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Abstract—The introduction of deep learning technology has greatly benefited the neuroscience field by improving the 

electroencephalogram (EEG) signal analysis. These technologies have greatly improved the understanding of complex brain activity 

by interpreting the signal as normal or abnormal. The EEG signal requires expertise to interpret the pattern, and only then can the 

EEG signal be differentiated as normal or abnormal. However, some variations always complicate the analysis of the EEG signal by 

creating noise in the signal. This paper introduces a deep learning model, NeuroNetFlex (NFF), to classify the EEG signal as normal 

or abnormal. The NNF is designed to classify the EEG signal by using multiple combinations of modules such as one-dimension 

convolutional neural networks (1D-CNN), Squeeze-and-Excitation (SE) blocks, and the parallel processing fusion of recurrent neural 

networks (RNN), Long Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) layers are used to analyze the temporal 

features of the EEG data and learn the signal pattern. The performance of the NNF was evaluated using evaluation metrics such as 

accuracy, precision, recall, and f1 score. The model achieved an accuracy of 75.33%, a precision of 76.39%, a recall of 75.33%, and an 

F1 score of 75.08% with a training time of 16.88 minutes, outperforming the existing models. These results demonstrate the promising 

potential of the NNF to significantly improve the analysis of brain activities. 
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I. INTRODUCTION

The electroencephalography (EEG) tool is used to analyze 
brain activity. This is to identify the conditions such as 
stroke, sleep disorders, encephalopathies, etc [1]–[3]. By 
identifying the pattern of the EEG signal, the patient can 
receive effective treatment. Due to its low-cost and non-
invasive nature, the EEG device has become a standard tool 
in clinical diagnostic [4]. Studying the EEG analysis can 
provide valuable insight into brain function and mechanisms 
of neurological disease, which can benefit both healthcare 
and research. However, interpreting the EEG signal can be 
time-consuming because the neurologists must inspect the 
signal manually [5]. In addition, manual interpretation of 
EEG signals can result in low inter-observer agreement 
(IOA), potentially leading to the misdiagnosis of brain 
disorders [6]. 

There have been many methods of EEG signal 
classification developed to analyze the EEG signals, which 
have significant improvements in the field of signal 
classification and analysis [7]. However, these methods 
require expertise to manually interpret the EEG signal based 
on visual examination and fit the data into early automated 

techniques, which can affect the efficiency of the method [8]. 
This process can lead to different diagnostic outcomes based 
on different observers. Interpretation poses a significant 
challenge in achieving a consistent and reliable diagnosis, 
showing essential areas for improvement in neurological 
assessment. Moreover, the traditional methods are time-
consuming, requiring limited diagnostic evaluations within a 
given timeframe. These early automated techniques can 
reduce the manual interpretation process but require 
expertise analysis to verify the generated result. Although 
there are some gaps in these approaches, they have provided 
insights into brain function and development through 
advanced analytical techniques. Brain signals can be used to 
develop more applications [9], [10]. 

Before deep learning was introduced, traditional machine 
learning techniques, such as Support Vector Machines 
(SVMs), decision trees (DT), and random forests (RF), were 
commonly used to analyze EEG signals [11]. These methods 
extract the features from EEG signals automatically and can 
perform classification. However, expert knowledge is 
required for these methods because the features must be pre-
processed manually before fitting into the methods [12]. 
This is due to the complexity of the EEG signals. Although 
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traditional machine learning can automatically extract the 
features, it heavily depends on hand-picked features [13] 
because the classifiers cannot identify the complexity pattern 
of the EEG signal. This has shown a limitation where a more 
advanced method is needed to learn from data in a more 
dynamic style.  

Deep learning, a subset of machine learning, represents a 
paradigm shift in EEG analysis. There are many applications 
used for deep learning [14]–[27]. The recent advancements 
in deep learning have highlighted new opportunities for 
artificial intelligence in analyzing EEG signals and have the 
potential to overcome the challenges by providing consistent, 
reliable, and efficient diagnostic evaluation. Researchers 
have developed deep learning models that use Recurrent 
Neural Network (RNN) [28] or Long Short Term Memory 
(LSTM) [29] network to analyze the time-series EEG data 
for feature extraction due to their ability to process data 
sequentially and mimic the temporal dynamics of brain 
activity. The models were trained on large datasets of EEG 
signals, which have multiple channels so the model can 
recognize the EEG signal pattern to identify the normal or 
abnormal signal. The time taken to analyze the signal can be 
reduced as the deep learning approaches can self-learn based 
on the data input, and this can remove the need for manual 
interpretation of the EEG signal as the deep learning model 
mitigates the IOA.  The combination of EEG analysis and 
deep learning techniques can make a considerable 
improvement in the field of neurological assessment by 
providing both accurate and efficient diagnostic processes. 

This paper introduces a novel deep learning architecture, 
NeuroNetFlex (NNF) networks, specifically designed to 
analyze the EEG signal. NNF uses the one-dimension 
Convolutional Neural Network (1D-CNN) [30] enhanced by 
squeeze-and-excitation (SE) [31] blocks to extract the 
temporal feature. The architecture uses parallel processing 
fusion on LSTM, RNN, and Gated Recurrent Unit (GRU) 
[32] layers, each combined with multi-head attention [33]. 
The hybrid model can capture the complex temporal of EEG 
data with improved precision to classify whether the EEG 
signal is normal or abnormal. The main objectives of the 
paper are summarized as follows: 

 To propose a deep learning approach for performing 
EEG signal classification.  

 To compare the performance of proposed methods 
with other state-of-the-art models by evaluating them 
on two comprehensive datasets.  

The paper is organized as follows: Section 2 reviews 
related work based on EEG classification. Section 3 explains 
the proposed methodology for EEG signal classification 
using the proposed architecture. This section provides a 
detailed explanation of the architecture and training 
procedures used to develop the classification model. Section 
4 shows the results of the assessment and experiments, 
highlighting key findings and areas of strength and weakness 
in the model, discusses the implications of these results, and 
compares them with deep learning models. Lastly, Section 5 
concludes the effectiveness of the work and suggests 
recommendations for further work. 

This work contributes to the ongoing exploration of 
neural network designs to implement signal classification for 
normal or abnormal EEG signals. It provides insight into the 

performance of different deep-learning classification models. 
The findings highlight the potential for modular approaches 
to achieve targeted improvements for EEG classification and 
emphasize the need for further research to refine signal 
analysis methods.  

II. MATERIALS AND METHOD 

A. Materials 
Before deep learning was widely adopted, machine 

learning techniques were at the leading edge of 
computational efforts to improve EEG signal analysis. The 
author of this study [34] used resting state EEG data and 
machine learning techniques, including k-nearest Neighbor 
(KNN), Linear regression (LR), DT, RF, and SVM, to 
diagnose schizophrenia. Linear and non-linear measures 
were computed and selected to distinguish patients from 
healthy controls effectively. Kumar et al. [35] presented a 
method for automated detection of schizophrenia (SZ) using 
EEG signals. The method introduces a novel feature 
representation through a local descriptor, histogram of local 
variance (HLV), and symmetrically weighted-local binary 
patterns (SLBP). After feature extraction, a correlation-based 
feature selection algorithm is applied to optimize the feature 
vector. Alshebeili et al. [36] proposed a novel method to 
predict epilepsy seizures effectively by using EEG signals 
and combining statistical analysis, digital band-limiting 
filters, and artificial intelligence techniques. K-means 
clustering is used for a two-phase prediction process 
(training and testing) along with Multi-Layer Perceptron 
(MLP) networks. The results show high accuracy, efficient 
prediction time, and minimal false alarms. Savadkoohi et al. 
[37] presented a novel methodology to predict epilepsy 
seizures by differentiating brain electrical activity across 
various recording regions and physiological states. Feature 
engineering was performed by extracting time, frequency, 
and time-frequency domains using Butterworth, Fourier, and 
Wavelet Transforms. Feature selection was conducted using 
a T-test and Sequential Forward Floating Selection (SFFS). 
The study employed SVM and KNN algorithms for signal 
classification and compared their performance in terms of 
Accuracy, Sensitivity, and Specificity. SVM demonstrated 
slightly superior results. Richhariya et al. [38] presented a 
machine learning approach that used the Universum Support 
Vector Machine (USVM) and Universum Twin Support 
Vector Machine (UTSVM) to classify EEG signals to 
diagnose neurological disorders like epilepsy and sleep 
disorders. UTSVM outperformed traditional SVM and other 
baseline methods. Warsito et al. [39] evaluated the 
performance of the EEG head caps with a flexible force 
sensor. Lim et al. [15] used EEG signals with the 
combination of augmented reality to assess the student's 
memorizing capability. Gupta et al. [40] presents a novel 
method for automatically detecting seizures in EEG signals. 
The EEG signal is classified using a discrete cosine 
transform-based multi-rate filter bank, statistical modeling 
through fractional Brownian motion and fractional Gaussian 
noise, and a binary SVM classifier.  

The analysis of EEG signals has significantly improved 
with deep learning techniques, which will enhance the 
accuracy and efficiency in diagnosing neurological disorders. 
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Xiao et al. [41] developed a novel four-dimensional 
attention-based neural network (4D-aNN) to recognize EEG 
emotion. The model transforms the spatial, spectral, and 
temporal domains of EEG signals into 4D representations 
and uses spectral and spatial attention mechanisms. The 
model was tested on the DEAP, SEED, and SEED-IV 
datasets and demonstrated superior performance. Wang et al. 
[42] presented a novel method based on an optimized 
random forest (IRF) classifier to classify five levels of 
attention. It has three modes: targeting sustained mode, 
selective mode, and focused attention mode. The 
experiments were conducted on the Personal EEG 
Concentration Tasks dataset, and attention training 
performance was significantly improved. The study's author 
[43] developed a method that used EEG signal data to detect 
seizures. This method filters the raw EEG data, generates 
spectrogram feature matrices, and fits the feature into 1D-
CNN. The proposed method outperforms the existing 
method by achieving high performance based on evaluation 
metrics such as sensitivity, specificity, and accuracy.  Lew et 
al. [44] developed a novel deep-learning approach to classify 
the EEG, EMG, and ECG signals by assessing the condition 
of the post-stroke patients who participated in virtual reality-
based upper limb rehabilitation. These signals were 
converted into images and fit into the CNN and LSTM 
networks. The results showed that it can accurately classify 
the condition of the patients. Fawaz et al. [45] demonstrated 
a novel method to detect stroke and monitor patient 
recovery using a deep learning model. The EEG signal was 
fitted into a deep learning model, and the signals were 
classified into stroke or non-stroke categories. 

B. Methods 
This paper proposes a deep learning approach to classify 

the EEG signal by using a neural network architecture that 
combines 1D-CNN, SE blocks [31] and recurrent neural 
layers with attention mechanisms. The NNF processes the 
EEG data with 21 channels and 15,000 time steps to classify 
the EEG signal as normal or abnormal. The combination of 
1D-CNN and SE blocks can extract the features more 
efficiently. The parallel fusion technique is used where the 
1D-CNN features are simultaneously passed to GRU, LSTM, 
and RNN layers. Each layer is enhanced with attention 
mechanisms and fuses the features together. This method 
can represent a significant advancement in the analysis of 
EEG signals. Fig. 1 shows the flowchart of the proposed 
EEG signal classification method. 

The Abnormal EEG Corpus [46] from the Temple 
University Hospital (TUH) was used in this study. The 
channels with zero variance in the EEG signal files were 
excluded, and the channels present in the dataset were 
selected. This is to ensure that only active channels and non-
zero channels are considered. The EEG signals were 
extracted for 1 minute (15,000-time steps). The dataset is 
split into three sets, namely, a training set, a validation set, 
and a test set. The NNF architecture used the training and 
validation sets to perform training and validation of the 
model. The test set was used to evaluate the performance of 
the NNF, and the confusion matrix was used to show the 
insight of the performance of the NNF based on the test set. 

 

 
Fig. 1  Process Flowchart for EEG Signal Classification 

 
The network is designed to classify the EEG signals, 

as either normal or abnormal. Fig. 2 shows the architecture 
of the proposed method.  NNF starts 1D-CNN layers with 
Batch Normalization (BN), Rectified Linear Unit (ReLU) 
activation function with SE block. Then, it moves through 
the parallel fusion of LSTM, GRU, and RNN layers with 
multi-head attention. Finally, the features are passed to the 
classification output layer to classify whether the EEG signal 
is normal or abnormal. The network begins with an input 
layer designed to fit the EEG data with 21 channels. Unlike 
two-dimensional convolutional layers (2D-CNN), which are 
used for image processing, 1D-CNN is used to capture 
sequential patterns in time-series data. The EEG signals then 
pass through four 1D-CNN to extract temporal features. The 
architecture processes the EEG signals by reshaping the 
input to fit the model's requirements. The input shape is 
[batch size, sequence length, EEG channels)] as shown by 
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[32, 15000, 21)]. This structure ensures that the network can 
handle the data efficiently while maintaining the integrity of 
the temporal sequences and channel information. The first 
1D-CNN uses 42 filters with a kernel size 5, increasing to 

336 by the fourth 1D-CNN. The increase in the number of 
filters doubles with each layer to improve the network’s 
ability to detect finer details as the depth increases.  

 

 
Fig. 2  The architecture of the proposed network 

 
The SE blocks are used after each ReLU activation is 

used to recalibrate the channel-wise feature responses. The 
process consists of two phases, ‘squeeze’ phase and 
‘excitation’ phase. The ‘squeeze’ phase compressed each 
channel feature map into a single numerical number using 
global average pooling to capture global information. The 
‘excitation’ phase uses two fully connected layers and a 
sigmoid activation function to learn each channel's scaling 
factors.  

The LSTM, RNN, and GRU are used in architecture for 
post-feature extraction. Each recurrent layer is enhanced by 
a multi-head attention module, which helps to identify short-
term and long-term dependencies within the EEG signal. 
The parallel processing fusion of LSTM, RNN, and GRU 
layers allows each layer to focus on temporal data. The 
LSTM layer is good at capturing long-term time series data 
due to its memory cell and gate mechanisms. The GRU layer 
has a more straightforward gating structure to process 
information efficiently. The RNN layer provides a direct 
approach to modeling short-term time series data. The multi-
head attention modules are used in parallel processing fusion 
to allow the network to focus on the important temporal 
features. The parallel processing fusion used is a novel 
approach to analyzing EEG signals. The 1D-CNN and the 
parallel processing fusion used on the recurrent layers allow 
the neural network to process the temporal data efficiently 
and focus on the essential temporal data. This work shows 
the good potential for deep learning architectures to improve 
EEG signal analysis. Table 1 shows the proposed algorithm. 

 
 

TABLE I 
THE ALGORITHM OF THE PROPOSED METHOD 

Algorithm 1 Proposed Method 

Input: x - Input tensor of shape (batch_size, time_steps, 
num_features) 
Output: Classification results of shape (batch_size, num_classes)   
 
1: Permute x to have the shape (batch_size, num_features, 

time_steps) 

2:  Pass x through Convolutional Block 1: 
3:      Apply Conv1D with 42 filters. 
4:      Apply Batch Normalization. 
5:      Apply ReLU activation function. 
6:      Apply SEBlock. 
7:      Apply Dropout with a probability of 0.2. 
8:      Apply Max Pooling. 
9:  Repeat Step 2 for Convolutional Blocks 2, 3, and 4 with 

 respective configurations. 
10:  Apply Adaptive Average Pooling to the output of the 

last  convolutional block 
11:  Permute the result to have the shape (batch_size, 

 seq_len, num_features) 

12:  Set `skip` as the current state of the tensor for later use. 
13:  Pass the result through GRU Layer with attention 

 mechanism: 
14:      Apply GRU. 
15:      Apply Multihead Attention with 8 heads. 
16:      Add `skip` to the output of Multihead  

  Attention. 
17:      Apply Layer Normalization. 
18:      Apply Feed-Forward Neural Network. 
19:  Repeat Step 13 for LSTM and RNN branches. 
20:  Concatenate the outputs from GRU, LSTM, and RNN 
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Algorithm 1 Proposed Method 

 branches along the feature dimension. 
21:  Select the last time step's features from the 

 concatenated  tensor. 
22:  Pass the selected features through the Fully Connected 

 Layer to get the classification output 
23: Return the classification output. 
24: Training phase: 

25:  for each epoch i=1 to E do 
26:   Shuffle the patches to ensure variability in 

  training data for each epoch. 
27:   Perform training and validation phases  
28:   Set the model to training or validation  

  mode accordingly. 
29:    Iterate over batches of data  

   from train_loader or  
   valid_loader 

30:    For each batch, move data  
   to the current device. 

31:    Zero the gradients of the  
   optimizer. 

32:    Forward propagate through  
   the model 

33:    Calculate loss using the  
   criterion 

34:    If in training phase,  
   backpropagate errors and  
   update model weights 

35: Evaluate the proposed model: 

36:  Calculate accuracy and loss over the validation  set 
37:  Compare against the best model and update if the 

current  model performs better 
38:  end for 

39: Load the best model weights after training 

III. RESULTS AND DISCUSSION 

A. Datasets 
The TUH Abnormal EEG Corpus [46] consists of a total 

of 2993 EEG signal files. This dataset has a train set and a 
validation set. The train set consists of 2717 EEG signal files, 
and the validation set has 276 EEG signal files. The EEG 
signals in each file were recorded from an array of 24 up to 
36 channels with sampling rates ranging from 250 Hz to 512 
Hz, indicating a rich diversity in the channel composition of 
the dataset. However, some channels were not consistently 
presented across the recordings, which required padding 
with zeros, and any channels with zero values were removed 
as they did not provide informative content.  

Thus, the dataset needs pre-processing to standardize it 
before being fitted into the deep learning for training. There 
are 21 channels present in the EEG signals files without zero 
values across the dataset. These channels were resampled to 
a uniform sampling rate to 250 Hz to ensure consistent 
signal quality across the dataset. Each file performed 
segment extraction for 60 seconds, equivalent to 15,000 time 
steps, and saved as a NumPy file. After extracting the EEG 
signals, the dataset was split into a training set, a validation 
set, and a testing set for the model. The training set has 2095 
EEG signal files, the validation set includes 598 EEG signal 
files, and the testing set contains 300 EEG signal files. The 
training set consists of 70% of the dataset, the validation set 
has 20% of the dataset, and the testing set has 10% of the 
dataset. 

B. Model Setting 

 The training is implemented in Pytorch [47]. The model 
was trained with 100 epochs using a batch size of 32. The 
learning rate is set to 0.0001, using cross-entropy loss [48] 
for optimization and Adaptive Moment Estimation (Adam) 
[49] for parameter updates. An early stopping mechanism is 
used with patience of 25 epochs, stopping the training if no 
improvement is found after 25 consecutive training.  

C. Evaluation Metrics 
A comprehensive evaluation metric is crucial for 

assessing the model's performance in classifying EEG 
signals into ‘normal’ and ‘abnormal’ categories. This study 
uses accuracy, precision, recall, and F1 score metrics. 
Accuracy measures the ratio of correct prediction, both true 
positive (‘abnormal’ correctly predicted) and true negative 
(‘normal’ correctly predicted) predictions out of all 
predictions. Precision measures the proportion of ‘abnormal’ 
predicted that are actual ‘abnormal’ cases. Recall measures 
the proportion of actual ‘abnormal’ that are correctly 
predicted by the model. The F1 score is a balanced measure 
of the model’s robustness to accurately classify the EGG 
signals, calculated as the harmonic mean of precision and 
recall. 

D. Comparisons with State-of-the-Art Models 
The performance of the proposed model is compared with 

the other state-of-the-art model such as standalone model 
(LSTM, RNN, GRU, 1D-CNN), hybrid model (1D-
CNN+LSTM, 1D-CNN+RNN, 1D-CNN+GRU) and hybrid 
model with SE block (1D-CNN+SE+LSTM, 1D-
CNN+SE+RNN, 1D-CNN+SE+GRU, 1D-CNN+SE). The 
training and testing phase are conducted on an NVIDIA 
GeForce RTX 2080 Ti GPU (11GB). 

E. Findings and Discussion 
The performance metrics of various models, including 

standalone models (LSTM, RNN, GRU, 1D-CNN), hybrid 
models that combine 1D-CNN and SE with other recurrent 
layers, and the NNF architecture, were evaluated. The 
models were evaluated based on accuracy, precision, recall, 
F1 score, and training time (in minutes) to assess each 
model's efficiency and effectiveness in classifying the EEG 
signal as normal or abnormal. The results showed the 
importance of integrating convolutional and recurrent layers 
with SE blocks to improve classification results. Table 2 
shows the result of the experiment. 

TABLE II 
THE RESULT OF THE EXPERIMENT 

 Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Duration 

(minutes) 

Standalone Model 

LSTM [29] 60.33 61.81 60.33 59.06 38.65 

RNN [28] 48.00 47.81 48.00 46.86 41.19 

GRU [32] 59.56 61.12 59.53 58.43 30.35 
1D-CNN 
[30] 

56.00 56.40 55.67 54.34 13.13 

Hybrid Model 
1D-CNN 
+LSTM 

66.00 69.05 66.00 64.58 18.89 

1D-CNN 
+RNN 

60.33 60.50 60.33 60.17 13.65 
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 Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

Duration 

(minutes) 

1D-CNN 
+GRU 

68.67 66.88 68.67 68.58 17.43 

Hybrid Model with SE 
1D-CNN 
+SE 

70.00 75.17 70.00 68.38 16.70 

1D-CNN 
+SE+LSTM 

72.00 73.51 72.00 71.54 18.89 

1D-CNN 
+SE+RNN 

67.33 67.34 67.33 67.33 21.09 

1D-CNN 
+SE+GRU 

71.33 71.58 71.33 71.25 18.82 

NNF 
(Proposed) 

75.33 76.39 75.33 75.08 16.88 

 
The standalone model, LSTM, achieved the highest accuracy 

of 60.33%, a precision rate of 61.81%, a recall of 60.33%, and 
an F1 score of 59.06% with a training time of 38.65 minutes. 
The LSTM can archive these performances due to its ability to 
capture long-term dependencies in the EEG data. However, 
RNN underperformed, achieving the lowest accuracy of 
48.00%, a precision of 47.81%, a recall of 48.00%, and an F1 
score of 46.86% with the longest training time of 41.19 minutes. 
The 1D-CNN alone had an accuracy of 56.00%, which is lower 
than LSTM and GRU models, showing that 1D-CNN may not 
be as effective at modeling the temporal sequences in EEG data 
without the integration of recurrent layers. However, the 1D-
CNN demonstrated its ability to compute efficiently as the 
training time is 13.13 minutes, indicating its potential as a core 
component in more complex architectures designed for EEG 
signal analysis. The 1D-CNN can process data quickly, making 
it a valuable component when combined with other 
mechanisms that cannot capture full temporal dynamics as 
effectively as recurrent layers. 

The 1D-CNN framework with GRU has the highest 
accuracy of 68.67%, a recall of 68.67%, and an F1 score of 
68.58%, with a training time of 17.43. The 1D-CNN 

framework with LSTM has the highest precision of 69.05%, 
while the 1D-CNN framework with RNN has the most 
computation efficiency, with a training time of 13.65 
minutes compared to others. 

The 1D-CNN+SE framework with LSTM has the highest 
accuracy of 72%, a precision of 73.51%, a recall of 72%, 
and an F1 score of 71.54%, outperforming the 1D-CNN+SE 
framework with RNN and GRU. The 1D-CNN+SE 
framework with GRU demonstrated the most computational 
efficiency, completing the training process in just 18.82 
minutes compared to RNN and LSTM. This shows that the 
GRU’s architecture gating mechanism offers significant 
gains in processing speed compared to LSTM. These models 
intergraded with the 1D-CNN+SE framework have shown 
improvement in feature extraction and deep analysis of 
temporal dependencies through recurrent layers. 

The NNF network demonstrated superior performance 
across all metrics, resulting in an accuracy of 75.33%, a 
precision of 76.39%, a recall of 75.33%, and an F1 score of 
75.08% with a training time of 16.88 minutes. This is a 
significant improvement over both the standalone model and 
other hybrid models. The integration of SE blocks into 1D-
CNN architectures can make a considerable improvement 
from 56% to 70% accuracy, a precision from 56.40% to 
69.05%, a recall from 59.53% to 70%, and an F1 score from 
54.34% to 68.58%. The combination of recurrent layers with 
the 1D-CNN+SE framework has improved the performance, 
showing the effectiveness of the combination. 

The combination of SE blocks, 1D-CNN, and the parallel 
fusion of recurrent layers with attention mechanisms has 
significantly improved EEG signal analysis. The NNF 
network outperformed the traditional and hybrid models, 
highlighting the importance of architectural innovation in 
improving neurological diagnostics. 

 

  

  

Fig. 3  The confusion matrix of the standalone model 
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The confusion matrix can provide insight into each 
model's predictive capabilities to assess their robustness in 
EEG signal classification critically. The section presents the 
confusion matrix for the standalone, hybrid, hybrid model 
with SE block and the proposed NNF network. Figure 3 
shows the confusion matrix of the standalone model. The 
confusion matrix of the GRU model shows that 59 abnormal 
signals are correctly classified as true positives while 31 are 
misclassified as normal (false negatives). Additionally, the 
GRU correctly classified 119 normal signals as true 
negatives, but 91 signals were misclassified as abnormal 
(false positives). The confusion matrix of the LSTM model 
shows that there are 64 true positives and 33 false negatives. 
There are 86 misclassified signals as false positives, while 
117 normal signals are classified as true negatives. The 
confusion matrix of the RNN model shows that there are 50 
true positives and 56 false negatives. There are 100 
misclassified signals as false positives, while 94 normal 
signals were classified as true negatives. The confusion 

matrix of the 1D-CNN shows that there are 74 true positives, 
53 false negatives, 76 false positives, and 97 true negatives. 
Table 3 shows the results based on the confusion matrix of 
the standalone model. 

TABLE III 
THE RESULT BASED ON THE CONFUSION MATRIX OF STANDALONE MODEL 

Model Precision Specificity Recall F1 Score 

GRU 39.33 56.67 65.56 49.17 
LSTM 42.67 57.64 65.98 51.82 
RNN 33.33 48.45 47.17 39.06 
1D-CNN 49.33 56.07 58.27 53.43 

 
Based on Table 3, the 1D-CNN model has the highest 

precision of 49.33% and an F1 score of 53.43, and the RNN 
has the lowest precision of 33.33% and an F1 score of 
39.06%. The LSTM has the highest specificity of 56.57% 
and a recall of 65.98%. The 1D-CNN model can robustly 
classify the EEG signal with balanced precision and recall. 

 

  
 

  

Fig. 4  The confusion matrix of the hybrid model 

 
The performance of the hybrid model is assessed by its 

confusion matrix. Figure 4 shows the confusion matrix of the 
hybrid model.  The 1D-CNN+GRU has 95 true positives, 55 
false positives, 39 false negatives, and 111 true negatives. 
The 1D-CNN+LSTM has 69 true positives, 81 false 
positives, 21 false negatives, and 129 true negatives. The 
1D-CNN+RNN has 81 true positives, 69 false positives, 50 
false negatives, and 100 true negatives. The 1D-CNN+SE 

has 71 true positives, 79 false positives, 31 false negatives, 
and 139 true negatives. Table 4 shows the hybrid model's 
precision, specificity, recall, and f1 score. Based on Table 4, 
the 1D-CNN+GRU model has the highest precision of 
63.33%, a specificity of 66.87%, and an F1 score of 66.90%, 
while the 1D-CNN+RNN has the lowest specificity of 
59.13%. The 1D-CNN+SE has the highest recall of 86.59%, 
while 1D-CNN+LSTM has the lowest precision of 46% and 
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an F1 score of 57.70%. The 1D-CNN+GRU model can 
robustly classify the EEG signal with balanced precision and 
recall. 

TABLE IV 
THE RESULT BASED ON THE CONFUSION MATRIX OF HYBRID MODEL 

Model Precision Specificity Recall 
F1 

Score 

1D-CNN 
+GRU 

63.33 66.87 70.90 66.90 

1D-CNN 
+LSTM 

46.00 61.43 76.67 57.50 

1D-CNN 
+RNN 

54.00 59.17 61.83 57.65 

1D-CNN 
+SE 

47.33 63.76 86.59 61.21 

Fig. 5 shows the confusion matrix of the hybrid model 
with SE block and the NNF network. The 1D-
CNN+SE+GRU has 99 true positives, 51 false positives, 35 
false negatives, and 125 true negatives. The 1D-
CNN+SE+LSTM has 89 true positives, 61 false positives, 23 
false negatives, and 127 true negatives. The 1D-
CNN+SE+RNN has 100 true positives, 50 false positives, 48 
false negatives, and 102 true negatives. The NNF has 98 true 
positives, 52 false positives, 22 false negatives, and 128 true 
negatives. Table 5 shows the hybrid model's precision, 
specificity, recall, and f1 score with SE block and the 
proposed network.  

 

 

  

  
Fig. 5  The confusion matrix of the hybrid model with SE block and the NNF network 

 
Based on Table 5, The 1D-CNN+SE+LSTM has the 

highest precision of 66.67% but achieved the lowest 
specificity of 67.11%, a recall of 67.57%, and an F1 score of 
67.11%, while the 1D-CNN+SE+RNN has the lowest 
precision of 59.33%. The NNF has the highest specificity of 
71.11%, a recall of 81.67%, and an F1 score of 72.59%.  The 
NNF has demonstrated its robustness in classifying the EEG 
signal and outperforming all the models in the experiment. 

TABLE V 
THE RESULT BASED ON THE CONFUSION MATRIX OF HYBRID MODEL WITH SE 

BLOCK AND THE NNF NETWORK 

Model Precision Specificity Recall F1 

Score 

1D-CNN +SE 
+GRU 66.00 69.28 73.88 69.72 
1D-CNN+SE 
+LSTM 66.67 67.11 67.57 67.11 
1D-CNN +SE 
+RNN 59.33 67.55 79.46 67.94 
NNF 65.33 71.11 81.67 72.59 

However, this work could be improved. The EEG signals 
may contain noise, and obtaining large datasets can be very 
challenging. The network's performance is dependent on the 
given dataset. Thus, data augmentation can increase the 
quantity of EEG signals. The proposed network's training 
time is longer than the existing state-of-the-art. Thus, it is 
possible to implement knowledge distillation to reduce the 
model size, which can decrease the computational resource. 

IV. CONCLUSION 
The NNF network has demonstrated a novel approach for 

classifying EEG signals. It is designed to extract and analyze 
temporal features from EEG signals using 1D-CNN 
combined with SE blocks and parallel processing fusion of 
RNN, LSTM, and GRU layers. The NNF architecture can 
capture the temporal features and accurately classify the 
EEG signal as normal or abnormal. 

Combining 1D-CNN, SE blocks, and the parallel 
processing fusion of LSTM, GRU, and RNN layers with 
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multi-head attention mechanisms has improved the accuracy 
of EEG signal classification. This work has provided 
valuable insights and highlighted the potential of deep 
learning architectures in EEG signal analysis. Future work 
could investigate the capabilities of the NNF network to 
classify EEG signals with the combination of real-time 
monitoring systems for the immediate detection of 
abnormalities. 
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