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Abstract— In this paper, we will use deep neural networks for predicting the bike sharing usage based on previous years usage data. We 

will use because deep neural nets for getting higher accuracy. Deep neural nets are quite different from other machine learning 

techniques; here we can add many numbers of hidden layers to improve the accuracy of our prediction and the model can be trained in the 

way we want such that we can achieve the results we want. Nowadays many AI experts will say that deep learning is the best AI technique 

available now and we can achieve some unbelievable results using this technique. Now we will use that technique to predict bike sharing 

usage of a rental company to make sure they can take good business decisions based on previous years data. 
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I. INTRODUCTION 

Artificial Intelligence  has been everyone’s dream from 

decades, but we are not able to reach that stage due to lack of 

computation power and data, but today in the present world 

environment where the internet is playing a key role we are 

generating a lot of data and processors which can do complex 

tasks has been developed and in future we can see quantum 

computers too, so with these emerging trends and 

technologies AI has come into limelight and it has been used 

(or) implemented in various domains and the best present AI 

available is MachineLearning.It is quite the reverse way of 

traditional programming practice, normally we will try to tell 

the program how it needs to implement calculations and 

functions to get the required outcome, but here we will 

develop a model to which we will give original data as input 

and we will allow it to take decisions. Here we can tell the 

machine what we want to do with the data (or) we will allow 

the machine to take decisions itself. And there are 3 types of 

learning methods  

1) Supervised Learning: Here model will do what we 

want it to do. We will clearly specify the input variables, data 

types and what type of operations to be done. We will specify 

the model, what we are expecting as output from the system. 

This is a sort of normal way of programming style. 

      Eg: Linear regression, Logistic regression etc. 

2) Unsupervised Learning:  This is the most useful and  

unorthodox way of machine Learning, here we won't specify 

the model what to be done clearly (or) what we are expecting 

as output, here pure raw data will be given as input and model 

will decide itself of what to be done with data, this can be  

possible only with intelligent way of programming since here 

some decisions  has to be solely taken by model itself. This is 

the most required one too because the data generated these 

days is mostly unstructured and its almost impossible for 

humans to label these huge datasets. 

      Eg: clustering etc. 

3) Reinforcement Learning: this is one of the places 

huge amount of  development has been going on, mainly in 

automated chat bots and game bots, where a move will be 

taken by the model and depending upon the result of that 

move next step will be taken and the previous move will be 

learned by the model and it will use that knowledge in next 

attempts. 

Eg: Google Alpha go, IBM Watson. 

Neural networks are built using smaller units called 

neurons (or) perceptrons which will work like neurons in our 

brain and thus named neural nets and just they will do some 

calculation and data they got and will pass the output of that 

operation to other. Deep Learning is a type of Deep Neural 

Networks.   

This enlightening dataset [10] is used as the commitment to 

figure the direct relapse [2], [31], [32] and Pearson [11], [15], 

[19], [21], [27], [29]. In the present days, there are colossal 

measures of data recorded by the banks and examining them 

requires complex estimations. A few machine learning 

calculations [1], [3], [4], [5], [6], [7], [8], [9], [45], assumes 

an imperative part in settling on an astute choice to anticipate 

the bicycle sharing data. We played out the item metric 

examination on the given instructive gathering. From the data 

examination [13], [14], [17], [22], [23], [25] we can pick 

which property can be viewed as and which quality can be 

disregarded. For instance, in the Pearson procedure if the 
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estimation of r is more than 0.5 then the attributes are thought 

to be immovably related and if it is underneath 0.3 the 

characteristics are insufficiently related. A part of the past 

procedures to appraise the decisions in perspective of their 

relationship of value are Spearman [6], Analytical 

Hierarchical Process (AHP) [12], [18], [20] and Traveling 

Salesman Problem (TSP) [43]. The sensitive information's 

among various substances [24], [26], [33], [35], [37], [29], [31] 

among the bank stock model are dealt with by late secured 

strategies [28], [30], [34], [36], [38], [40], [42], [44].. 

 

 
Fig. 1.  Fig. 1. Deep Learning Architecture. 

 

Perceptron: Data is fed into a network of interconnected 

nodes. These individual nodes are called perceptron’s or 

neurons, and they are the basic unit of a neural network. Each 

one looks at input data and decides how to categorize that data. 

In the example above, the input either passes a threshold for 

grades and test scores or doesn't and so the two categories are: 

yes (passed the threshold) and no (didn't pass the threshold). 

These categories then combine to form a decision. 

We will multiply the data coming into perceptrons with 

some value called weights. When input data comes into a 

perceptron, it gets multiplied by a weight value that is 

assigned to this particular input. For example, the perceptron 

having two inputs will have two individual weights for each 

input, so it has two associated weights that can be adjusted 

individually. These weights start out as random values, and as 

the neural network learns more about what kind of input data 

leads to a student being accepted into a university, the 

network adjusts the weights based on any errors in 

categorization that the previous weights resulted in. This is 

called training the neural network.  

A higher weight means the neural network considers that 

input more important than other inputs, and lower weight 

means that the data is considered less important. Now a bike 

sharing company’s previous data will be taken to find out 

what business decisions needed to be taken in future by 

applying Deep neural nets 

TABLE I.  DATASET PART-1 

 

instant day season Year Month Hour 

1 1/1/2011 1 0 1 0 

2 1/1/2011 1 0 1 1 

3 1/1/2011 1 0 1 2 

4 1/1/2011 1 0 1 3 

5 1/1/2011 1 0 1 4 

6 1/1/2011 1 0 1 5 

7 1/1/2011 1 0 1 6 

8 1/1/2011 1 0 1 7 

9 1/1/2011 1 0 1 8 

 

TABLE II:  DATASET PART-2 

 

holida

y 

weekda

y 

working 

day 

weather

s 

tem

p 
temp 

0 6 0 1 0.24 0.287

9 0 6 0 1 0.22 0.272

7 0 6 0 1 0.22 0.272

7 0 6 0 1 0.24 0.287

9 0 6 0 1 0.24 0.287

9 0 6 0 2 0.24 0.257

6 0 6 0 1 0.22 0.272

7  

The process of building neural network can be called as 

model building also. We will build our model in small steps 

to make sure everything is going well. Technically two 

important processes are needed to be implemented. 

1) Forward pass:  multiplying weights with input data 

and adding those products together with bias and passing that 

output to next neuron. 

2) Backward pass: in this phase, we will calculate the 

error and then we will backpropagate the error to update the 

weights. 

 

1) Load and prepare data 

This dataset has the number of riders for each hour of 

each day from January 1, 2011, to December 31, 2012. The 

number of riders is split between casual and registered, 

summed up in the cnt column. You can see the first few 

rows of the data above. Below is a plot showing the number 

of bike riders over the first 10 days in the data set. You can 

see the hourly rentals here. This data is pretty complicated! 

The weekends have lower overall ridership and there are 

spikes when people are biking to and from work during the 

week. Looking at the data above, we also have information 

about temperature, humidity, and wind speed, all of this 

likely affecting the number of riders. 

 

 

Fig. 2.  Chart showing number of riders over first 10 days 
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2) Dummy variables 

Here we have some categorical variables like season, 

weather, and month. To include these in our model, we'll need 

to make binary dummy variables. This is simple to do with 

Pandas using a function called get_dummies().  

 TABLE III.  DIFFERENT WEEKS OF BIKE SHARING.    

Wday

0 

Wday

1 

Wday

2 

Wday

3 

Wday

4 

Wday

5 

Wday

6 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 

0 0 0 0 0 0 1 

0 0 0 0 0 0 1 

0 0 0 0 0 0 1 

 

3) Scaling target variables 

To make training the network easier, we'll standardize each 

of the continuous variables. That is, we'll shift and scale the 

variables such that they have zero mean and a standard 

deviation of 1. The scaling factors are saved so we can go 

backward when we use the network for predictions. 

4) Splitting the data into training, testing, and 

validation sets 

We'll save the last 21 days of the data to use as a test set 

after we've trained the network. We'll use this set to make 

predictions and compare them with the actual number of 

riders. We'll split the data into two sets, one for training and 

one for validating as the network is being trained. Since this 

is time series data, we'll train on historical data, then try to 

predict on future data (the validation set). 

5) Building Neural net  

The network has two layers, a hidden layer, and an output 

layer. The hidden layer will use the sigmoid function for 

activations. The output layer has only one node and is used 

for the regression, the output of the node is the same as the 

input of the node. That is, the activation function is f(x)=x. A 

function that takes the input signal and generates an output 

signal, but takes into account the threshold, is called an 

activation function. We work through each layer of our 

network calculating the outputs for each neuron. All of the 

outputs from one layer become inputs to the neurons on the 

next layer. This process is called forward propagation. We use 

the weights to propagate signals forward from the input to the 

output layers in a neural network. We use the weights to also 

propagate error backward from the output back into the 

network to update our weights. This is called back 

propagation. 

II. SAMPLE CODE 

inputs = np.array(inputs_list, ndmin=2).T 

targets = np.array(targets_list, ndmin=2).T 

# print('inputs at start of train', inputs.shape) 

# print('targets at start of train ', targets.shape) 

#### Implement the forward pass here #### 

### Forward pass ### 

#  Hidden layer 

# signals into hidden layer 

hidden_inputs = np.dot(self.weights_input_to_hidden, 

inputs) 

# signals from hidden layer 

hidden_outputs = self.activation_function(hidden_inputs) 

# TODO: Output layer 

# signals into final output layer 

final_inputs = np.dot(self.weights_hidden_to_output, 

hidden_outputs) 

# signals from final output layer 

final_outputs = final_inputs 

#### Implement the backward pass here #### 

### Backward pass ### 

# TODO: Output error 

output_errors = targets - final_outputs 

# Output layer error is the difference between desired 

target and actual output. 

# TODO: Backpropagated error 

hidden_errors = np.dot(self.weights_hidden_to_output.T, 

output_errors) 

# errors propagated to the hidden layer 

hidden_grad = hidden_outputs * (1 - hidden_outputs) 

# hidden layer gradients 

# TODO: Update the weights 

output_grad =1 

self.weights_hidden_to_output += self.lr * 

np.dot(output_errors, hidden_outputs.T) 

# update hidden-to-output weights with gradient descent  

self.weights_input_to_hidden += self.lr * np.dot( 

hidden_grad * hidden_errors , inputs.T). 

III. METRICS 

 

 

Gradient Descent formula: 

Error calculation for finding out the difference between 

predicted and original output. A common metric is the sum of 

the squared errors (SSE). 
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Now we will train the network using training data and we 

will test using testing data. 

After training: 

 

Fig. 3.  Comparison between original and predicted data 

Now we will compare our result with original data to 

check how far we predicted correctly. 

 

Fig. 4.  Validation accuracy on testing data. 

IV. CONCLUSION  

In this solution, we have used deep neural nets instead of 

general neural nets (or) single layer algorithms such that 

hidden layers can be added in between input and output layers 

so that the network can identify relations between the data and 

can properly update the weights of respective features. 

Although sometimes the improvement in accuracy cannot 

vary much from general techniques, but when model is 

properly trained with proper training data and best number of 

hidden layers then we can achieve much better results, in this 

business problem with only one hidden layer we clearly 

achieved an accuracy of approx 70%, which is very good 

considering the type of business problem.ence we can see that 

by using deep neural nets we almost got 80% accuracy, which 

is very good for this sort of business problem.  
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