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Abstract—The objective of this study is to address the drawbacks of conventional classification approaches through the implementation 

of deep learning, specifically a modified AlexNet. The primary aim of this study is to precisely categorize the four distinct varieties of 

cassava, namely Manggu, Gajah, Beracun, and Kapok. The cassava dataset was obtained from farmers in Lamongan, Indonesia, and 

was used as a source of information. Data collection on cassava leaves was carried out with agricultural research specialists. A total of 

1,400 images are included in the dataset, with 350 images corresponding to each variety of cassava produced. The central focus of this 

research lies in a comprehensive evaluation of the modified AlexNet architecture's performance compared to the original AlexNet 

architecture for cassava classification. Multiple scenarios were examined, involving diverse combinations of learning rates and epochs, 

to thoroughly assess the robustness and adaptability of the proposed approach. Among the evaluation criteria that were rigorously 

examined were accuracy, recall, F1 score, and precision. These metrics were used to determine the predictive capabilities of the model 

as well as its potential utilization in the actual world. The results show that the modified AlexNet design has better performance than 

the original AlexNet for recall, accuracy, precision, and F-1 score, all achieving a rate of 87%. In situations where a learning rate of 

0.0001 and an epoch count of 150 are utilized, the performance of the approach stands out significantly, displaying an excellent level of 

competency. Nevertheless, it is crucial to recognize that distinct fluctuations in performance were noted within particular contexts and 

with diverse learning rates. 
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I. INTRODUCTION

Plants have a significant role in human life [1], [2]. Plants 
can be the main source of food for humans and animals. Plants 
can also be used for medicine, clothing, fuel, materials for 
industry, and other areas of life. Plants are also important for 
protecting the environment because they keep the balance of 
oxygen and carbon dioxide in the Earth's atmosphere [3]. One 
type of plant that can be used as food is cassava. Cassava is a 
staple food for some people who live in tropical areas such as 
South America, Africa, Asia, and Indonesia. Based on 
research published by the Food and Agriculture Organization 
(FAO), cassava is positioned as the fourth most significant 
food crop in developing nations, following rice, corn, and 

wheat. According to the 2020 report published by the Food 
and Agriculture Organization (FAO), Nigeria holds the 
distinction of being the foremost global producer of cassava, 
with an annual production of 60 million tons. Congo is the 
second-largest producer of cassava, with a production of 
41.01 million tons. Thailand and Ghana can produce 28.9 
million cassava and 21.8 million tons, respectively. Indonesia 
ranks fifth in cassava production, which is 18.3 million tons. 
In the last three years, cassava production in Indonesia has 
increased, although the increase is not as significant as in 
2016 and 2017.  

The classification of plant types with the main object being 
leaves has been widely carried out in recent years. The use of 
leaves as the main object in classifying plant species is 
considered the most efficient because the leaves are available 
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throughout the season and have many [4], [5]. Researchers 
generally use three types of features, namely shape [6]–[10], 
color, and texture [11], [12] extracted from leaves, to classify 
plant species. In addition, some researchers combine existing 
features [13]–[17] to increase accuracy. In general, botanists 
recognize plant species based on their knowledge and 
experience. It is common for botanists to take a long time to 
identify plant species [18]. For ordinary people, knowing the 
types of plants is a challenging job and takes a long time. 
Therefore, computer assistance will make introducing plant 
species easier and faster by utilizing digital image processing 
techniques [19], [20]. 

Deep learning has demonstrated promising results in recent 
years and has been implemented to a limited degree in the 
agricultural sector. Using Alexnet and GoogLeNet, Mohanty 
[21] achieved a 99.35% accuracy rate in classifying 14 crop
species and 26 diseases. The authors utilized a range of input
data, encompassing color images, grayscale images, and
segmented images. Dudi [22] employs CNN to extract
features. The process for classification uses Naive Bayes,
Artificial Neural Networks (ANN), K-Nearest Neighbors (K-
NN), and Support Vector Machines (SVM). The overall
accuracy achieved is 98%. In the study conducted by
Dyrmann [23], CNN model was employed to classify the
plant leaf data. The results demonstrated an accuracy rate of
86.2%. Liu [24] reported that their CNN model, consisting of
ten layers, attained a classification accuracy of 87.92% when
applied to the categorization of plant leaves into 32 distinct
categories. In her study, Zarrin [25] introduced a CNN model
as a deep learning strategy to automatically categorize various
tree species based on their leaf characteristics. The accuracy
of the model in the test was extremely high, reaching 99.40%.
A dual-path deep convolutional neural network (CNN) is
proposed by Shah [26] as a method for detecting plant species
based on images. Using the CNN model, Jeon [27] devised a
novel method for classifying leaves. He then used GoogleNet
to generate two models by varying the network depth. More
than 94% of the leaves were identified, even though 30% of
them were damaged.

Several researchers made modifications to the Alexnet 
architecture [28]–[31]. Sameer [32] uses modified Alexnet for 
the classification of pests and diseases in plants. The results 
of this research showed that the modified Alexnet gave better 
results. Yeh [33] modified Alexnet to detect crop disease with 
an accuracy of 98.16%. This accuracy is higher when 
compared to the basic Alexnet. Huang [34] categorizes the 
leaves of Chinese herbal medicine. This research uses the 
improved Alexnet model. The results of this study show that 
the results of the improved Alexnet model provide better 
results when compared to the original Alexnet model. Wei 
Tan [35] performed Plant Species Classification with feature 
extraction using Alexnet, fine-tuned Alexnet, and D-Leaf. 
Classification in this study uses SVM, ANN, k-NN, and Naive 
Bayes. The D-Leaf model is 94.88% accurate, the Alexnet 
model is 93.26% accurate, and the fine-tuned AlexNet model 
is 95.54% accurate. Dong [36] improvised the Alexnet 
architecture, which is used to classify diseases and pests in 
strawberry plants. The results of this study show that the 
Alexnet architecture is 94.25% accurate, and the Improved 
Alexnet architecture is 94.70% accurate. Chen [37] classified 
the types of diseases in tomato plants using the Alexnet 

architecture. This study yielded the best results 98%, with 
epochs 75, batch size 128 and rate 0.0005. 

Using color, texture, and shape features is considered less 
efficient in classifying cassava species. This is because 
cassava leaves have the same color morphology between one 
type and another. In addition, cassava leaves have a relatively 
similar shape to one type of cassava, likewise, with the texture 
of cassava leaves. Our research aims to solve these important 
problems. Alexnet is used for plant species classification 
because of its: 1) simple structure that is clear and easy to use; 
2) lack of need to calculate many parameters when changing
the structure; and 3) ability to run on computers with low
specifications. Besides some of the advantages of Alexnet, the
Alexnet algorithm also has several drawbacks, including 1) it
requires a long computational time in the recognition process
[38]; and 2) it has the lowest accuracy. Our study will modify
Alexnet architecture to obtain better results than the basic
architecture of Alexnet.

The contribution of this research is expected to cover the 
following: to create a comprehensive dataset of cassava 
images; to propose a classification system based on modified 
Alexnet architecture. The structure of the subsequent sections 
of the paper is as follows: The materials and data sets are 
outlined in Section 2. Results and discussion are reported in 
Section 3, while ideas for further research are provided in 
Section 4 to conclude the paper. 

II. MATERIALS AND METHOD

Fig. 1 illustrates the research carried out in this study. The 
first step is to acquire images. The main goal of obtaining 
pictures is to visually depict cassava leaves and categorize the 
image according to its unique features. The next step includes 
augmentation. Image segmentation is the following stage. 
Image segmentation aims to eliminate noise from images and 
identify distinct objects within an image, making them 
available for subsequent processing tasks. Classification is 
performed in the final stage with the adapted Alexnet 
architecture. 

Fig. 1  Research process

A. Image Acquisition

The image of cassava leaves was the dataset that was used
for this investigation. These images were taken by cassava 
growers in Lamongan, Indonesia, directly from them.  

Fig. 2  The acquisition of images 
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The process of taking a cassava image is done by placing 
the cassava image in the box that has been made. Then, the 
image is taken with a smartphone camera. The camera is 
placed at the top of the box shown in Fig. 2. The study utilized 
a dataset consisting of 1400 images, which were categorized 
into four classes: Beracun, Gajah, Kapok, and Manggu. Each 
class contained 350 images. 

B. Data augmentation 

When classifying images, especially with deep learning, 
they often encounter the problem of insufficient samples [39]. 
Typically, image classification accuracy tends to diminish 
when the training dataset exhibits an imbalance. For this 
reason, increasing the size of the dataset using data 
augmentation techniques is a common practice for better 
training results [40], [41]. Table I displays the parameters of 
the augmentation data. 

TABLE I 
DATA AUGMENTATION 

No Parameter Value 

1 Rescale 1/255 
2 Rotation_range 20 
3 width_shift_range 0.1 
4 height_shift_range 0.1 
5 zoom_range 0.2 
6 Horizontal_flip true 

C. Segmentation 

The purpose of image segmentation is to separate objects 
from the background and transform them into something 
simpler, more understandable, and less time-consuming. This 
research used the segmentation method to take image objects 
of cassava leaves using the k-means method. K-mean 
clustering works by partitioning image pixels into K clusters, 
each representing a different segment. K-means can be 
applied to group similar pixels based on color or intensity 
information in image segmentation. K-means clustering is 
shown in Algorithm 1 [42]: 

Algorithm 1. Segmentation using k-means clustering. 
Input: image, number of clusters k 
Output: image segmented 
1. Randomly select K data points as initial centroids. 
2. Determine x's cluster I centroid and assign it to x. 
3. The new centroid is determined by calculating the mean 

of all points inside cluster I. 
4. Repeat steps 2 and 3 until there are no significant changes 

in the placement of data points or a certain iteration limit 
is reached. 

This study’s segmentation process begins with entering 
cassava images into the system. After the image is entered, 
the system will perform segmentation using the k-mean 
algorithm. The segmentation process results in an image free 
from noise and other unwanted objects. After obtaining the 
cassava image object, the process is continued by cutting 
unnecessary backgrounds. This process is carried out because 
the background size of the image is too wide. The image 
segmentation results are shown in Fig. 3. The image is used 
as input for the classification process with modified Alexnet 
architecture. 

 

 
Fig. 3  Image segmentation 

D. Modified Alexnet Model 

Alexnet is one of the architectures often used for image 
classification problems because it is computationally efficient. 
The Alexnet architecture generally consists of five 
convolution layers and three fully connected layers. The 
features of the first layer are simple lines and dots.  The most 
powerful capabilities for feature extraction are found in the 
third and fourth layers of the original AlexNet model [34]. 

This study uses a modified Alexnet architecture. This study 
uses three convolution layers and two pooling layers.The use 
of three convolution layers is based on the fact that the third 
layer produces strong and complex features so that it can be 
used to differentiate types of cassava plants. The convolution 
in the first layer has a size of 227x227x3. A pooling process 
with a kernel size of 3x3 follows this process. The image size 
resulting from this first convolution process is 113x113 pixels 
with 96 filters. This first convolution also uses a 2x2 stride 
using the RuLE activation function. The second and third 
convolutions use kernels with a size of 3x3. Stridge size 2x2 
using the RuLE activation function. After the third 
convolution, a pooling operation is applied using a 3x3 size 
and a 384 filter. The proposed architecture can be seen in 
Table II and Fig. 4. 

 

 
Fig. 4  Proposed method 

TABLE II 
PROPOSED METHOD MODIFIED ALEXNET 

 Layer Size Kernel Stridge Activation 

Input Image 227x227x3 - - - 

1 Convolution 113x113x96 3x3 2 Rule 
 Max 

pooling 
56x56x96 3x3 2 Rule 

2 Convolution 27x27x384 3x3 2 Rule 
3 Convolution 13x13x384 3x3 2 Rule 
 Max 

pooling 
6x6x384 3x3 2 Rule 

4 Fully 
connected 

1024 - - - 

5 Fully 
connected 

1024 - - - 

Output Fully 
connected 

4 - - softmax 

E. Evaluation Performance 

The evaluation of the deep learning model in this study 
employs a confusion matrix. The confusion matrix is a widely 
used evaluation technique in the field of system classification, 
wherein it facilitates the comparison between the 
classification outcome and the true value. A classification 
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system is said to be good if it can produce a relatively small 
error rate. Classification performance is assessed using F1 
score, recall, accuracy, and precision [43]. The equation is 
shown in Equations (1)–(4). 
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TP stands for "true positive," TN for "true negative," FP for 

"false positive," and FN for "false negative." 

F. Experiment Setting 

The hardware configuration for the experiment training and 
testing model consists of an Intel® CoreTM i7-4790 
processor running at 3.60 GHz Ram 16GB. The models were 
constructed utilizing TensorFlow API version 2.5 and Keras 
version 2.5. The algorithm implementation was carried out 
using Python 3.8.10. In this study, to mitigate the overfitting 
issue, the dataset is divided into three separate sets, namely 
the training set including 70% of the data, the validation set 
consisting of 10%, and the testing set encompassing 20% [43]. 
The training parameters utilized for the proposed approach are 
presented in Table III. 

TABLE III 
TRAINING PARAMETERS 

Parameter Value 

Batch size 16 
Epoch 100 and 150 
Learning rate 0.001, 0.0001, and 0.00001 
Optimizer Adam 

III. RESULT AND DISCUSSION 

This part is where we offer the findings of the evaluation 
that was performed on the proposed approach. Testing is 
carried out after the training process is complete. The test 
procedure commences by conducting image segmentation 
through the utilization of the k-means clustering technique. 
After obtaining the second image object, the next process is 
to change the image size to 227x227. The test was carried out 
with three scenarios. 

A. Scenario I 

This scenario uses several parameters for the training 
process. For the optimizer using Adam, the epochs of this 
research were made 100 and 150, batch size 16, and learning 
rate 0.001. Fig. 5 displays the performance outcomes of the 
training and validation process for the modified Alexnet 
architecture, while the Alexnet architecture is shown in Fig. 6 
for accuracy and validation of the training. Fig. 7(a) and (b) 
confusion matrices of the suggested approach, and Fig. 7(c) 
and (d), which depict the Alexnet architecture. 

 

 
Fig. 5 Results of the training and validation process of the proposed model. 

 
Fig. 6  Results of the training and validation process of the Alexnet model. 

 
Fig. 7  The proposed model and Alexnet results are in the form of a confusion matrix. 
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According to the findings presented in Table IV, it is clear 

that the modified Alexnet architecture produces better results 
when compared to the Alexnet architecture. The proposed 
method achieves precision, recall, F1 score, and 79% 
accuracy, outperforming the original Alexnet 71% accuracy, 
70% precision, 71% recall, and 68% F1 score at 100 epochs. 

The suggested technique still delivers advantages in 
comparison to the Alexnet method even when the epoch value 
is increased to 150. The proposed method has 84% precision, 
82% recall, 81% F1 score, and 82% accuracy, whereas the 
Alexnet method only has 71% precision, 66% recall, 64% F1 
score, and 66% accuracy. 

TABLE IV 
LEARNING RATE 0.001 

Epoch Proposed methods Alexnet 

Precision Recall F1 score accuracy Precision Recall F1 score accuracy 
100 79% 79% 79% 79% 70% 71% 68% 71% 
150 84% 82% 81% 82% 71% 66% 64% 66% 

B. Scenario II 

The test results in this scenario, Adam Optimizer, are used 
for training with a learning rate of 0.0001 and a batch size of 
16, and the maximum epochs allowed are 100 and 150.  The 
performance results of the training and validation process of 
the modified Alexnet architecture are shown in Fig. 8, while 
the Alexnet architecture is shown in Fig. 9 for accuracy and 
validation of the training. Fig. 10 (a) and (b) are a confusion 
matrix from the modified Alexnet architecture, and Fig. 10 (c) 
and (d), which depict the Alexnet architecture. 

The outcomes of comparing the suggested approaches with 
the AlexNet architecture at a learning rate of 0.0001 are 

shown in Table V. The metrics evaluated include precision, 
recall, F1 score, and accuracy at two epochs (100 and 150). 
Based on Table V, the proposed method gives better results. 
The proposed method provides 81% recall, 85 accuracy, 82% 
presision, and 81% F1 score, while the Alexnet basic 
architecture provides 80% precision, 71% recall, 65% F1 
score, and 71% accuracy with 100 epochs.  The performance 
of the proposed methods improved further with epoch 150. 
They achieved precision, recall, f score, and accuracy 87% 
each. However, AlexNet also improved but remained behind, 
with 76% accuracy, 72% recall, 71% F1 score, and 71% 
accuracy. In this scenario, the proposed method provides 
better results overall than the Alexnet architecture.  

 

 
Fig. 8  Results of the training and validation process of the proposed model. 

 

 
Fig. 9  Results of the training and validation process of the Alexnet model. 

 
Fig. 10  The proposed model and Alexnet results are in the form of a confusion matrix. 
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TABLE V 
LEARNING RATE 0.0001 

Epoch Proposed methods Alexnet 

Precision Recall F1 score accuracy Precision Recall F1 score accuracy 
100 82% 81% 81% 81% 80% 71% 65% 71% 
150 87% 87% 87% 87% 76% 72% 71% 72% 

C. Scenario III 

This section presents the proposed methods' performance 
results compared to the AlexNet architecture using a learning 
rate of 0.00001. Adam optimizers are used for training with a 
batch size of 16, and the maximum epochs allowed are 100 
and 150. Fig. 11 displays the outcomes of the training and 
validation processes using the modified Alexnet architecture, 
while the Alexnet architecture is shown in Fig. 12 for 
accuracy and validation of the training. Fig. 13 shows the 
confusion matrix for the modified Alexnet architecture in a) 
and b), and for the Alexnet design in c) and d). 

Based on Table VI with epoch 100, the proposed methods 
achieve a precision of 73%, slightly trailing behind AlexNet's 
precision of 80%. However, the recall of the proposed 
methods is 72%, and the recall for Alexnet with 77% values. 
The F1 scores for the proposed methods are slightly lower 
than those of AlexNet, with the proposed methods achieving 
71% compared to AlexNet's 76%. When the epoch value is 
increased to 150, the proposed method obtains 73% precision, 
73% recall, 73% F1 score, and 73% accuracy, lower than the 
Alexnet architecture with 80% precision, 77% recall, 76% F1 
score, and 77% accuracy. 

 

 

Fig. 11  Results of the training and validation process of the proposed model. 
 

 
Fig. 12  Results of the training and validation process of the Alexnet model. 

 

 
Fig. 13  The proposed model and Alexnet results are in the form of a confusion matrix. 

TABLE VI 
LEARNING RATE 0.00001 

Epoch Proposed methods Alexnet 

Precision Recall F1 score accuracy Precision Recall F1 score accuracy 
100 73% 72% 71% 72% 80% 77% 76% 76% 
150 74% 73% 73% 73% 79% 77% 76% 77% 
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TABLE VII 
OVERALL RESULT OF PROPOSED METHODS AND ALEXNET 

Epoch Learning rate Proposed methods Alexnet 

Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy 
100 0.001 79% 79% 79% 79% 70% 71% 68% 71% 
100 0.0001 82% 81% 81% 81% 80% 71% 65% 71% 
100 0.00001 73% 72% 71% 72% 80% 77% 76% 76 
150 0.001 84% 82% 81% 82% 71% 66% 64% 66% 
150 0.0001 87% 87% 87% 87% 76% 72% 71% 72% 
150 0.00001 74% 73% 73% 73% 79% 77% 76% 77% 

Table VII is the overall result of the proposed method and 
Alexnet architecture. Based on Table VII, we analyze and 
interpret the results obtained from the experimental 
evaluations of the proposed methods and the Alexnet 
architecture. The evaluation results indicate that modified 
Alexnet architecture consistently performs better or 
comparably to the Alexnet architecture across different 
scenarios and learning rates. The proposed method this 
research presents achieves an excellent performance of recall 
of 87%, F1 score of 87%, precision of 87%, and accuracy of 
87%. The approach shows potential for improving item 
identification and classification tasks, according to these 
results. However, the comparative advantage of the proposed 
method becomes more evident at higher learning rates (0.001 
and 0.0001) compared to the lower learning rate (0.00001). 
Generally, a learning rate of 0.0001 and 0.001 seems to 
perform better than 1E-05 across both the proposed methods 
and Alexnet. 

D. Limitations of This Work 

This study presents promising advancements in cassava 
plant classification through a modified Alexnet architecture. 
Limitations in this study should be acknowledged and 
addressed in future research: 
1) Limited Dataset: In our study, the data set may be 
limited in representing cassava plant variations. This research 
only focused on local varieties and did not use diseased 
cassava leaves. 
2)  Hyperparameter: Although our work investigates a 
variety of learning rates and epochs, additional 
hyperparameters such as batch size, weight initialization, and 
dropout rates may substantially impact model performance. 
3) Architectural Variations: Our proposed Alexnet 
architecture modification shows promising results. Other 
architectural modifications or completely different CNN 
architecture can yield better performance. 

IV. CONCLUSION 

This study evaluated the proposed method's performance 
compared to the Alexnet architecture for the classification of 
cassava. The architecture has three convolution layers and 
two pooling layers. The research utilizes the following 
parameters: batch size of 16, learning rates of 0.00001, 0.0001, 
and 0.001, epochs of 100 and 150, and the Adam optimizer. 
Our findings consistently demonstrate the proposed method's 
performance advantage over Alexnet across various 
evaluation metrics and scenarios. The testing carried out in 
this research consisted of three scenarios. Scenario 1 of the 
proposed method provides the highest accuracy value of 82% 
with a learning rate value of 0.001 and epoch 150, while 
Alexnet's highest accuracy is 71%. Scenario 2 with a learning 

rate of 0.0001, the proposed method provides the highest 
accuracy of 87%, while Alexnet has the highest accuracy of 
72%. In the final scenario with a learning rate of 0.00001, the 
proposed method provides an accuracy of 73%, slightly lower 
when compared to the Alexnet architecture, namely 76%. In 
general, the proposed method provides better results when 
compared with the Alexnet architecture. Where the proposed 
method consistently achieves higher recall, accuracy, 
precision, and f1 score of 87%, with a learning rate of 0.0001 
and epoch 150. Meanwhile, the Alexnet method with the same 
parameters gives recall, accuracy, precision, and f1 scores of 
72%, 72%, 76%, and 71% respectively. 

Although the method proposed exhibits impressive 
outcomes, it is important to realize that variations in 
performance were observed in particular settings and with 
different learning rates. The observations mentioned above 
indicate potential avenues for future investigation, including 
optimizing hyperparameters and the execution of comparative 
assessments with alternative advanced architectures. These 
endeavors aim to enhance and optimize the capabilities of the 
proposed method. 
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