
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Developing and Comparing Machine Learning Algorithms for Music

Recommendation

Yoon-Teck Bau a,*, Puteri Ainna Ezzurin Mohd Reza a, Kian-Chin Lee a

Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Selangor, 63100, Malaysia

Corresponding author: ytbau@mmu.edu.my

Abstract—The increasing prevalence of song skipping in music streaming applications negatively impacts user satisfaction and

subscription retention. Dissatisfaction often arises when users encounter songs they actively dislike, highlighting a gap between user

expectations and the value offered by these services. To address this, music recommendation algorithms were researched and developed.

Initially, data collection is started. Data collection is through the Spotify application programming interface. This initiation step sets

the stage for subsequent exploratory data analysis. Exploratory data analysis examined the collected data to plot a bar chart for total

songs released over the years, plot a bar chart for the popularity of songs based on the year it is released, visualize word cloud on

frequently mentioned music genres, chart count plot for explicit songs, and chart count plot for song modalities. Data preprocessing

involved cleaning the data, handling missing values, and checking for null values to prepare the application of machine learning

algorithms. Four machine learning algorithms were applied, k-means, mini-batch k-means, Gaussian mixture, and density-based spatial

clustering of applications with noise (DBSCAN), to analyze musical features like rhythm, tempo, and other relevant music attributes.

The results showed that the k-means outperforms all other algorithms evaluated regarding recommendation quality, as measured by

the Calinski-Harabasz score. Based on the evaluation, the best machine learning will then be applied to identify similarities between

songs and be used to generate music recommendation results.

Keywords—Machine learning algorithms; music recommendation; Spotify API; K-means; mini batch k-means; gaussian mixture.

Manuscript received 10 Apr. 2024; revised 28 Jun. 2024; accepted 11 Oct. 2024. Date of publication 30 Nov. 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The rapid expansion of music streaming has changed how

we enjoy music, but keeping users happy and maintaining

subscriptions are still significant challenges. A big factor is a

song skipping, where users frequently encounter tracks they

dislike, interrupting the smooth, personalized experience they

expect. This frustration often leads to canceled subscriptions,
as users feel the service needs to meet their needs. At the heart

of the problem is the limitation of current music

recommendation systems. While they provide suggestions,

these systems often need to fully capture each listener's

unique taste, resulting in a playlist filled with songs that do

not hit the mark. This research proposes a more personalized

approach to music recommendation. By aligning

recommendations more closely with individual preferences

and reducing exposure to disliked tracks, we aim to improve

the listening experience, minimize frustration, and,

ultimately, encourage long-term subscription loyalty in the
music streaming world.

The research question is: How will this research develop a

music recommendation that leverages the best algorithm

analyzing song similarities based on musical features such as

energy, tempo, and listening history to generate personalized
recommendations, minimize song skipping, and enhance user

satisfaction within music streaming services? By effectively

addressing this question, this research will contribute to a

more enjoyable and valuable music streaming experience for

users, thereby boosting the success of music streaming service

providers.

A. Music Recommendation and Existing Algorithms

Recommender systems have undergone extensive

development over the years and have been implemented
across a range of problem domains: health [1], [2], [3], [4],

[5] , e-commerce [6], [7], [8], [9], tourism [10], [11], [12],

[13], movie [14], [15], [16], [17], and more [18], [19], [20].

Music recommendations have played a significant role in

the streaming industry, aiming to bring listeners a genuinely

personalized experience based on their unique tastes and

2002

JOIV : Int. J. Inform. Visualization, 8(3-2): IT for Global Goals: Building a Sustainable Tomorrow - November 2024 2002-2012

listening habits. These systems analyze the music and each

user’s preferences, using sophisticated algorithms to suggest

songs that feel like a natural fit. Thanks to these

advancements, listeners now receive recommendations

beyond the top charts, matching their style and mood and

making music discovery more accessible and enjoyable.

Existing literature has extensively explored the use of

recommendation algorithms in music recommendation

systems. Referring to Fig. 1, there are four categories of

recommendation algorithms which are collaborative filtering,
content-based, hybrid, and machine-learning [21], [22]. They

have been widely studied and implemented in various music

recommendations.

Fig. 1 Categories of Recommendation Algorithm

A collaborative filtering algorithm analyses user behavior

and preferences to recommend music that similar users have
enjoyed. Content-based algorithms, on the other hand, focus

on the characteristics of the music itself to make

recommendations. For example, genre, tempo, and rhythm.

To exploit the strengths of both techniques, the hybrid method

combines collaborative filtering and a content-based

algorithm. Machine learning algorithms like K-means are

utilized within collaborative filtering, content-based, and

hybrid recommendation algorithms to learn patterns and

relationships. This section explores the existing

recommendation algorithms and their effectiveness.

1) Collaborative Recommendation Filtering:

Collaborative filtering is one of the most widely used
approaches to music recommendation algorithms.

Collaborative filtering is an approach to filtering items by

considering the preferences of similar users, aiming to

recommend items that align with a particular user's tastes [23].

There are two types of collaborative filtering: user-based and

item-based.

An active user for whom this recommendation is directed

in a user-based collaborative filtering algorithm. The

collaborative filtering algorithm will first search for similar

users. This user shares active users' rating patterns with other

users. Collaborative filtering is based on this similarity in

factors such as history, preferences, and user decisions when

purchasing, viewing, or enjoying content. For example, in

Fig. 2 below, if user A's preferences for fruits match the

highest number of fruits to user C's, they have similar

interests. Therefore, user C will also enjoy mango and grapes

that the user has yet to taste, as user A prefers.
In the item-based approach, it is also called item-item

collaborative filtering. This is a type of recommendation

algorithm that considers the similarity between items to

recommend products. Illustrating the mechanics of item-

based collaborative filtering through an example. Fig. 3 below

consists of three individuals: A, B, and C. User A has

expressed preferences for mango, pineapple, and grape, while

user B enjoys pineapple and grape. On the other hand, user

C's liking extends to pineapple and banana. In item-based

collaborative filtering, the algorithm identifies item

similarities based on shared preferences between two users.

Fig. 2 User-based collaborative filtering approach

Fig. 3 Item-based collaborative filtering approach

Now, when considering recommendations for user C, the
algorithm leverages the similarity between pineapple and

grape, which are liked by both user A and user B. Since user

C likes pineapple but has not been exposed to grapes, the

item-based collaborative filtering algorithm recommends

grapes to user C. This recommendation is grounded in the

assumption that if two items are favored by other users,

introducing an item liked by other users but not yet

experienced by one user can enhance the recommendation

experience.

One of the primary benefits of these recommendation

algorithms is their simplicity in delivering tailored material
and their flexibility in accommodating evolving user

preferences. However, conventional collaborative filtering

approaches have drawbacks, especially when it comes to

resolving the cold-start issue and dataset sparsity.

Fareed et al. [24] involves integrating social connections

among users into the collaborative filtering algorithm. The

performance metric used for evaluating their recommendation

algorithm is precision. Their proposed system is in its

application, which is in the movie recommendation domain.

Tian et al. [22] employ k-means for their recommendation

algorithm. Data sparsity arises when the user-item matrix,

representing interactions between users and items, is
extensive and contains numerous missing data points. In this

context, the user-item matrix can become vast and sparse in

university library books, where the available book collection

2003

is enormous. The sparsity of the user-book matrix implies that

most users have only read a small subset of the overall

database, resulting in a high percentage of missing data. K-

means is a technique used to group similar objects based on

their characteristics. By applying k-means to the user-item

matrix, the aim is to group users and books so that objects

within the same cluster are more similar to each other than

those in other clusters.

The study by Movafegh and Rezapour [25] used hybrid

based on a collaborative filtering recommendation algorithm.
Two hybrid approaches introduced were k-means with

particle swarm optimization and singular value

decomposition with a genetic algorithm. Their two proposed

methods exhibited performance using three performance

metrics: precision, recall, and mean absolute error. Their

study did not specify the domain of the recommender system

but focused solely on hybrid based on the collaborative

filtering approach.

2) Content-based Recommendation Algorithm: In the

realm of information retrieval and recommendation systems,

content-based algorithms serve as a methodology for
constructing recommender systems by considering both user

preferences and the attributes of items. Typically, a collection

of features distinguishes each item, and subsequent

recommendations are generated by evaluating the cumulative

value of these features within the user's historical interactions

[26]. Unlike collaborative filtering, which relies on user-item

interactions and similarities among users, content-based

algorithms focus on the attributes and features of items

themselves.

Content-based algorithms are widely used in various areas,

such as online shopping, music streaming, news, etc. It has a

good track record of providing reliable and proper

recommendations, particularly for specific or specialized

items. The essence of content-based algorithms is creating

user profiles and item representations based on relevant

features. These features could range from textual content,

metadata, or other measurable characteristics describing the
items. By leveraging natural language processing techniques,

content-based algorithms can discern patterns and

preferences, delivering recommendations that align with

users' tastes and preferences.

To illustrate this concept, consider an example of how a

content-based recommendation system could operate in the

context of suggesting fruits. Based on Fig. 4 below, imagine

four fruits are available, and a user has already tasted and

enjoyed the first two fruits, strawberry and blueberry. The

recommendation model automatically suggests the third fruit,

raspberry, instead of the fourth, banana, as it is more akin to

the first two fruits. This resemblance can be computed based
on various features such as the type of fruit, its color, taste,

size, and other relevant characteristics.

Content-based filtering offers several advantages, the

primary one being avoiding the "cold start" problem.

Collaborative filtering can encounter challenges in scenarios

where a new website or community needs more users and

more user connections. While content-based algorithms do

require initial inputs from users to initiate recommendations,

they typically provide higher-quality early recommendations

compared to collaborative systems. This is because content-

based algorithms do not necessitate the accumulation and

correlation of many data points before reaching an optimized

state.

Fig. 4 Recommendation using content-based algorithm

Content-based algorithms ensure transparent

recommendations for users, enhancing trust by providing

insights into the reasoning behind suggestions. In contrast,

collaborative filtering may present instances where users find

it challenging to comprehend the basis for specific

recommendations. For instance, consider a scenario where a

group of users who frequently purchase hiking gear also

happens to buy camping tents. A collaborative system might

suggest camping tents to users who bought hiking gear, even
if they have never expressed interest in or purchased such

products.

Another example could be in the context of book

recommendations. Suppose a group of users who enjoy

mystery novels also happen to buy cookbooks. In that case, a

collaborative system might recommend cookbooks to other

users who like mystery novels but may have different culinary

interests. These examples highlight how content-based

algorithms offer a more transparent and understandable

recommendation process than collaborative filtering.

Akshay et al. [26] introduced a recommendation algorithm
that clusters songs according to implicit properties perceived

by the listener, including timbre and acoustics. With song and

listener properties, their algorithm could deliver

recommendations tailored to the song history and user

preferences. Before integrating the k-means algorithm into

their recommendation algorithm, the researchers employed

the elbow method to determine the number of clusters.

Ahuja et al. [27] advocated the integration of two

algorithms, k-means, and k-nearest neighbor, to content-

based algorithms in movie recommender systems, aiming to

add personalization by considering similar users' preferences.

Their two recommendation algorithms leveraged the
preferences of users with similar tastes. The Movielens

dataset, which comprises a diverse collection of movie ratings

and user feedback, is utilized. Root mean squared error was

the performance metric to compare their two recommendation

algorithms.

3) Hybrid Recommendation Algorithm: A hybrid

recommendation system is a unique approach that seamlessly

merges content-based and collaborative filtering methods.

Combining these two techniques addresses the limitations

encountered when utilizing them individually. Implementing

hybrid recommender systems spoils choices, allowing for

various approaches.

2004

One implementation method involves generating

predictions separately using content and collaborative

methods and then combining these predictions. Alternatively,

the hybrid system can integrate the capabilities of

collaborative methods into a content-based approach and vice

versa. This hybrid recommendation algorithm increases

complexity in adapting to the specific challenges posed by

different recommendation scenarios.

Afoudi et al. [23] introduced a recommendation algorithm

that employed a hybrid approach, seamlessly integrating
collaborative filtering and content-based algorithms. It is then

supervised by the ranking list generated by the self-organizing

map neural network technique. The approach involved

merging scores from all models, capitalizing on the individual

strengths of each method.

According to [21], a hybrid recommendation algorithm that

integrates collaborative filtering and content-based

algorithms based on deep learning is introduced. Their hybrid

recommendation algorithm incorporated auxiliary

information about users and items into a deep neural network

architecture with insufficient historical data. The paper
evaluated their only proposed hybrid recommendation

algorithm in terms of mean absolute error, mean squared

error, and root mean squared error.

II. MATERIALS AND METHOD

A. Machine Learning Algorithms

To implement machine learning to recommend music

effectively, it’s crucial to explore different algorithms to see

which performs best for the dataset and the specific goals of

the recommendation. This means testing various approaches,
such as k-means, mini-batch k-means, Gaussian mixture, and

density-based clustering. By carefully evaluating each

algorithm with the right metrics and visualization tools, we

can find the one that most accurately picks up on the patterns

and similarities in the data. This step-by-step approach

ensures that the chosen algorithm will add real value to the

music recommendation system, giving users a truly

personalized experience.

1) K-Means: K-means are an unsupervised learning

method to organize unlabeled datasets into distinct clusters.

In this technique, the parameter "k" denotes the predetermined
number of clusters to be formed. For instance, setting k=2 will

result in two clusters, while k=3 will yield three clusters, and

so forth. This approach enables the algorithm to identify

autonomously, and group data points into categories without

requiring prior training. Functioning as a centroid-based

algorithm, k-means assigns each cluster a centroid, with the

primary objective being to minimize the distance between

data points and their respective centroids. The algorithm

iteratively processes the unlabeled dataset, dividing it into k

clusters and refining them until optimal clustering is achieved.

Notably, the value of k must be specified beforehand for this

method.

The k-means algorithm essentially carries out two primary

tasks. Firstly, it iteratively determines the optimal locations

for k centroids, typically by minimizing the total within-

cluster variance through an iterative approach. Secondly, it

assigns each data point to the nearest centroid, thereby

creating clusters characterized by shared similarities among

their constituent data points while maintaining distinctiveness

from other clusters.

Before proceeding with implementing k-means on the

dataset, the elbow method will be employed to ascertain the

optimal number of clusters. The elbow method is generally

applied to identify the optimum number of clusters in a

dataset. The method derives its name from the shape of the

plotted curve, which resembles an elbow or a bend. The

fundamental idea behind the elbow method is to evaluate the
algorithm performance for different numbers of clusters and

observe how the inertia changes with respect to the number of

clusters.

The elbow method relies on the within-cluster sum of

squares (WCSS), quantifying the total variability within

clusters. WCSS, representing the sum of squared distances

from each data point to its assigned cluster centroid,

encapsulates how tightly grouped the data points are within

clusters. For instance, when considering “k” clusters, the

formula to compute WCSS involves summing the squared

distances of each point to its respective cluster center.

 ���� � Σ�
�Σ	
 ��
� ��������������

�
 (1)

The elbow method plots the number of clusters against

their corresponding inertia values. The inertia typically

decreases as the number of clusters increases because more

clusters allow the algorithm to fit the data better. However,

the decrease in inertia tends to slow down as the number of

clusters becomes excessively large. Inertia decreases because

adding more clusters may lead to overfitting, where each data

point has its cluster, resulting in minimal improvement in

algorithm quality. The main objective of the elbow method is

to determine at a given point in the plot where the rate of

inertia reduction significantly slows and produces an apparent

elbow or curve bending. This point indicates a balance
between minimizing inertia and avoiding excessive

complexity in the clustering model. The optimal number of

clusters is often chosen as the value corresponding to this

elbow point.

Fig. 5 Example of Elbow Method

As seen in Fig. 5, the optimal number of clusters was

determined to be two after using the elbow method to analyze

the data. This decision stemmed from identifying a prominent
inflection point, or elbow in the plotted curve, indicating a

notable deceleration in the rate of decline in WCSS.

2005

2) Gaussian Mixture: Gaussian mixture is a

probabilistic model used for clustering data points into

multiple groups based on their similarity. Gaussian mixture

clustering allows for soft assignment, where data points can

belong to multiple clusters with varying membership

probability, unlike traditional clustering algorithms that

assign each point to only one cluster. This method assumes

that the data distribution comprises multiple Gaussian

distributions, each representing a distinct cluster. During the

clustering process, the algorithm iteratively adjusts the
parameters of these Gaussian distributions to maximize the

likelihood of the observed data. This optimization process

involves estimating the mean and covariance matrix of each

Gaussian distribution and the mixing coefficients that

determine the relative importance of each distribution.

Gaussian mixture clustering is particularly useful when

dealing with complex data distributions that a single Gaussian

distribution cannot effectively model.

3) Density-based Spatial Clustering of Applications

with Noise: Density-based spatial clustering of applications

with noise (DBSCAN) is a non-parametric machine learning
algorithm that groups closely packed data points while

distinguishing outliers in a dataset. It is considered a non-

parametric machine learning algorithm because it does not

make explicit assumptions about the underlying data

distribution. It operates based on the density of data points

rather than assuming a predefined number of clusters like k-

means. The fundamental concept behind DBSCAN is

identifying core, border, and noise points within the dataset.

At the outset, DBSCAN randomly selects a point from the

dataset and examines its neighborhood based on a specified

distance threshold epsilon (ε). The selected point is labeled as

a core point if the number of points within this neighborhood

exceeds a predefined threshold. Core points are then used to

expand clusters by adding neighboring points within the ε

radius. Any point that falls within the ε radius of a core point

is considered part of the same cluster. Border points are those

within the ε radius of a core point but do not have enough
neighbors to be considered core points. These points are

assigned to the cluster of their respective core points. Noise

points neither belong to any cluster nor meet the criteria to be

considered border points. They are typically outliers or points

that do not conform to the density characteristics of any

cluster. By iteratively expanding clusters from core points and

merging neighboring clusters, DBSCAN effectively

delineates clusters of varying shapes and sizes without

requiring prior knowledge of the number of clusters in the

dataset.

4) Mini-batch k-means: Mini-batch k-means represent

a modification of the k-means algorithm tailored for enhanced
efficiency with a large dataset. Unlike the original k-means

algorithm, which handles the entire dataset simultaneously,

mini-batch k-means operates on small batches of data

iteratively. This approach mitigates the computational

expenses associated with processing large datasets. This

makes it particularly suitable for datasets that are too large to

fit into memory or that have high-dimensional feature spaces.

The fundamental concept behind mini-batch k-means

revolves around updating cluster centroids by utilizing

subsets, or mini-batches, of the input data rather than the

entire dataset in each iteration. This strategy aims to expedite

convergence and alleviate computational burdens,

particularly in scenarios where the dataset exceeds memory

constraints. With mini-batch k-means, a new random sample

of the dataset is selected for cluster updates in each iteration,

repeating until convergence is achieved. Each mini-batch

contributes to cluster updates through an approximate

combination of prototypes and data results governed by a

decreasing learning rate over iterations. This learning rate

diminishes inversely with the number of iterations, signifying
a reduced impact of new data on cluster adjustments as the

algorithm progresses. Convergence occurs when consecutive

iterations yield no further changes in cluster assignments.

Despite the computational time savings offered by the

algorithm, there are potential trade-offs that may result in a

decline in cluster quality.

B. Performance Metric

In evaluating machine learning algorithms, one commonly
used performance metric is the Calinski-Harabasz score [28].

This score, alternatively referred to as the variance ratio

criterion, computes the ratio between the sum of dispersion

among clusters and the dispersion within clusters for a

specific clustering solution. The Calinski-Harabasz score

measures clustering quality and evaluates how well-separated

the clusters are. It's calculated by dividing the dispersion

among clusters by the dispersion within clusters. The higher

the Calinski-Harabasz score, the better the solution.

Mathematically, the Calinski-Harabasz (CH) score can be

expressed as:

 ����� � � �!"�

� �#"�
 × �%�

�%&
 (2)

where k is the number of clusters, n is the total of data points,

tr(Bk) is the trace of the between-cluster dispersion matrix,
and tr(Wk) is the trace of the within-cluster dispersion matrix.

The between-cluster dispersion matrix, Bk, as shown by the

third equation below, measures the distance between cluster

centroids, while the within-cluster dispersion matrix, Wk as

demonstrated by the fourth equation below, measures the

distance within clusters, �' is the total number of data points in

cluster q, �' is the set of all data in cluster q, �(is the center point

of all data, and T is the transpose operation for the matrix [28].

)� � ∑ �'
�
'+& ��' − �(���' − �(�- (3)

 �� � ∑ ∑ �. − �(��. − �(�-
/∈
1

�
'+& (4)

III. RESULT AND DISCUSSION

The data collection process began by outlining the dataset’s
origins and key features, laying a solid foundation for

analysis. Through exploratory data analysis (EDA), we

discovered patterns, trends, and relationships in the data,

offering insights to guide our next steps. The data then

underwent careful preparation, including cleaning, handling

any missing or null values, and readying it for use in machine

learning. We chose four machine learning algorithms to build

the recommendation system based on their strengths. K-

means and mini-batch k-means are ideal for large datasets,

clustering data into similar groups quickly and efficiently.

Gaussian mixture models add flexibility, capturing complex,

2006

overlapping clusters. DBSCAN, on the other hand, excels in

finding clusters of various shapes and densities and can

handle noise well. After testing each algorithm, we evaluated

their performance on the dataset to determine the best fit.

With these results, the recommendation system can generate

music suggestions tailored to users’ unique tastes, completing

the journey from data collection to personalized music

recommendations.

A. Data Collection

Fig. 6 below shows data collection through the web

application programming interface (API), which is Spotify

API, encompassing a broad spectrum of music attributes and

associated metadata. This process involves extracting

multifaceted information pertinent to songs, albums, and

artists, capturing details such as track duration, tempo, key,

mode, and acoustics. Notably, the dataset comprises the top

songs of 12 years spanning from 2013 to 2024, which have

been combined to create this dataset. The dataset has 20
features. Duplicated songs were dropped, and the dataset was

left with 1003 songs. This structure enables detailed analysis

of various musical attributes and metadata, supporting

insights into music trends and characteristics within the

dataset.

Fig. 6 Dataset of music collected each year from 2013 to 2024

In the dataset, 20 features as shown in Fig. 7, have been

extracted and displayed for analysis. These include

information such as the name of the song ('name'), the album
it belongs to ('album'), and the artist who created it ('artist').

Additionally, details like the release date ('release_date') and

the length of the song in seconds ('length') provide temporal

context. Other attributes like 'popularity', 'danceability',

'explicit', 'acousticness', 'energy', 'instrumentalness', 'liveness',

'loudness', 'speechiness', 'tempo', 'time_signature', 'valence',

'key', 'mode', and 'genres' offer insights into various musical

characteristics and metadata. Each of these columns serves as

vital information for further exploration and analysis,

enabling this research to delve deeper into the dynamics of

music and its attributes.

Fig. 7 Column names for the dataset

The dimensionality of the dataset in Fig. 8 indicates that it

contains 1003 songs and 20 features. In other words, there are
1003 songs in the dataset, each with 20 different attributes or

features. This information provides an overview of the size

and structure of the dataset, which is essential for

understanding the scope of the analysis and the amount of data

available for exploration.

Fig. 8 Dimensionality of dataset

B. Exploratory Data Analysis

Fig. 9 provides information for the song years, sorted by
the number of released songs. As illustrated in Fig. 10 below,

the bar chart indicates variations in the number of songs

released across different years, spanning from 1985 to 2024.

In the exact figure, Fig. 10 provides information about top

songs on the number of released songs sorted by year. In 2016,

the highest number of songs were released, with a count of

112, followed closely by 2017, with a count of 108, and in

2020, with a count of 101 songs. The year 2021 saw a slightly

lower count of 82 released songs. On the other hand, years

like 2019 had a lower count of 29 songs. As the data collection

progresses into more recent years, there is a noticeable
decrease in the number of songs released, with only eight

songs recorded up to March 2024. There are sporadic releases

in earlier years, such as 1985, 2002, 2004, and 2011, each with

only one song. In summary, the visualization sheds light on

the distribution of song releases from 1985 to 2024, reflecting

the trends and preferences within the music industry's top

selections based on listeners.

Fig. 9 Sorted number of released songs for the years

Fig. 10 Bar chart for the number of released songs sorted by year

2007

The word cloud visualization in Fig. 11 offers a compelling

snapshot of the most mentioned genres within the dataset,

showcasing the prominence of pop, hip-hop, and dance-pop.

These genres emerge as dominant themes, characterized by

more extensive and bolder representations within the word

cloud, indicating their frequent occurrence and prevalence in

the dataset. This visualization highlights the popularity of

these genres and provides insight into the music industry's

trends and preferences over the years.

Fig. 11 Word cloud visualization on most mentioned genres

Based on the observations made, the Fig. 12 visualization

illustrates that songs released in 2002 that made it into the top

songs exhibit the highest popularity scores. This suggests a

notable resonance with audiences and widespread acclaim for
the music released in 2002. Additionally, songs from 2004

and 2024 also demonstrate considerable popularity, though to

a slightly lesser extent compared to those from 2002.

Fig. 12 Popularity of songs based on the year it is released

The accompanying visualizations in Fig. 13 visually

represent this dataset distribution, making it easier to compare

the counts of explicit song lyrics and minor-major song

modes. The bar plot for the 'explicit' attribute showcases the

frequency of explicit and non-explicit song lyrics, while the

bar plot for the 'mode' attribute illustrates the occurrence of
music key modes, which are minor and have zero value, and

major, which has the one value in the dataset.

Fig. 13 Count plot for explicit and mode column

The collected data presents the counts of explicit and mode

values. For the 'explicit' attribute in Fig. 14, there are 642

occurrences where the value is False, indicating that most

songs in the dataset do not contain explicit content.

Conversely, 361 occurrences where the value is True,

suggesting that a smaller portion of the songs feature explicit

content.

Fig. 14 Value counts for explicit song lyrics column

The value counts for the 'mode' attribute in Fig. 15 reveals

that mode 1 appears 594 times, while mode 0 appears 409

times. The 'Mode' attribute typically represents the modality

of the song, with Mode 1 corresponding to primary keys and

Mode 0 to minor keys in music theory. This distribution
indicates that songs with a major essential mode (mode 1) are

more prevalent in the dataset than those with a minor key

mode (mode 0).

Fig. 15 Value counts for mode column

C. Data Preprocessing

The provided dataset information in Fig. 16 reveals a

comprehensive dataset overview comprising 1003 entries

across 20 columns. Through an examination of the data, it's
evident that no missing values are present in any of the

columns, ensuring the completeness and integrity of the

dataset. Each column contains non-null entries, indicating that

all necessary information is available for analysis. The

absence of null values simplifies the analysis process,

eliminating the need for data imputation or handling missing

values and allowing for a more accurate and efficient dataset

exploration.

2008

Fig. 16 Overview of non -null value count per column

Upon inspection, no duplicate samples have been identified

within the dataset as shown in Fig. 17. This suggests that each

entry within the dataset is unique, devoid of any repetitions or

redundancies. The absence of duplicate samples ensures the

integrity and accuracy of the dataset, as each observation

represents distinct information without any unnecessary
replication.

Fig. 17 Findings of any duplicate value in dataset

D. K-means Algorithm

In conducting the elbow method to determine the optimal

number of clusters, k, for the dataset, it was observed that the
inertia, which represents the sum of squared distances of

samples to their closest cluster center, decreased as the

number of clusters increased. However, as seen in Fig. 18

there was a noticeable inflection point at 3-rd cluster where

the rate of decrease in inertia significantly slowed down. This

inflection point is often referred to as the "elbow" of the plot.

This finding suggests that 3-rd cluster is the most suitable

choice for partitioning the data, as it strikes a balance between

capturing meaningful patterns within the data while

minimizing redundancy. By selecting 3-rd cluster or k is 3, a

more effective solution for the given dataset can be achieved.

By utilizing the k-means algorithm with number of clusters
equals to 3 and fitting it to the preprocessed data, this model

successfully partitioned the data into three distinct clusters

based on the similarity of data points. Each cluster is

represented by a centroid, and data points are assigned to the

cluster with the nearest centroid. This approach allows for the

identification of underlying patterns and structures within the

data, enabling the grouping of similar data points together. By

setting the random seed for reproducibility, the results

obtained from the clustering process can be replicated

consistently.

Fig. 18 Elbow method for K-means

Fig. 19 K-means parameters

E. Density-based Spatial Clustering of Applications with

Noise Algorithm

Through a systematic evaluation of different parameter

combinations for the density-based spatial clustering of

applications with noise (DBSCAN) algorithm focusing on
two parameters which are epsilon (eps) and minimum samples

(min_samples), the analysis aimed to identify the optimal

configuration that maximizes clustering quality. By utilizing

the Calinski-Harabasz score as a metric to assess clustering

performance, the study sought to pinpoint the parameter

values that lead to well-defined and distinct clusters within the

dataset. The iterative process involved calculating the

Calinski-Harabasz score for varying eps and min_samples

parameters, with the ultimate objective of determining the

parameters that yield the highest Calinski-Harabasz score,

indicative of superior clustering outcomes.

Fig. 20 Calinski-Harabasz score for DBSCAN parameter tuning

Following this comprehensive analysis in Fig. 20, it was

determined that an eps value of 0.6 paired with a minimum

number of samples value of 27 emerged as the most suitable
combination of parameters for the DBSCAN algorithm, as it

produced the highest Calinski-Harabasz score. These

optimized parameters selection ensures that the DBSCAN

algorithm effectively captures the underlying structures and

2009

patterns present in the dataset, leading to more accurate and

meaningful clustering results. The lines graph visualization of

the Calinski-Harabasz scores across parameter variations for

DBSCAN below provides valuable insights into the impact of

hyperparameters tuning on clustering performance.

By initializing the DBSCAN algorithm with an eps value

of 0.6 and a minimum number of samples value of 27 as seen

in Fig. 21. The chosen parameter values of eps and

min_samples determine the distance threshold for defining

neighborhood points and the minimum number of points
required to form a dense region.

Fig. 21 DBSCAN parameters

F. Mini Batch K-means Algorithm

In the findings of the mini-batch k-means algorithm, it was

determined through the elbow method that the optimal

number of clusters is 4 which can be seen in Fig. 22. This
suggests that the data points can be effectively grouped into

four distinct clusters based on their similarities. By

identifying this optimal cluster number, the algorithm can

efficiently partition the data into meaningful groups, aiding in

data analysis and pattern recognition.

Fig. 22 Elbow method for mini batch k-means

Mini batch k-means algorithm is initialized with a specified
number of clusters to 4 and a random state for reproducibility

as seen in Fig. 23. This process involves iteratively updating

the cluster centroids based on mini-batches of the input data,

making it computationally efficient for large dataset. By

setting the number of clusters to 4, the algorithm will aim to

partition the data into four distinct groups based on their

similarities.

Fig. 23 Mini batch k-means parameters

G. Gaussian Mixture Algorithm

In Fig. 24, the Gaussian mixture model is initialized with a

specified number of components set to 20 to account for the

number of features in the dataset, and a random state is

defined for reproducibility. By utilizing a Gaussian mixture

model, the algorithm aims to model the underlying

distribution of the data using a combination of Gaussian

distributions, allowing for more flexible and complex cluster

shapes compared to traditional k-means clustering. The

training process involves estimating mixtures of parameters

using the Gaussian mixture algorithm based on the input data.

Fig. 24 Gaussian mixture parameters

H. Performance Scores for Four Machine Learning

Algorithms

The Calinski-Harabasz score serves as a crucial metric for

assessing the efficacy of algorithms in identifying meaningful

patterns within data. A higher score indicates better-defined

and more separate clusters, signifying the algorithm's ability

to capture underlying structures effectively.

K-means achieved a Calinski score of 680.081410 which

suggests it performed the best among the four machine

learning algorithms. Similarly, the mini batch k-means
algorithm achieved a score of 668.276546, showcasing that

the model ranked second among these algorithms.

Comparatively, the Gaussian mixture algorithm yielded a

Calinski score of 595.570594, indicating that the model

ranked third among these algorithms. However, DBSCAN

scored the lowest at 327.996767, suggesting challenges, likely

due to its sensitivity to density variations and noise.

Fig. 25 Calinski-Harabasz score for four algorithms

The bar plot visualizing the Calinski-Harabasz scores for

the four machine learning algorithms. It provides a clear

comparison of their performances. The plot illustrates the

relative strengths of each algorithm, with the length of each

bar representing the corresponding Calinski-Harabasz score.

This visualization allows for an immediate and intuitive

understanding of the machine learning performances, aiding

in the identification of the most effective algorithm.

The K-means excelled due to its ability to create compact
and well-separated clusters, aligning well with the Calinski-

Harabasz score criteria, which rewards such cluster structures.

The features of the music dataset, including audio

characteristics, formed spherical clusters that K-means

effectively exploited. The simplicity and efficiency of K-

means allowed for quick convergence to stable clusters,

offering a clear structure evaluated highly by the Calinski-

Harabasz score. Additionally, K-means required fewer

parameters to tune, ensuring more consistent performance

2010

across different settings. This combination of factors led to

the best performance of K-means among three other

algorithms.

Fig. 26 Bar plot visualization for Calinski-Harabasz scores for all four

machine learning algorithms

I. Music Recommendation using K-means Algorithm

The decision to utilize the k-means algorithm in the music

recommendation was made based on the evaluation of various
machine learning algorithms using the Calinski-Harabasz

score. Among the four machine learning algorithms

considered, k-means emerged as the top performer, boasting

the highest Calinski-Harabasz score.

Fig. 27 Music recommendation results for the user who listens to the song

named “Easy On Me”

By opting for k-means for the music recommendation, it is

capitalizing on its capacity to discern meaningful patterns and

similarities in the dataset, thereby enhancing the precision and

relevance of the recommendation results generated.

The music recommendation using k-means is designed to

accept unique inputs based on the song name and its released

year, and subsequently provide music recommendation

results of similar songs based on features within the dataset.

By leveraging the best machine learning algorithm, which is

k-means, the k-means algorithm identifies songs with
comparable attributes, including musical characteristics and

genre. K-means algorithm ensures that music

recommendation results are relevant. By surfacing songs with

similar attributes based on what users listen to, the algorithm

fosters engagement and satisfaction, ultimately enhancing the

overall listening experience. Fig. 27 and Fig. 28 below are the

two different examples of music recommendation results

based on what users listening to.

Fig. 28 Music recommendation results for the user who listens to the song

named “a thousand years”.

IV. CONCLUSION

In summary, analyzing the performance of different

machine learning algorithms—k-means, mini batch k-means,

Gaussian mixture, and DBSCAN—gave us valuable insights

into their strengths. The evaluation using the Calinski-
Harabasz score revealed k-means as the top performer, with

its high score indicating an effective grouping of similar data

points. Based on this, k-means was chosen for our music

recommendation system because of its strong ability to

uncover patterns and similarities that enhance the relevance

of song suggestions to user preferences. On the other hand,

DBSCAN faced limitations, particularly with varying cluster

densities and high-dimensional data, where density-based

clustering is less effective.. Moving forward, further

exploration of applying other algorithm type such as

integrating deep learning models [29], [30], [31] for the music
recommendation and expending literature review scope to

cover more algorithms.

REFERENCES

[1] P. Chinnasamy, W.-K. Wong, A. A. Raja, O. I. Khalaf, A. Kiran, and

J. C. Babu, “Health Recommendation System using Deep Learning-

based Collaborative Filtering,” Heliyon, vol. 9, no. 12, p. e22844, Dec.

2023, doi: 10.1016/j.heliyon.2023.e22844.

[2] S. Forouzandeh, M. Rostami, K. Berahmand, and R. Sheikhpour,

“Health-aware food recommendation system with dual attention in

heterogeneous graphs,” Computers in Biology and Medicine, vol. 169,

p. 107882, Feb. 2024, doi: 10.1016/j.compbiomed.2023.107882.

[3] R. F. T. Ceskoutsé, A. B. Bomgni, D. R. Gnimpieba Zanfack, D. D.

M. Agany, T. Bouetou Bouetou, and E. Gnimpieba Zohim, “Sub-

clustering based recommendation system for stroke patient:

Identification of a specific drug class for a given patient,” Computers

in Biology and Medicine, vol. 171, p. 108117, Mar. 2024,

doi:10.1016/j.compbiomed.2024.108117.

[4] S. Siji Rani, P. Shilpa, and A. G. Menon, “Enhancing Drug

Recommendations: A Modified LSTM Approach in Intelligent Deep

Learning Systems,” Procedia Computer Science, vol. 233, pp. 872–

881, 2024, doi: 10.1016/j.procs.2024.03.276.

[5] I. Ahmed, M. Ahmad, A. Chehri, and G. Jeon, “A heterogeneous

network embedded medicine recommendation system based on

LSTM,” Future Generation Computer Systems, vol. 149, pp. 1–11,

Dec. 2023, doi: 10.1016/j.future.2023.07.004.

[6] G. Liu, “An ecommerce recommendation algorithm based on link

prediction,” Alexandria Engineering Journal, vol. 61, no. 1, pp. 905–

910, Jan. 2022, doi: 10.1016/j.aej.2021.04.081.

[7] M. Mao, S. Chen, F. Zhang, J. Han, and Q. Xiao, “Hybrid ecommerce

recommendation model incorporating product taxonomy and

2011

folksonomy,” Knowledge-Based Systems, vol. 214, p. 106720, Feb.

2021, doi: 10.1016/j.knosys.2020.106720.

[8] R. V. Karthik and S. Ganapathy, “A fuzzy recommendation system for

predicting the customers interests using sentiment analysis and

ontology in e-commerce,” Applied Soft Computing, vol. 108, p.

107396, Sep. 2021, doi: 10.1016/j.asoc.2021.107396.

[9] B. Walek and P. Fajmon, “A hybrid recommender system for an online

store using a fuzzy expert system,” Expert Systems with Applications,

vol. 212, p. 118565, Feb. 2023, doi: 10.1016/j.eswa.2022.118565.

[10] Y. Yuan and W. Zheng, “Your trip, your way: An adaptive tourism

recommendation system,” Applied Soft Computing, vol. 154, p.

111330, Mar. 2024, doi: 10.1016/j.asoc.2024.111330.

[11] W. Zheng, Z. Liao, and Z. Lin, “Navigating through the complex

transport system: A heuristic approach for city tourism

recommendation,” Tourism Management, vol. 81, p. 104162, Dec.

2020, doi: 10.1016/j.tourman.2020.104162.

[12] Z. Abbasi-Moud, H. Vahdat-Nejad, and J. Sadri, “Tourism

recommendation system based on semantic clustering and sentiment

analysis,” Expert Systems with Applications, vol. 167, p. 114324, Apr.

2021, doi: 10.1016/j.eswa.2020.114324.

[13] Z. Abbasi-Moud, S. Hosseinabadi, M. Kelarestaghi, and F. Eshghi,

“CAFOB: Context-aware fuzzy-ontology-based tourism

recommendation system,” Expert Systems with Applications, vol. 199,

p. 116877, Aug. 2022, doi: 10.1016/j.eswa.2022.116877.

[14] G. Behera and N. Nain, “Collaborative Filtering with Temporal

Features for Movie Recommendation System,” Procedia Computer

Science, vol. 218, pp. 1366–1373, 2023,

doi:10.1016/j.procs.2023.01.115.

[15] N. G. K, K. T. V. Durga, N. Hrishita, R. R, and M. Panda, “A Cross-

Platform Movie Filtering and Recommendation System Using Big

Data Analytics,” Procedia Computer Science, vol. 235, pp. 81–90,

2024, doi: 10.1016/j.procs.2024.04.008.

[16] S. Airen and J. Agrawal, “Movie Recommender System Using

Parameter Tuning of User and Movie Neighbourhood via Co-

Clustering,” Procedia Computer Science, vol. 218, pp. 1176–1183,

2023, doi: 10.1016/j.procs.2023.01.096.

[17] N. Pavitha et al., “Movie recommendation and sentiment analysis

using machine learning,” Global Transitions Proceedings, vol. 3, no.

1, pp. 279–284, Jun. 2022, doi: 10.1016/j.gltp.2022.03.012.

[18] H. Xian and S. Wu, “Design of an English vocabulary e-learning

recommendation system based on word bag model and recurrent

neural network algorithm,” Entertainment Computing, vol. 50, p.

100692, May 2024, doi: 10.1016/j.entcom.2024.100692.

[19] W. Xi, “Research on E-learning interactive English vocabulary

recommendation education system based on naive Bayes algorithm,”

Entertainment Computing, vol. 51, p. 100732, Sep. 2024,

doi:10.1016/j.entcom.2024.100732.

[20] Y. Zhai, “Design of Oral English Training System Based on Big Data

Content Recommendation Algorithm,” Procedia Computer Science,

vol. 208, pp. 420–426, 2022, doi: 10.1016/j.procs.2022.10.059.

[21] K. R, P. Kumar, and B. Bhasker, “DNNRec: A novel deep learning

based hybrid recommender system,” Expert Systems with

Applications, vol. 144, p. 113054, Apr. 2020,

doi:10.1016/j.eswa.2019.113054.

[22] Y. Tian, B. Zheng, Y. Wang, Y. Zhang, and Q. Wu, “College Library

Personalized Recommendation System Based on Hybrid

Recommendation Algorithm,” Procedia CIRP, vol. 83, pp. 490–494,

2019, doi: 10.1016/j.procir.2019.04.126.

[23] Y. Afoudi, M. Lazaar, and M. Al Achhab, “Hybrid recommendation

system combined content-based filtering and collaborative prediction

using artificial neural network,” Simulation Modelling Practice and

Theory, vol. 113, p. 102375, Dec. 2021,

doi:10.1016/j.simpat.2021.102375.

[24] A. Fareed, S. Hassan, S. B. Belhaouari, and Z. Halim, “A collaborative

filtering recommendation framework utilizing social networks,”

Machine Learning with Applications, vol. 14, p. 100495, Dec. 2023,

doi: 10.1016/j.mlwa.2023.100495.

[25] Z. Movafegh and A. Rezapour, “Improving collaborative

recommender system using hybrid clustering and optimized singular

value decomposition,” Engineering Applications of Artificial

Intelligence, vol. 126, p. 107109, Nov. 2023,

doi:10.1016/j.engappai.2023.107109.

[26] A. S. Akshay, M. Madhura, B. Mounika, & H.S. Rohit, B. M.

Vikranth, “Music Recommendation System,” 2019.

[27] Ahuja R, Solanki A, and Nayyar A, Movie Recommender System

Using K-Means Clustering AND K-Nearest Neighbor.

[28] H. Yu, C. Zhou, J. Bao, H. Yao, P. Yan, and Q. Wang, “Analysis and

Effect Evaluation of Offshore Wind Power Output Characteristics

Based on Gaussian Mixed Clustering,” Procedia Computer Science,

vol. 224, pp. 389–394, 2023, doi: 10.1016/j.procs.2023.09.053.

[29] F. O. Isinkaye, M. O. Olusanya, and P. K. Singh, “Deep learning and

content-based filtering techniques for improving plant disease

identification and treatment recommendations: A comprehensive

review,” Heliyon, vol. 10, no. 9, p. e29583, May 2024,

doi:10.1016/j.heliyon.2024.e29583.

[30] N. Li and Y. Xia, “Movie recommendation based on ALS

collaborative filtering recommendation algorithm with deep learning

model,” Entertainment Computing, vol. 51, p. 100715, Sep. 2024,

doi:10.1016/j.entcom.2024.100715.

[31] J. Guo, J. He, and X. Wu, “Shopping trip recommendations: A novel

deep learning-enhanced global planning approach,” Decision Support

Systems, vol. 182, p. 114238, Jul. 2024,

doi:10.1016/j.dss.2024.114238.

2012

