward from the output back into the

network to update our weights. This is called back

propagation.

II. SAMPLE CODE

inputs = np.array(inputs_list, ndmin=2).T

targets = np.array(targets_list, ndmin=2).T

print('inputs at start of train', inputs.shape)

print('targets at start of train ', targets.shape)

Implement the forward pass here ####

Forward pass ###

Hidden layer

signals into hidden layer

hidden_inputs = np.dot(self.weights_input_to_hidden,

inputs)

signals from hidden layer

hidden_outputs = self.activation_function(hidden_inputs)

TODO: Output layer

signals into final output layer

final_inputs = np.dot(self.weights_hidden_to_output,

hidden_outputs)

signals from final output layer

final_outputs = final_inputs

Implement the backward pass here ####

Backward pass ###

TODO: Output error

output_errors = targets - final_outputs

Output layer error is the difference between desired

target and actual output.

TODO: Backpropagated error

hidden_errors = np.dot(self.weights_hidden_to_output.T,

output_errors)

errors propagated to the hidden layer

hidden_grad = hidden_outputs * (1 - hidden_outputs)

hidden layer gradients

TODO: Update the weights

output_grad =1

self.weights_hidden_to_output += self.lr *

np.dot(output_errors, hidden_outputs.T)

update hidden-to-output weights with gradient descent

self.weights_input_to_hidden += self.lr * np.dot(

hidden_grad * hidden_errors , inputs.T).

III. METRICS

Gradient Descent formula:

Error calculation for finding out the difference between

predicted and original output. A common metric is the sum of

the squared errors (SSE).

86

Now we will train the network using training data and we

will test using testing data.

After training:

Fig. 3. Comparison between original and predicted data

Now we will compare our result with original data to

check how far we predicted correctly.

Fig. 4. Validation accuracy on testing data.

IV. CONCLUSION

In this solution, we have used deep neural nets instead of

general neural nets (or) single layer algorithms such that

hidden layers can be added in between input and output layers

so that the network can identify relations between the data and

can properly update the weights of respective features.

Although sometimes the improvement in accuracy cannot

vary much from general techniques, but when model is

properly trained with proper training data and best number of

hidden layers then we can achieve much better results, in this

business problem with only one hidden layer we clearly

achieved an accuracy of approx 70%, which is very good

considering the type of business problem.ence we can see that

by using deep neural nets we almost got 80% accuracy, which

is very good for this sort of business problem.

REFERENCES

[1] Hinton, G. E., Osindero, S., & Teh, Y.¬W. (2006). A fast learning
algorithm for deep belief nets.

[2] Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve

Restricted Boltzmann Machines
[3] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., &

Salakhutdinov, R. R. (2012). Improving neural networks by

preventing co-adaptation of feature detectors.
[4] Bengio, Y. and LeCun, Y. Scaling learning algorithms to-wards AI.

2007.

[5] Freund, Y. and Haussler, D. Unsupervised learning of distributions on
binary vectors using two layer networks.

[6] Technical report, Santa Cruz, CA, USA, 1994.
[7] Salakhutdinov, R. and Hinton, G. E. Replicated softmax: an undirected

topic model. In Advances in Neural In-formation Processing Systems

22, 2009.
[8] Hahnloser, Richard H. R., Seung, H. Sebastian, and Slotine, Jean-

Jacques. Permitted and forbidden sets in symmetric threshold-linear

networks. Neural Computation,15(3):621–638, 2003. ISSN 0899-
7667.

[9] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio., Y.

An empirical evaluation of deep architectures on problems with many

factors of variation. In ICML, pp. 473–480, 2007.

[10] https://archive.ics.uci.edu/ml/datasets/Bike Sharing Dataset

[11] Hauke J., Kossowski T., Comparison of values of Pearson’s and
Spearman’s correlation coefficient on the same sets of data.

Quaestiones Geographicae 30(2), Bogucki Wydawnictwo Naukowe,

Poznań 2011, pp. 87–93, 3 figs, 1 table. DOI 10.2478/v10117-011-
0021-1, ISBN 978-83-62662-62-3, ISSN 0137-477X.

[12] Piovani J.I., 2008. The historical construction of correlation as a

conceptual and operative instrument for empirical research. Quality &
Quantity 42: 757–777.

[13] P. Dhavachelvan, Chandra Segar T, K. Satheskumar, "Evaluation of

SOA Complexity Metrics Using Weyuker’s Axioms," IEEE
International Advance Computing (IACC), India, pp. 2325 – 2329,

March 2009

[14] Halstead Metric for Intelligence, Effort, Time predictions,
DOI:10.13140/RG.2.2.17988.42881

[15] Fisher R.A., 1921. On the “probable error” of a coefficient of

correlation deduced from a small sample. Metron 1: 3–32.
[16] Spearman C.E, 1904b. General intelligence, objectively determined

and measured. American Journal of Psychology 15: 201–293.

[17] Software metric Numerical Data analysis using Box plot and control
chart methods, VIT University, DOI:10.13140/RG.2.2.27422.95041

[18] Vaishnavi B, Karthikeyan J, Kiran Yarrakula, Chandrasegar

Thirumalai, “An Assessment Framework for Precipitation Decision
Making Using AHP”, International Conference on Electronics and

Communication Systems (ICECS), IEEE & 978-1-4673-7832-1, Feb.

2016
[19] Griffith D.A., 2003. Spatial autocorrelation and spatial filtering.

Springer, Berlin.

[20] Chandrasegar Thirumalai, Senthilkumar M, “An Assessment
Framework of Intuitionistic Fuzzy Network for C2B Decision

Making”, International Conference on Electronics and

Communication Systems (ICECS), IEEE & 978-1-4673-7832-1, Feb.
2016

[21] Rodgers J.L. & Nicewander W.A., 1988. Thirteen ways to look at the

correlation coefficient. The American Statistician 42 (1): 59–66.
[22] F. Fioravanti, P. Nesi, “A method and tool for assessing object-

oriented projects and metrics management,” Journal of Systems and

Software, Volume 53, Issue 2, 31 August 2000, Pages 111-136

[23] Galton F., 1875. Statistics by intercomparison. Philosophical

Magazine 49: 33–46
[24] Chandrasegar Thirumalai, Viswanathan P, “Diophantine based

Asymmetric Cryptomata for Cloud Confidentiality and Blind

Signature applications,” JISA, Elsevier, 2017.
[25] Galton F., 1877. Typical laws of heredity. Proceedings of the Royal

Institution 8: 282–301.

[26] Chandrasegar Thirumalai, Sathish Shanmugam, “Multi-key
distribution scheme using Diophantine form for secure IoT

communications,” IEEE IPACT 2017.

[27] Galton F., 1888. Co-relations and their measurement, chiefly from
anthropometric data. Proceedings of the Royal Society of London 45:

135–145.

87

[28] Chandrasegar Thirumalai, Senthilkumar M, “Spanning Tree approach

for Error Detection and Correction,” IJPT, Vol. 8, Issue No. 4, Dec-

2016, pp. 5009-5020.
[29] Galton F., 1890. Kinship and correlation. North American Review 150:

419–431.

[30] Chandrasegar Thirumalai, Senthilkumar M, “Secured E-Mail System
using Base 128 Encoding Scheme,” International journal of pharmacy

and technology, Vol. 8 Issue 4, Dec. 2016, pp. 21797-21806.

[31] Yule G.U., 1897a. On the significance of Bravais’ formulae for
regression, in the case of skew correlation. Proceedings of the Royal

Society of London Ser. A 60: 477–489

[32] Chandramowliswaran N, Srinivasan.S and Chandra Segar.T, “A Note
on Linear based Set Associative Cache address System” International

J. on Computer Science and Engg. (IJCSE) & India, Engineering

Journals & 0975-3397, Vol. 4 No. 08 / pp. 1383-1386 / Aug. 2012.
[33] T Chandra Segar, R Vijayaragavan, “Pell's RSA key generation and its

security analysis,” in Computing, Communications and Networking

Technologies (ICCCNT) 2013, pp. 1-5
[34] Chandrasegar Thirumalai, Senthilkumar M, Vaishnavi B, “Physicians

Medicament using Linear Public Key Crypto System,” in International

conference on Electrical, Electronics, and Optimization Techniques,
ICEEOT, IEEE & 978-1-4673-9939-5, March 2016.

[35] Chandrasegar Thirumalai, “Physicians Drug encoding system using an

Efficient and Secured Linear Public Key Cryptosystem (ESLPKC),”
International journal of pharmacy and technology, Vol. 8 Issue 3, Sep.

2016, pp. 16296-16303

[36] Malathy, Chandra Segar Thirumalai, "Review on non-linear set
associative cache design," IJPT, Dec-2016, Vol. 8, Issue No.4, pp.

5320-5330

[37] “DDoS: Survey Of Traceback Methods”, International Joint Journal

Conference in Engineering 2009, ISSN 1797-9617.

[38] Chandrasegar Thirumalai, Senthilkumar M, Silambarasan R, Carlos
Becker Westphall, “Analyzing the strength of Pell’s RSA,” IJPT, Vol.

8 Issue 4, Dec. 2016, pp. 21869-21874.

[39] Chandramowliswaran N, Srinivasan.S and Chandra Segar T, “A Novel
scheme for Secured Associative Mapping” The International J. of

Computer Science and Applications (TIJCSA) & India, TIJCSA

Publishers & 2278-1080, Vol. 1, No 5 / pp. 1-7 / July 2012
[40] Chandrasegar Thirumalai, “Review on the memory efficient RSA

variants,” International Journal of Pharmacy and Technology, Vol. 8

Issue 4, Dec. 2016, pp. 4907-4916.
[41] Vinothini S, Chandra Segar Thirumalai, Vijayaragavan R, Senthil

Kumar M, “A Cubic based Set Associative Cache encoded mapping,”

International Research Journal of Engineering and Technology
(IRJET), Volume: 02 Issue: 02 May -2015

[42] Chandrasegar Thirumalai, Himanshu Kar, “Memory Efficient Multi

Key (MEMK) generation scheme for secure transportation of sensitive
data over Cloud and IoT devices,” IEEE IPACT 2017.

[43] M.Senthilkumar, T.Chandrasegar, M.K. Nallakaruppan, S.Prasanna,

“A Modified and Efficient Genetic Algorithm to Address a Travelling
Salesman Problem,” in International Journal of Applied Engineering

Research, Vol. 9 No. 10, 2014, pp. 1279-1288

[44] Nallakaruppan, M.K., Senthil Kumar, M., Chandrasegar, T., Suraj,
K.A., Magesh, G., “Accident avoidance in railway tracks using Adhoc

wireless networks,” 2014, IJAER, 9 (21), pp. 9551-9556.

[45] Ji, S., Xu, W., Yang, M., & Yu, K. (2013). 3D convolutional neural
networks for human action recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 35(1), 221–231.

