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Abstract—The increasing prevalence of song skipping in music streaming applications negatively impacts user satisfaction and 

subscription retention. Dissatisfaction often arises when users encounter songs they actively dislike, highlighting a gap between user 

expectations and the value offered by these services. To address this, music recommendation algorithms were researched and developed. 

Initially, data collection is started. Data collection is through the Spotify application programming interface. This initiation step sets 

the stage for subsequent exploratory data analysis. Exploratory data analysis examined the collected data to plot a bar chart for total 

songs released over the years, plot a bar chart for the popularity of songs based on the year it is released, visualize word cloud on 

frequently mentioned music genres, chart count plot for explicit songs, and chart count plot for song modalities. Data preprocessing 

involved cleaning the data, handling missing values, and checking for null values to prepare the application of machine learning 

algorithms. Four machine learning algorithms were applied, k-means, mini-batch k-means, Gaussian mixture, and density-based spatial 

clustering of applications with noise (DBSCAN), to analyze musical features like rhythm, tempo, and other relevant music attributes. 

The results showed that the k-means outperforms all other algorithms evaluated regarding recommendation quality, as measured by 

the Calinski-Harabasz score. Based on the evaluation, the best machine learning will then be applied to identify similarities between 

songs and be used to generate music recommendation results. 

Keywords—Machine learning algorithms; music recommendation; Spotify API; K-means; mini batch k-means; gaussian mixture. 

Manuscript received 10 Apr. 2024; revised 28 Jun. 2024; accepted 11 Oct. 2024. Date of publication 30 Nov. 2024. 

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License. 

I. INTRODUCTION

The rapid expansion of music streaming has changed how 

we enjoy music, but keeping users happy and maintaining 

subscriptions are still significant challenges. A big factor is a 

song skipping, where users frequently encounter tracks they 

dislike, interrupting the smooth, personalized experience they 

expect. This frustration often leads to canceled subscriptions, 
as users feel the service needs to meet their needs.  At the heart 

of the problem is the limitation of current music 

recommendation systems. While they provide suggestions, 

these systems often need to fully capture each listener's 

unique taste, resulting in a playlist filled with songs that do 

not hit the mark. This research proposes a more personalized 

approach to music recommendation. By aligning 

recommendations more closely with individual preferences 

and reducing exposure to disliked tracks, we aim to improve 

the listening experience, minimize frustration, and, 

ultimately, encourage long-term subscription loyalty in the 
music streaming world.   

The research question is: How will this research develop a 

music recommendation that leverages the best algorithm 

analyzing song similarities based on musical features such as 

energy, tempo, and listening history to generate personalized 
recommendations, minimize song skipping, and enhance user 

satisfaction within music streaming services? By effectively 

addressing this question, this research will contribute to a 

more enjoyable and valuable music streaming experience for 

users, thereby boosting the success of music streaming service 

providers. 

A. Music Recommendation and Existing Algorithms

Recommender systems have undergone extensive

development over the years and have been implemented 
across a range of problem domains: health [1], [2], [3], [4], 

[5] , e-commerce [6], [7], [8], [9],  tourism [10], [11], [12],

[13], movie [14], [15], [16], [17], and more [18], [19], [20].

Music recommendations have played a significant role in 

the streaming industry, aiming to bring listeners a genuinely 

personalized experience based on their unique tastes and 
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listening habits. These systems analyze the music and each 

user’s preferences, using sophisticated algorithms to suggest 

songs that feel like a natural fit. Thanks to these 

advancements, listeners now receive recommendations 

beyond the top charts, matching their style and mood and 

making music discovery more accessible and enjoyable. 

Existing literature has extensively explored the use of 

recommendation algorithms in music recommendation 

systems. Referring to Fig. 1, there are four categories of 

recommendation algorithms which are collaborative filtering, 
content-based, hybrid, and machine-learning [21], [22]. They 

have been widely studied and implemented in various music 

recommendations. 

 
Fig. 1  Categories of Recommendation Algorithm 

 

A collaborative filtering algorithm analyses user behavior 

and preferences to recommend music that similar users have 
enjoyed. Content-based algorithms, on the other hand, focus 

on the characteristics of the music itself to make 

recommendations. For example, genre, tempo, and rhythm. 

To exploit the strengths of both techniques, the hybrid method 

combines collaborative filtering and a content-based 

algorithm. Machine learning algorithms like K-means are 

utilized within collaborative filtering, content-based, and 

hybrid recommendation algorithms to learn patterns and 

relationships. This section explores the existing 

recommendation algorithms and their effectiveness. 

1) Collaborative Recommendation Filtering: 

Collaborative filtering is one of the most widely used 
approaches to music recommendation algorithms. 

Collaborative filtering is an approach to filtering items by 

considering the preferences of similar users, aiming to 

recommend items that align with a particular user's tastes [23]. 

There are two types of collaborative filtering: user-based and 

item-based.  

An active user for whom this recommendation is directed 

in a user-based collaborative filtering algorithm. The 

collaborative filtering algorithm will first search for similar 

users. This user shares active users' rating patterns with other 

users. Collaborative filtering is based on this similarity in 

factors such as history, preferences, and user decisions when 

purchasing, viewing, or enjoying content. For example, in 

Fig. 2 below, if user A's preferences for fruits match the 

highest number of fruits to user C's, they have similar 

interests. Therefore, user C will also enjoy mango and grapes 

that the user has yet to taste, as user A prefers. 
In the item-based approach, it is also called item-item 

collaborative filtering. This is a type of recommendation 

algorithm that considers the similarity between items to 

recommend products. Illustrating the mechanics of item-

based collaborative filtering through an example. Fig. 3 below 

consists of three individuals: A, B, and C. User A has 

expressed preferences for mango, pineapple, and grape, while 

user B enjoys pineapple and grape. On the other hand, user 

C's liking extends to pineapple and banana. In item-based 

collaborative filtering, the algorithm identifies item 

similarities based on shared preferences between two users.   

 
Fig. 2  User-based collaborative filtering approach 

 
Fig. 3  Item-based collaborative filtering approach 

 

Now, when considering recommendations for user C, the 
algorithm leverages the similarity between pineapple and 

grape, which are liked by both user A and user B. Since user 

C likes pineapple but has not been exposed to grapes, the 

item-based collaborative filtering algorithm recommends 

grapes to user C. This recommendation is grounded in the 

assumption that if two items are favored by other users, 

introducing an item liked by other users but not yet 

experienced by one user can enhance the recommendation 

experience.  

One of the primary benefits of these recommendation 

algorithms is their simplicity in delivering tailored material 
and their flexibility in accommodating evolving user 

preferences. However, conventional collaborative filtering 

approaches have drawbacks, especially when it comes to 

resolving the cold-start issue and dataset sparsity.    

Fareed et al. [24] involves integrating social connections 

among users into the collaborative filtering algorithm. The 

performance metric used for evaluating their recommendation 

algorithm is precision. Their proposed system is in its 

application, which is in the movie recommendation domain.   

Tian et al. [22] employ k-means for their recommendation 

algorithm. Data sparsity arises when the user-item matrix, 

representing interactions between users and items, is 
extensive and contains numerous missing data points. In this 

context, the user-item matrix can become vast and sparse in 

university library books, where the available book collection 
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is enormous. The sparsity of the user-book matrix implies that 

most users have only read a small subset of the overall 

database, resulting in a high percentage of missing data. K-

means is a technique used to group similar objects based on 

their characteristics. By applying k-means to the user-item 

matrix, the aim is to group users and books so that objects 

within the same cluster are more similar to each other than 

those in other clusters.   

The study by Movafegh and Rezapour [25] used hybrid 

based on a collaborative filtering recommendation algorithm. 
Two hybrid approaches introduced were k-means with 

particle swarm optimization and singular value 

decomposition with a genetic algorithm. Their two proposed 

methods exhibited performance using three performance 

metrics: precision, recall, and mean absolute error. Their 

study did not specify the domain of the recommender system 

but focused solely on hybrid based on the collaborative 

filtering approach. 

2) Content-based Recommendation Algorithm: In the 

realm of information retrieval and recommendation systems, 

content-based algorithms serve as a methodology for 
constructing recommender systems by considering both user 

preferences and the attributes of items. Typically, a collection 

of features distinguishes each item, and subsequent 

recommendations are generated by evaluating the cumulative 

value of these features within the user's historical interactions 

[26]. Unlike collaborative filtering, which relies on user-item 

interactions and similarities among users, content-based 

algorithms focus on the attributes and features of items 

themselves.  

Content-based algorithms are widely used in various areas, 

such as online shopping, music streaming, news, etc. It has a 

good track record of providing reliable and proper 

recommendations, particularly for specific or specialized 

items. The essence of content-based algorithms is creating 

user profiles and item representations based on relevant 

features. These features could range from textual content, 

metadata, or other measurable characteristics describing the 
items. By leveraging natural language processing techniques, 

content-based algorithms can discern patterns and 

preferences, delivering recommendations that align with 

users' tastes and preferences.  

To illustrate this concept, consider an example of how a 

content-based recommendation system could operate in the 

context of suggesting fruits. Based on Fig. 4 below, imagine 

four fruits are available, and a user has already tasted and 

enjoyed the first two fruits, strawberry and blueberry. The 

recommendation model automatically suggests the third fruit, 

raspberry, instead of the fourth, banana, as it is more akin to 

the first two fruits. This resemblance can be computed based 
on various features such as the type of fruit, its color, taste, 

size, and other relevant characteristics. 

Content-based filtering offers several advantages, the 

primary one being avoiding the "cold start" problem. 

Collaborative filtering can encounter challenges in scenarios 

where a new website or community needs more users and 

more user connections. While content-based algorithms do 

require initial inputs from users to initiate recommendations, 

they typically provide higher-quality early recommendations 

compared to collaborative systems. This is because content-

based algorithms do not necessitate the accumulation and 

correlation of many data points before reaching an optimized 

state.  

 
Fig. 4  Recommendation using content-based algorithm 

 

Content-based algorithms ensure transparent 

recommendations for users, enhancing trust by providing 

insights into the reasoning behind suggestions. In contrast, 

collaborative filtering may present instances where users find 

it challenging to comprehend the basis for specific 

recommendations. For instance, consider a scenario where a 

group of users who frequently purchase hiking gear also 

happens to buy camping tents. A collaborative system might 

suggest camping tents to users who bought hiking gear, even 
if they have never expressed interest in or purchased such 

products.  

Another example could be in the context of book 

recommendations. Suppose a group of users who enjoy 

mystery novels also happen to buy cookbooks. In that case, a 

collaborative system might recommend cookbooks to other 

users who like mystery novels but may have different culinary 

interests. These examples highlight how content-based 

algorithms offer a more transparent and understandable 

recommendation process than collaborative filtering.  

Akshay et al. [26] introduced a recommendation algorithm 
that clusters songs according to implicit properties perceived 

by the listener, including timbre and acoustics. With song and 

listener properties, their algorithm could deliver 

recommendations tailored to the song history and user 

preferences. Before integrating the k-means algorithm into 

their recommendation algorithm, the researchers employed 

the elbow method to determine the number of clusters.  

Ahuja et al. [27] advocated the integration of two 

algorithms, k-means, and k-nearest neighbor, to content-

based algorithms in movie recommender systems, aiming to 

add personalization by considering similar users' preferences. 

Their two recommendation algorithms leveraged the 
preferences of users with similar tastes. The Movielens 

dataset, which comprises a diverse collection of movie ratings 

and user feedback, is utilized. Root mean squared error was 

the performance metric to compare their two recommendation 

algorithms. 

3) Hybrid Recommendation Algorithm: A hybrid 

recommendation system is a unique approach that seamlessly 

merges content-based and collaborative filtering methods. 

Combining these two techniques addresses the limitations 

encountered when utilizing them individually. Implementing 

hybrid recommender systems spoils choices, allowing for 

various approaches.  
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One implementation method involves generating 

predictions separately using content and collaborative 

methods and then combining these predictions. Alternatively, 

the hybrid system can integrate the capabilities of 

collaborative methods into a content-based approach and vice 

versa. This hybrid recommendation algorithm increases 

complexity in adapting to the specific challenges posed by 

different recommendation scenarios.  

Afoudi et al. [23] introduced a recommendation algorithm 

that employed a hybrid approach, seamlessly integrating 
collaborative filtering and content-based algorithms. It is then 

supervised by the ranking list generated by the self-organizing 

map neural network technique. The approach involved 

merging scores from all models, capitalizing on the individual 

strengths of each method.   

According to [21], a hybrid recommendation algorithm that 

integrates collaborative filtering and content-based 

algorithms based on deep learning is introduced. Their hybrid 

recommendation algorithm incorporated auxiliary 

information about users and items into a deep neural network 

architecture with insufficient historical data. The paper 
evaluated their only proposed hybrid recommendation 

algorithm in terms of mean absolute error, mean squared 

error, and root mean squared error. 

II. MATERIALS AND METHOD 

A. Machine Learning Algorithms 

To implement machine learning to recommend music 

effectively, it’s crucial to explore different algorithms to see 

which performs best for the dataset and the specific goals of 

the recommendation. This means testing various approaches, 
such as k-means, mini-batch k-means, Gaussian mixture, and 

density-based clustering. By carefully evaluating each 

algorithm with the right metrics and visualization tools, we 

can find the one that most accurately picks up on the patterns 

and similarities in the data. This step-by-step approach 

ensures that the chosen algorithm will add real value to the 

music recommendation system, giving users a truly 

personalized experience. 

1) K-Means: K-means are an unsupervised learning 

method to organize unlabeled datasets into distinct clusters. 

In this technique, the parameter "k" denotes the predetermined 
number of clusters to be formed. For instance, setting k=2 will 

result in two clusters, while k=3 will yield three clusters, and 

so forth. This approach enables the algorithm to identify 

autonomously, and group data points into categories without 

requiring prior training. Functioning as a centroid-based 

algorithm, k-means assigns each cluster a centroid, with the 

primary objective being to minimize the distance between 

data points and their respective centroids. The algorithm 

iteratively processes the unlabeled dataset, dividing it into k 

clusters and refining them until optimal clustering is achieved. 

Notably, the value of k must be specified beforehand for this 

method.  

The k-means algorithm essentially carries out two primary 

tasks. Firstly, it iteratively determines the optimal locations 

for k centroids, typically by minimizing the total within-

cluster variance through an iterative approach. Secondly, it 

assigns each data point to the nearest centroid, thereby 

creating clusters characterized by shared similarities among 

their constituent data points while maintaining distinctiveness 

from other clusters.  

Before proceeding with implementing k-means on the 

dataset, the elbow method will be employed to ascertain the 

optimal number of clusters. The elbow method is generally 

applied to identify the optimum number of clusters in a 

dataset. The method derives its name from the shape of the 

plotted curve, which resembles an elbow or a bend. The 

fundamental idea behind the elbow method is to evaluate the 
algorithm performance for different numbers of clusters and 

observe how the inertia changes with respect to the number of 

clusters.  

The elbow method relies on the within-cluster sum of 

squares (WCSS), quantifying the total variability within 

clusters. WCSS, representing the sum of squared distances 

from each data point to its assigned cluster centroid, 

encapsulates how tightly grouped the data points are within 

clusters. For instance, when considering “k” clusters, the 

formula to compute WCSS involves summing the squared 

distances of each point to its respective cluster center. 
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The elbow method plots the number of clusters against 

their corresponding inertia values. The inertia typically 

decreases as the number of clusters increases because more 

clusters allow the algorithm to fit the data better. However, 

the decrease in inertia tends to slow down as the number of 

clusters becomes excessively large. Inertia decreases because 

adding more clusters may lead to overfitting, where each data 

point has its cluster, resulting in minimal improvement in 

algorithm quality. The main objective of the elbow method is 

to determine at a given point in the plot where the rate of 

inertia reduction significantly slows and produces an apparent 

elbow or curve bending. This point indicates a balance 
between minimizing inertia and avoiding excessive 

complexity in the clustering model. The optimal number of 

clusters is often chosen as the value corresponding to this 

elbow point. 

 
Fig. 5  Example of Elbow Method 

 

As seen in Fig. 5, the optimal number of clusters was 

determined to be two after using the elbow method to analyze 

the data. This decision stemmed from identifying a prominent 
inflection point, or elbow in the plotted curve, indicating a 

notable deceleration in the rate of decline in WCSS. 
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2) Gaussian Mixture: Gaussian mixture is a 

probabilistic model used for clustering data points into 

multiple groups based on their similarity. Gaussian mixture 

clustering allows for soft assignment, where data points can 

belong to multiple clusters with varying membership 

probability, unlike traditional clustering algorithms that 

assign each point to only one cluster. This method assumes 

that the data distribution comprises multiple Gaussian 

distributions, each representing a distinct cluster. During the 

clustering process, the algorithm iteratively adjusts the 
parameters of these Gaussian distributions to maximize the 

likelihood of the observed data. This optimization process 

involves estimating the mean and covariance matrix of each 

Gaussian distribution and the mixing coefficients that 

determine the relative importance of each distribution. 

Gaussian mixture clustering is particularly useful when 

dealing with complex data distributions that a single Gaussian 

distribution cannot effectively model. 

3) Density-based Spatial Clustering of Applications 

with Noise: Density-based spatial clustering of applications 

with noise (DBSCAN) is a non-parametric machine learning 
algorithm that groups closely packed data points while 

distinguishing outliers in a dataset. It is considered a non-

parametric machine learning algorithm because it does not 

make explicit assumptions about the underlying data 

distribution. It operates based on the density of data points 

rather than assuming a predefined number of clusters like k-

means. The fundamental concept behind DBSCAN is 

identifying core, border, and noise points within the dataset. 

At the outset, DBSCAN randomly selects a point from the 

dataset and examines its neighborhood based on a specified 

distance threshold epsilon (ε). The selected point is labeled as 

a core point if the number of points within this neighborhood 

exceeds a predefined threshold. Core points are then used to 

expand clusters by adding neighboring points within the ε 

radius. Any point that falls within the ε radius of a core point 

is considered part of the same cluster. Border points are those 

within the ε radius of a core point but do not have enough 
neighbors to be considered core points. These points are 

assigned to the cluster of their respective core points. Noise 

points neither belong to any cluster nor meet the criteria to be 

considered border points. They are typically outliers or points 

that do not conform to the density characteristics of any 

cluster. By iteratively expanding clusters from core points and 

merging neighboring clusters, DBSCAN effectively 

delineates clusters of varying shapes and sizes without 

requiring prior knowledge of the number of clusters in the 

dataset. 

4) Mini-batch k-means: Mini-batch k-means represent 

a modification of the k-means algorithm tailored for enhanced 
efficiency with a large dataset. Unlike the original k-means 

algorithm, which handles the entire dataset simultaneously, 

mini-batch k-means operates on small batches of data 

iteratively. This approach mitigates the computational 

expenses associated with processing large datasets. This 

makes it particularly suitable for datasets that are too large to 

fit into memory or that have high-dimensional feature spaces. 

The fundamental concept behind mini-batch k-means 

revolves around updating cluster centroids by utilizing 

subsets, or mini-batches, of the input data rather than the 

entire dataset in each iteration. This strategy aims to expedite 

convergence and alleviate computational burdens, 

particularly in scenarios where the dataset exceeds memory 

constraints. With mini-batch k-means, a new random sample 

of the dataset is selected for cluster updates in each iteration, 

repeating until convergence is achieved. Each mini-batch 

contributes to cluster updates through an approximate 

combination of prototypes and data results governed by a 

decreasing learning rate over iterations. This learning rate 

diminishes inversely with the number of iterations, signifying 
a reduced impact of new data on cluster adjustments as the 

algorithm progresses. Convergence occurs when consecutive 

iterations yield no further changes in cluster assignments. 

Despite the computational time savings offered by the 

algorithm, there are potential trade-offs that may result in a 

decline in cluster quality. 

B. Performance Metric 

In evaluating machine learning algorithms, one commonly 
used performance metric is the Calinski-Harabasz score [28]. 

This score, alternatively referred to as the variance ratio 

criterion, computes the ratio between the sum of dispersion 

among clusters and the dispersion within clusters for a 

specific clustering solution. The Calinski-Harabasz score 

measures clustering quality and evaluates how well-separated 

the clusters are. It's calculated by dividing the dispersion 

among clusters by the dispersion within clusters. The higher 

the Calinski-Harabasz score, the better the solution.  

Mathematically, the Calinski-Harabasz (CH) score can be 

expressed as: 

 ����� �  � �!"�
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where k is the number of clusters, n is the total of data points, 

tr(Bk) is the trace of the between-cluster dispersion matrix, 
and tr(Wk) is the trace of the within-cluster dispersion matrix. 

The between-cluster dispersion matrix, Bk, as shown by the 

third equation below, measures the distance between cluster 

centroids, while the within-cluster dispersion matrix, Wk as 

demonstrated by the fourth equation below, measures the 

distance within clusters, �' is the total number of data points in 

cluster q, �' is the set of all data in cluster q, �(  is the center point 

of all data, and T is the transpose operation for the matrix [28]. 
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III. RESULT AND DISCUSSION 

The data collection process began by outlining the dataset’s 
origins and key features, laying a solid foundation for 

analysis. Through exploratory data analysis (EDA), we 

discovered patterns, trends, and relationships in the data, 

offering insights to guide our next steps. The data then 

underwent careful preparation, including cleaning, handling 

any missing or null values, and readying it for use in machine 

learning. We chose four machine learning algorithms to build 

the recommendation system based on their strengths. K-

means and mini-batch k-means are ideal for large datasets, 

clustering data into similar groups quickly and efficiently. 

Gaussian mixture models add flexibility, capturing complex, 
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overlapping clusters. DBSCAN, on the other hand, excels in 

finding clusters of various shapes and densities and can 

handle noise well. After testing each algorithm, we evaluated 

their performance on the dataset to determine the best fit. 

With these results, the recommendation system can generate 

music suggestions tailored to users’ unique tastes, completing 

the journey from data collection to personalized music 

recommendations. 

A. Data Collection  

Fig. 6 below shows data collection through the web 

application programming interface (API), which is Spotify 

API, encompassing a broad spectrum of music attributes and 

associated metadata. This process involves extracting 

multifaceted information pertinent to songs, albums, and 

artists, capturing details such as track duration, tempo, key, 

mode, and acoustics. Notably, the dataset comprises the top 

songs of 12 years spanning from 2013 to 2024, which have 

been combined to create this dataset. The dataset has 20 
features. Duplicated songs were dropped, and the dataset was 

left with 1003 songs. This structure enables detailed analysis 

of various musical attributes and metadata, supporting 

insights into music trends and characteristics within the 

dataset. 

 

 
Fig. 6  Dataset of music collected each year from 2013 to 2024 

 

In the dataset, 20 features as shown in Fig. 7, have been 

extracted and displayed for analysis. These include 

information such as the name of the song ('name'), the album 
it belongs to ('album'), and the artist who created it ('artist'). 

Additionally, details like the release date ('release_date') and 

the length of the song in seconds ('length') provide temporal 

context. Other attributes like 'popularity', 'danceability', 

'explicit', 'acousticness', 'energy', 'instrumentalness', 'liveness', 

'loudness', 'speechiness', 'tempo', 'time_signature', 'valence', 

'key', 'mode', and 'genres' offer insights into various musical 

characteristics and metadata. Each of these columns serves as 

vital information for further exploration and analysis, 

enabling this research to delve deeper into the dynamics of 

music and its attributes. 

 

 
Fig. 7  Column names for the dataset 

 

The dimensionality of the dataset in Fig. 8 indicates that it 

contains 1003 songs and 20 features. In other words, there are 
1003 songs in the dataset, each with 20 different attributes or 

features. This information provides an overview of the size 

and structure of the dataset, which is essential for 

understanding the scope of the analysis and the amount of data 

available for exploration. 

 

 
Fig. 8  Dimensionality of dataset 

B. Exploratory Data Analysis  

Fig. 9 provides information for the song years, sorted by 
the number of released songs. As illustrated in Fig. 10 below, 

the bar chart indicates variations in the number of songs 

released across different years, spanning from 1985 to 2024. 

In the exact figure, Fig. 10 provides information about top 

songs on the number of released songs sorted by year. In 2016, 

the highest number of songs were released, with a count of 

112, followed closely by 2017, with a count of 108, and in 

2020, with a count of 101 songs. The year 2021 saw a slightly 

lower count of 82 released songs. On the other hand, years 

like 2019 had a lower count of 29 songs. As the data collection 

progresses into more recent years, there is a noticeable 
decrease in the number of songs released, with only eight 

songs recorded up to March 2024. There are sporadic releases 

in earlier years, such as 1985, 2002, 2004, and 2011, each with 

only one song. In summary, the visualization sheds light on 

the distribution of song releases from 1985 to 2024, reflecting 

the trends and preferences within the music industry's top 

selections based on listeners. 

 

 
Fig. 9  Sorted number of released songs for the years 

 

 
Fig. 10  Bar chart for the number of released songs sorted by year 
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The word cloud visualization in Fig. 11 offers a compelling 

snapshot of the most mentioned genres within the dataset, 

showcasing the prominence of pop, hip-hop, and dance-pop. 

These genres emerge as dominant themes, characterized by 

more extensive and bolder representations within the word 

cloud, indicating their frequent occurrence and prevalence in 

the dataset. This visualization highlights the popularity of 

these genres and provides insight into the music industry's 

trends and preferences over the years. 

 

 
Fig. 11  Word cloud visualization on most mentioned genres 

 

Based on the observations made, the Fig. 12 visualization 

illustrates that songs released in 2002 that made it into the top 

songs exhibit the highest popularity scores. This suggests a 

notable resonance with audiences and widespread acclaim for 
the music released in 2002. Additionally, songs from 2004 

and 2024 also demonstrate considerable popularity, though to 

a slightly lesser extent compared to those from 2002.   

 

 
Fig. 12  Popularity of songs based on the year it is released 

 

The accompanying visualizations in Fig. 13 visually 

represent this dataset distribution, making it easier to compare 

the counts of explicit song lyrics and minor-major song 

modes. The bar plot for the 'explicit' attribute showcases the 

frequency of explicit and non-explicit song lyrics, while the 

bar plot for the 'mode' attribute illustrates the occurrence of 
music key modes, which are minor and have zero value, and 

major, which has the one value in the dataset. 

 

 
Fig. 13  Count plot for explicit and mode column 

 

The collected data presents the counts of explicit and mode 

values. For the 'explicit' attribute in Fig. 14, there are 642 

occurrences where the value is False, indicating that most 

songs in the dataset do not contain explicit content. 

Conversely, 361 occurrences where the value is True, 

suggesting that a smaller portion of the songs feature explicit 

content. 
 

 
Fig. 14  Value counts for explicit song lyrics column 

 

The value counts for the 'mode' attribute in Fig. 15 reveals 

that mode 1 appears 594 times, while mode 0 appears 409 

times. The 'Mode' attribute typically represents the modality 

of the song, with Mode 1 corresponding to primary keys and 

Mode 0 to minor keys in music theory. This distribution 
indicates that songs with a major essential mode (mode 1) are 

more prevalent in the dataset than those with a minor key 

mode (mode 0). 

 
Fig. 15  Value counts for mode column 

C. Data Preprocessing  

The provided dataset information in Fig. 16 reveals a 

comprehensive dataset overview comprising 1003 entries 

across 20 columns. Through an examination of the data, it's 
evident that no missing values are present in any of the 

columns, ensuring the completeness and integrity of the 

dataset. Each column contains non-null entries, indicating that 

all necessary information is available for analysis. The 

absence of null values simplifies the analysis process, 

eliminating the need for data imputation or handling missing 

values and allowing for a more accurate and efficient dataset 

exploration. 
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Fig. 16  Overview of non -null value count per column 

 

Upon inspection, no duplicate samples have been identified 

within the dataset as shown in Fig. 17. This suggests that each 

entry within the dataset is unique, devoid of any repetitions or 

redundancies. The absence of duplicate samples ensures the 

integrity and accuracy of the dataset, as each observation 

represents distinct information without any unnecessary 
replication. 

 

 
Fig. 17  Findings of any duplicate value in dataset 

 

D. K-means Algorithm 

In conducting the elbow method to determine the optimal 

number of clusters, k, for the dataset, it was observed that the 
inertia, which represents the sum of squared distances of 

samples to their closest cluster center, decreased as the 

number of clusters increased. However, as seen in Fig. 18 

there was a noticeable inflection point at 3-rd cluster where 

the rate of decrease in inertia significantly slowed down. This 

inflection point is often referred to as the "elbow" of the plot. 

This finding suggests that 3-rd cluster is the most suitable 

choice for partitioning the data, as it strikes a balance between 

capturing meaningful patterns within the data while 

minimizing redundancy. By selecting 3-rd cluster or k is 3,  a 

more effective solution for the given dataset can be achieved.  

By utilizing the k-means algorithm with number of clusters 
equals to 3 and fitting it to the preprocessed data, this model 

successfully partitioned the data into three distinct clusters 

based on the similarity of data points. Each cluster is 

represented by a centroid, and data points are assigned to the 

cluster with the nearest centroid. This approach allows for the 

identification of underlying patterns and structures within the 

data, enabling the grouping of similar data points together. By 

setting the random seed for reproducibility, the results 

obtained from the clustering process can be replicated 

consistently. 

 

 
Fig. 18  Elbow method for K-means 

 

 

 
Fig. 19  K-means parameters 

 

E. Density-based Spatial Clustering of Applications with 

Noise Algorithm 

Through a systematic evaluation of different parameter 

combinations for the density-based spatial clustering of 

applications with noise (DBSCAN) algorithm focusing on 
two parameters which are epsilon (eps) and minimum samples 

(min_samples), the analysis aimed to identify the optimal 

configuration that maximizes clustering quality. By utilizing 

the Calinski-Harabasz score as a metric to assess clustering 

performance, the study sought to pinpoint the parameter 

values that lead to well-defined and distinct clusters within the 

dataset. The iterative process involved calculating the 

Calinski-Harabasz score for varying eps and min_samples 

parameters, with the ultimate objective of determining the 

parameters that yield the highest Calinski-Harabasz score, 

indicative of superior clustering outcomes.  

 

 
Fig. 20  Calinski-Harabasz score for DBSCAN parameter tuning 

 

Following this comprehensive analysis in Fig. 20, it was 

determined that an eps value of 0.6 paired with a minimum 

number of samples value of 27 emerged as the most suitable 
combination of parameters for the DBSCAN algorithm, as it 

produced the highest Calinski-Harabasz score. These 

optimized parameters selection ensures that the DBSCAN 

algorithm effectively captures the underlying structures and 
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patterns present in the dataset, leading to more accurate and 

meaningful clustering results. The lines graph visualization of 

the Calinski-Harabasz scores across parameter variations for 

DBSCAN below provides valuable insights into the impact of 

hyperparameters tuning on clustering performance. 

By initializing the DBSCAN algorithm with an eps value 

of 0.6 and a minimum number of samples value of 27 as seen 

in Fig. 21. The chosen parameter values of eps and 

min_samples determine the distance threshold for defining 

neighborhood points and the minimum number of points 
required to form a dense region.  

 

 
Fig. 21  DBSCAN parameters 

F. Mini Batch K-means Algorithm 

In the findings of the mini-batch k-means algorithm, it was 

determined through the elbow method that the optimal 

number of clusters is 4 which can be seen in Fig. 22. This 
suggests that the data points can be effectively grouped into 

four distinct clusters based on their similarities. By 

identifying this optimal cluster number, the algorithm can 

efficiently partition the data into meaningful groups, aiding in 

data analysis and pattern recognition. 

 

 
 

Fig. 22  Elbow method for mini batch k-means 

 

Mini batch k-means algorithm is initialized with a specified 
number of clusters to 4 and a random state for reproducibility 

as seen in Fig. 23. This process involves iteratively updating 

the cluster centroids based on mini-batches of the input data, 

making it computationally efficient for large dataset. By 

setting the number of clusters to 4, the algorithm will aim to 

partition the data into four distinct groups based on their 

similarities. 

 

 
Fig. 23  Mini batch k-means parameters                                                                                                                                                             

G. Gaussian Mixture Algorithm 

In Fig. 24, the Gaussian mixture model is initialized with a 

specified number of components set to 20 to account for the 

number of features in the dataset, and a random state is 

defined for reproducibility. By utilizing a Gaussian mixture 

model, the algorithm aims to model the underlying 

distribution of the data using a combination of Gaussian 

distributions, allowing for more flexible and complex cluster 

shapes compared to traditional k-means clustering. The 

training process involves estimating mixtures of parameters 

using the Gaussian mixture algorithm based on the input data. 

 

 
Fig. 24  Gaussian mixture parameters 

H. Performance Scores for Four Machine Learning 

Algorithms  

The Calinski-Harabasz score serves as a crucial metric for 

assessing the efficacy of algorithms in identifying meaningful 

patterns within data. A higher score indicates better-defined 

and more separate clusters, signifying the algorithm's ability 

to capture underlying structures effectively.  

K-means achieved a Calinski score of 680.081410 which 

suggests it performed the best among the four machine 

learning algorithms. Similarly, the mini batch k-means 
algorithm achieved a score of 668.276546, showcasing that 

the model ranked second among these algorithms. 

Comparatively, the Gaussian mixture algorithm yielded a 

Calinski score of 595.570594, indicating that the model 

ranked third among these algorithms. However, DBSCAN 

scored the lowest at 327.996767, suggesting challenges, likely 

due to its sensitivity to density variations and noise.  

 

 
Fig. 25  Calinski-Harabasz score for four algorithms 

 

The bar plot visualizing the Calinski-Harabasz scores for 

the four machine learning algorithms. It provides a clear 

comparison of their performances. The plot illustrates the 

relative strengths of each algorithm, with the length of each 

bar representing the corresponding Calinski-Harabasz score. 

This visualization allows for an immediate and intuitive 

understanding of the machine learning performances, aiding 

in the identification of the most effective algorithm. 

The K-means excelled due to its ability to create compact 
and well-separated clusters, aligning well with the Calinski-

Harabasz score criteria, which rewards such cluster structures. 

The features of the music dataset, including audio 

characteristics, formed spherical clusters that K-means 

effectively exploited. The simplicity and efficiency of K-

means allowed for quick convergence to stable clusters, 

offering a clear structure evaluated highly by the Calinski-

Harabasz score. Additionally, K-means required fewer 

parameters to tune, ensuring more consistent performance 
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across different settings. This combination of factors led to 

the best performance of K-means among three other 

algorithms. 

 
Fig. 26  Bar plot visualization for Calinski-Harabasz scores for all four 

machine learning algorithms  

I. Music Recommendation using K-means Algorithm 

The decision to utilize the k-means algorithm in the music 

recommendation was made based on the evaluation of various 
machine learning algorithms using the Calinski-Harabasz 

score. Among the four machine learning algorithms 

considered, k-means emerged as the top performer, boasting 

the highest Calinski-Harabasz score.  

 

 
Fig. 27  Music recommendation results for the user who listens to the song 

named “Easy On Me” 

 

By opting for k-means for the music recommendation, it is 

capitalizing on its capacity to discern meaningful patterns and 

similarities in the dataset, thereby enhancing the precision and 

relevance of the recommendation results generated.  

The music recommendation using k-means is designed to 

accept unique inputs based on the song name and its released 

year, and subsequently provide music recommendation 

results of similar songs based on features within the dataset. 

By leveraging the best machine learning algorithm, which is 

k-means, the k-means algorithm identifies songs with 
comparable attributes, including musical characteristics and 

genre. K-means algorithm ensures that music 

recommendation results are relevant. By surfacing songs with 

similar attributes based on what users listen to, the algorithm 

fosters engagement and satisfaction, ultimately enhancing the 

overall listening experience. Fig. 27 and Fig. 28 below are the 

two different examples of music recommendation results 

based on what users listening to. 

 

 
Fig. 28  Music recommendation results for the user who listens to the song 

named “a thousand years”. 

IV. CONCLUSION 

In summary, analyzing the performance of different 

machine learning algorithms—k-means, mini batch k-means, 

Gaussian mixture, and DBSCAN—gave us valuable insights 

into their strengths. The evaluation using the Calinski-
Harabasz score revealed k-means as the top performer, with 

its high score indicating an effective grouping of similar data 

points. Based on this, k-means was chosen for our music 

recommendation system because of its strong ability to 

uncover patterns and similarities that enhance the relevance 

of song suggestions to user preferences. On the other hand, 

DBSCAN faced limitations, particularly with varying cluster 

densities and high-dimensional data, where density-based 

clustering is less effective.. Moving forward, further 

exploration of applying other algorithm type such as 

integrating deep learning models [29], [30], [31] for the music 
recommendation and expending literature review scope to 

cover more algorithms. 
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