
377

Efficient Processing of GRU Based on Word Embedding for Text

Classification

Muhammad Zulqarnain#, Rozaida Ghazali#, Muhammad Ghulam Ghouse#, Muhammad Faheem Mushtaq#

Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

 E-mail: zulqarnainmalik321@gmail.com, rozaida@uthm.edu.my, apik.md@gmail.com, faheem.mushtaq88@gmail.com

Abstract— Text classification has become very serious problem for big organization to manage the large amount of online data and

has been extensively applied in the tasks of Natural Language Processing (NLP). Text classification can support users to excellently

manage and exploit meaningful information require to be classified into various categories for further use. In order to best classify

texts, our research efforts to develop a deep learning approach which obtains superior performance in text classification than other

RNNs approaches. However, the main problem in text classification is how to enhance the classification accuracy and the sparsity of

the data semantics sensitivity to context often hinders the classification performance of texts. In order to overcome the weakness, in

this paper we proposed unified structure to investigate the effects of word embedding and Gated Recurrent Unit (GRU) for text

classification on two benchmark datasets included (Google snippets and TREC). GRU is a well-known type of recurrent neural

network (RNN), which is ability of computing sequential data over its recurrent architecture. Experimentally, the semantically

connected words are commonly near to each other in embedding spaces. First, words in posts are changed into vectors via word

embedding technique. Then, the words sequential in sentences are fed to GRU to extract the contextual semantics between words. The

experimental results showed that proposed GRU model can effectively learn the word usage in context of texts provided training data.

The quantity and quality of training data significantly affected the performance. We evaluated the performance of proposed

approach with traditional recurrent approaches, RNN, MV-RNN and LSTM,” the proposed approach is obtained better results on

two benchmark datasets in the term of accuracy and error rate.

Keywords— RNN, GRU, LSTM, Word embedding, Text classification, Natural language processing

I. INTRODUCTION

With the rapid development of social and technical

information area, the continuous increasing the numbers of

digital text format, means that the advent of huge text data

age [1]. Text classification as an electronic basis for

information retrieve, digital libraries and other fields, has a

best application prospects [2]. Therefore, in this context how

to organize and use these large amounts of text information

becomes particularly important. The automatic text

classification has become fundamental problem for big

organization to manage the large amount of data. Automatic

TC is a key technology to organizing and process large scale

online resources. The lastly few years have realized

remarkable attention in deep learning approaches that learn

layered, hierarchical representations of high-dimensional

data [3]. These deep learning approaches have been

effectively applied to pattern recognitions [4], sentiment

analysis [5] and computer vision [6], but not widely to text

classification. The traditional text representation that there

are dimension of disaster, data sparse and other issues has

become a bottleneck in the performance of a large number of

natural language processing tasks.

The advent of deep learning approaches has increase to a

number of new techniques for sentiment analysis. The

availability of huge unlabelled textual data can be used to

learn the meanings of words and the structure of sentence

formation. This has been attempted by word2vec [1] which

learns word embeddings from unlabelled text samples. It

learns both by predicting the word given its surrounding

words (CBOW) and predicting surrounding words from

given word (SKIP-GRAM). These word embeddings are

applied for creating dictionaries and act as dimensionality

reducers in existing method like Tf-idf, etc. More

approaches are found capturing sentence level

representations like recursive neural tensor network (RNTN)

[7]. Convolution neural network which has primarily been

used for image related task has been shown effective in text

classification [8].

The main problem is the variable length of the natural

language. Some of it is solved by fixed size context windows

but it fails to extract semantics which extend longer than the

context window. Recurrent neural network have the

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

VOL 3 (2019) NO 4

e-ISSN : 2549-9904

ISSN : 2549-9610

378

capability to take variable size of text sequence but they are

extremely tricky to learn. Hence new types of RNN were

employed like LSTM and GRU. LSTM was proposed in

1997 by Hochreiter et al. [9] and is making news in many

NLP task like sentiment analysis, translation and sequence

generation. GRUs is quite recent development proposed by

K. Cho [10] in 2014. GRU are much simpler in structure and

probably more practical than LSTM. We attempt to show its

advantages over LSTM in sentiment analysis in this work.

Different approaches have used by other researcher included

are Tf-idf, Word2Vec (vector average), Word2Vec (k –

means dictionary), and Ensemble model. It was found that

among all the single models GRU outperformed all of them,

whereas this result of GRU model was further improved

after using ensemble model.

In this research, we have to investigate the effectiveness

of GRU network based on pre-trained word embedding

method such as Glove for text classification. Applied GRU

network for the goal of overcome the issue of gradient

exploding or vanishing in an existing RNNs. In this work,

we conduct the experimental setup on two benchmark

datasets, Google snippets and TREC and compared the

performance of GRU model with three existing RNNs

models namely are, Recursive Neural Network (RNN),

“Matrix-Vector Recurrent Neural Network (MV-RNN) and

Long Short Term Memory (LSTM). We found that GRUs is

effective in the task of text classification because of their

capability to remember long time dependencies and

efficiently capture the semantics between words. GRU

approaches are especially useful for sequential datasets.

Experimental results demonstrate that the (our approaches)

GRU model performs better on both datasets in the term of

accuracy and error rate

II. RELATED WORK

Classification is one of the hot topic and has been widely

used in natural language processing. Texts mining which

does not only contain of classification also included

unstructured data analysis such as topics detection, spam

filtering, sentiment analysis, sematic role labelling and

documents classification. It is usually recognized that deep

learning architectures have obtained great achievement in

natural language processing Unstructured data passes

through a series of processes while it is being converted into

structured form; preprocessing, feature selection, term

weighting and finally obtaining document vectors

respectively.” There are several deep learning models that

have been used in various tasks of NLP such as web news

classification, chunking, semantically related words and

language modelling. A natural language model especially

estimates the expectation of the next word being w in a

sequence [11]. In instance, the “deep recursive neural

networks model have been applied for parsing and sentiment

analysis [12] and question answering [13] and logical

inference [14]. Recurrent neural networks have been

successfully used in language modelling [15], speech

recognition, and sentence generation from images [16].

A pioneering work introduced by Bengio et al. [17]

applied a neural network language model (NNLM) to learn

word embeddings based on the preceding contexts of each

word. The C&W model explored the concept of applying

the preceding contexts alone to in-corporate both preceding

and succeeding contexts into word embeddings using a

convolutional network. Mikolov et al. [18] further proposed

the CBOW and skip-gram approaches that apply a simple

single-layer structure to allow effective processing of word

embeddings from very big datasets. In [19] respectively

presented that approaches developed word embeddings

based exclusively on linear contexts and local contexts

(typically a few words in the preceding and succeeding

contexts), and thus proposed dependency-based word

embeddings and global vectors (GloVe). The semantics-

based word embeddings are handled the limitation of linear

contexts by proposing syntactic con texts derived from a

dependency parser, however the GloVe method addresses

the limitation of local contexts by accounting for global

word to word co-occurrence statistics.

Recent advances in recurrent neural network-based

language models (RNN-LM) have presented the value of

distributed representations and the capability to model

arbitrarily long dependencies [20]. In [21] explains a simple

variation of the RNN that can produce meaningful sentences

by learning from a character-level corpus. More recently,

[22] have illustrated that an RNN-LM is ability of

producing image descriptions by conditioning the network

model on a pre-trained convolutional image feature

representation. Moreover, the ability to train deep networks

provides a more sophisticated way of exploiting relations

among labels and features, therefore making the prediction

more accurately.

 In addition, this feature enables that RNNs is applicable

for sequential tasks such as text classification and named

entity recognition. Furthermore, [23] proposed a tree-LSTM,

a variant of RNN allowing for richer network topologies

where each LSTM unit is able to incorporate information

collected from multiple child units. In addition,” Zhou et al.

[24] achieved success in extracting meaningful features

from documents automatically by combining bi-directional

LSTM with an attention mechanism.

III. TEXT CLASSIFICATION STEPS

Usually, text classification process contains four major steps:

[25]. However, an initially steps regarding to collecting and

preparing the datasets on which the work will be done.

A. Data Preprocessing

Preprocessing techniques plays important role to improve

the performance of the models. It is the initial step to convert

unstructured texts into structured form and increase the

quality of the texts dataset by preprocessing technique in text

mining studies and its applications. We discuss the three key

steps of data preprocessing namely, tokenization, stop words

removal, and stemming.

1) Tokenization

Tokenization is a technique of breaking a stream of texts

into words, phrases, symbols, or other useful elements as

known tokens. The purpose of the tokenization is the

exploration of the words in a sentence.

2) Stop Word Removal

In this stage the removal of common meaningless words

which are filtered out before or after processing of natural

379

language data (text). For few websites, mostly used common

and short function words, such as ’the’, ‘an’, ‘is’, ’at’, ’of’,

‘but’ and so on.

3) Stemming

Stemming is the technique of mislead the variants forms

of word into a similar representation, the stems. For example,

the text words: “presentation”, “presented”, “presenting”

could all be reduced to a common representation “present”.

“It’s an extensively applied in text processing for information

retrieval (IR) based on the assumption that posing a query

with the term presenting implies attention in documents

consisting the words presentation and presented.

B. Document representation

In this stage, before classification, data have to be

illustrated in the format that the classification algorithm can

identify” Bag of Words (BOW) is one of the most applied

techniques. It is a representation of text that defines the

occurrence of words within a document.

C. Dimension Reduction

Sometimes, hundreds of thousands of words in a text

corpus, so it is not possible to do the classifying for all those

words as features; also, the computer could have issues to

computing such amounts of data. That is why it is essential

to choose the best illustrative features as inputs for the

classification step.

D. Model Training

This is the major step of text classification. It consists

selecting a portion of text from the dataset to determine the

leaning set, implements the training on it, and after that

produce the model.

IV. MODEL ILLUSTRATION

Deep learning approaches were derived from artificial

neural networks and currently it is a largest area of machine

learning and has successfully applied to achieve an excellent

performance in several fields, such as pattern recognition,

signal processing, computer vision and natural language

processing. In this section, we have decided to explore

RNNs models for sequential data of modelling and text

classification.

A. Recurrent Neural Networks

Fig. 1 The architecture of traditional RNNs

Recurrent neural networks (RNNs) are derived from

artificial neural networks in which connections between the

units a bidirectional cycle. RNN structure is designed to

sequential events included word sequences; this architecture

is usually appropriate for extracting the significant linguistic

information through the long sequential of words within a

corpus. At each time-step, the current input and the previous

time steps t hidden state are add as inputs after passing

through their weights matrix U, W and V respectively as

presented in Fig. 1.

Equations included of RNN are:

 ht = ƒh (U.xt + W.ht-1 + b(h)) (1)

 Ot = ƒo(V.ht) (2)

Where equation 1 is to compute the hidden state value “ht

and equation 2 to compute the output Ot. W is the recurrent

weight matrix, U is the input to hidden layer matrices and V

is the hidden layer to output matrices. However, RNNs are

hard to train and suffer from vanishing and exploding

gradients issue. Either the gradients become so small that

learning stops or the gradient becomes so large that the

weights overflow the max length. The most efficient solution

to this issue is adding a gating mechanism to the RNNs. Two

gated variations of RNNs, Long Short-Term Memory

(LSTM) networks and Gated Recurrent Unit (GRU), have

been developed to great tickle gradient vanishing problems.

B. Long Short-Term Memory (LSTM)

LSTMs were proposed by Hochrieter et al. in [9] which is

developed on the basis of RNN to handle the issue relevant

to gradient vanishing or exploding. LSTM mechanism is

basically use varieties of gates for the ultimate goal of

controlling the passing sequential data. LSTM network has

similar flow as a standard RNNs can regulates the

propagation of activations along the network which provides

it to learn when to ignore a current input, when to remember

the past hidden state or when to emit a non-zero” input. These

networks are efficiently remembering data for long or short

period of time and hence the name Long Short-Term

Memory. Mathematically, the architecture of LSTM is

presented in Fig 2.

Fig. 2 The block architecture of LSTM

There three gates applied: input gate, output gates and

forget gate. The input gate decide how much relevant

information to add from current step, forget gate determine

how much of the previous state is let through and output

gate determine how much the current node affects the

external network. Mathematically, the relationship between

the inputs, forget and the output gates of LSTM is computed

by a set of the following equations.

 i(t) = σg (W(i)xt + U(i)ht-1 + b(i)
) (3)

 f(t) = σg (W(f)xt + U(f)ht-1 + b(f)
) (4)

 o(t) = σg (W(o)xt + U(o)ht-1 + b(o)
) (5)

380

 ĉ(t) = tanh (W(ĉ)xt + U(ĉ)ht-1 + b(ĉ)
) (6)

 c(t) = f(t) * c(t-1) + i(t) * ĉ(t) (7)

 h(t) = o(t) * tanh(c(t)) (8)

“Equations (3), (4) and (5) are used to compute the value of

the input, forget and output gates respectively. Equation (6)

is employed to compute the value of the proposed state ĉt

which is replaced to find the current state ct in (7). Finally,

the hidden state ht is computed using (8). Each of the three

gates and the proposed state has their own weights matrix U

and W with a bias vector b that is learn through training. ‘o’

indicates element-wise product.

V. PROPOSED ARCHITECTURE

In this section, we describe the details of the proposed

architecture, which include the input layer, embedding layer,

recurrent layer, output layer and finally classification layer

as softmax. Our architecture uses word embeddings as inputs

and require them to a GRU learn to capture the semantics

features, and are finally follow by a classifier layer.

A. Word Embedding layer

Word embeddings concentrates on training distributed

word vector representation of words by leverage the

contextual data in big dataset using deep learning approaches.

Distributed representations are useful for the input of deep

neural networks. Existing representations, such as one-hot

representation, will lead to the curse of dimensionality [26].

Recent research [24] presents that neural networks can

converge to a better local minima with a suitable

unsupervised pre-training procedure. In this experiment, we

set the word embedding dimension d and the GRU hidden

dimension. Then, all words embedding from the text data

were initializes by 200-dimensional GloVe word vectors

pre-trained by Penington et al. [27]. This model is the state-

of-the-art in several NLP tasks. In this technique, context

words are applied as inputs of a neural network and effort to

classify the target word. In [28], the author shown GloVe, a

competing set of pre-trained embeddings, indicated that

word embedding was unexpectedly between the mainstream.

Consistently, each feed-forward RNN which attains words

from a term as an input and embeds them as vectors into a

lower dimensional space, and it then refine all through back

propagation, essentially crop word embeddings as the

weights of the first layer, referred as Embedding Layer.

More specifically,” the initial the relationship among the

probabilities of the coexistence of two words is factors that

contain information, and therefore relies on the encoding of

this information as a vector difference.

B. Text classification using Recurrent Layer

RNN is a particular kind of artificial neural networks

structure especially applied for sequential modelling. GRU is

other variant of RNN and relatively development introduced

by “Cho et al. [10]. GRU is Similar to the LSTM unit, but

without a separate memory and has gating mechanism that

controls the flow of information inside the unit. GRU

calculates two gates called update and reset gates which

handle the flow of information from previous activation

when calculating new candidate state by using a reset gate.

The amount of previous activation and new candidate

activation into new activation are tied by an update gate.

Each hidden state at time-step t is computed using the

following equations:

Update gate:

 zt = σg (W(z)xt + U(z)ht-1 + b(z)
)” (9)

 Reset gate:

 rt = σg (W(r)xt + U(r)ht-1 + b(r)
) (10)

Candidate state

 ĥt = tanh (W(ĥ)xt) + U(ĥ)(rt * ht-1) (11)

Final Output

 ht = zt * ht-1 + (1 - zt) * ĥt-1 (12)

where * is element-wise multiplication and σg is the

logistic sigmoid activation function. Wz, Wr, Wĥ are the

feedforward weights and Uz, Ur and Uĥ are the recurrent

weights of the update gate, reset gate and output candidate

state respectively. bz, br and bĥ are the biases of these gates

and candidate state ĥt.

The update gate is calculated from the current input and

the hidden state of previous time step. This gate determines

to handle how much of portions of new memory and old

memory should be combine in the final memory. Similarly

the reset gate is computed but with various set of weights. It

manages the balance among previous memory and the new

input information in the new memory.

 Fig. 3 The proposed GRU-Embedding base architecture for text

classification

C. THE CLASSIFICATION LAYER

In neural networks, for text sentiment classification,

softmax regression is frequently implemented as a final layer

for binary and multiclass classification. Its computes fast and

provide results with a probabilistic description. It provides a

381

fixed-dimensional input from the lower layer; the

classification layer refines changes followed by a softmax

activation function to calculate the predicting possibilities

for all of the categories [29]. This is done by:

Ɏ = (13)

where Ɏ is the predicted distribution of the text, Ypre is the

selected text label, and bo are the parameters of the

softmax classifier to be learned.

VI. EXPERIMENT SETUP

In this experiment, we conducted an experiments study to

evaluate the proposed word embedding based GRU model

for text classification on two benchmark datasets: Google

snippets and TREC dataset to train & test our model. And

we compared proposed model with other traditional RNNs

approaches include, MV-RNN, LSTM, and Recursive

Neural Network.

A. Datasets

To evaluates the efficiency of the proposed GRU model, we

conducted experiment respectively on two benchmark

datasets Google Snippets [30] and TREC [31].

1) Google Snippets

This dataset contain of 10,060 training snippets, and 2,280

for testing snippets from 8 classes as presented in table 1.

The average words of each snippet has 18.05

2) TREC.

As illustrated in table 2, TREC consists 6 various question

types classes such as “LOC, NUM, ENTY and so on. The

training dataset contains of 5,452 labeled questions, and the

test dataset contains of 500 questions.

TABLE I

STATISTICS SUMMARY OF GOOGLE SNIPPETS DATASETS

Labels Training validation

Business 1200 300

Computers 1200 300

Culture-arts-entertainment 1870 330

Education science 2330 320

Engineering 200 130

Health 890 300

Politics-Society 1230 300

Sports 1140 300

Total 10,060 2,280

TABLE II
STATISTICS SUMMARY OF TREC DATASETS

Labels Training Validation

DESC. 1157 134

ENTY. 1255 98

ABBR. 89 11

HUM. 1220 63

NUM. 890 110

LOC. 841 84

Total 5,452 500

B. Implementation setting

In order to improve the performance of the proposed

model that first step is the quality of the dataset, we enhance

the quality of text dataset by preprocessing technique such as

eliminating stop words from the input sequence (e.g.” “and”,

“are” “of”, “the”, “to”) and also used streaming to reduce all

similar presentation words in one common word and

punctuations. In this experiment, we set the word embedding

dimension d and the GRU hidden dimension. Then, all

words embedding from the text data were initializes by 200-

dimensional GloVe word vectors pre-trained by Penington et

al. [27]. Some researchers adopted the fine-tuned training

strategies for word vectors to enhance the performance for

sentence sentiment classification tasks [32].

In variation, with the aim of well reflected generalization

capability of the model, we prefer to apply the common

embeddings for all datasets. What is more, we processed all

the context words as classification resource words to

implementing the self-attention mechanism as if there was

no classification resource word in the texts. For the deep

learning networks, the hidden states of the GRU unit in each

layer were set to 200. Through the training process, we

optimized the proposed model with the AdaDelta algorithm

[33] by following the learning rate of 0.001 and the mini-

batch size of 64. To alleviate the overfitting problem, we

applied the dropout strategy [34], with a dropout rate of 0.5

or the GRU layer and 10−5 for the coefficient λr of L2

regularization. To evaluate state-of-the-art performance, we

have used accuracy and error rate as a metrics for the text

classification task. Completely simulations were

implemented on Intel Core i7-3770XPU @3.40 GHz, and

4GB of RAM machine.

VII. EMPIRICAL RESULTS AND ANALYSIS

In our framework, the out-of-vocabulary words in texts

are simply discarded, since they are often low-frequency

tokens. The overall experimental performance and results are

summarized as follows.

A. Overall performance

In this experiment, we executed the implementation of our

proposed GRU model on two Google snippets, and TREC

benchmark datasets with particular parameters. We

employed to evaluate performance of the proposed GRU

model with three well-known traditional recurrent neural

network included Recursive Neural Network (RNN),

Recursive Matrix-Vector Neural Network (MV-RNN) and

Long Short Term Memory (LSTM) on both datasets. Model

training was completed over the stochastic gradient descent

through shuffled mini-batches. We also observed that

maintaining the embedding dimensions equivalent to the

number of gated units performed well than networks

containing units much more than words embedding

dimensions. In our work, we employed the pre-trained

GloVe method in the word-level embedding layer in

sequence to transfer each word in the texts for calculating a

real value vector representation of a word.

In this experiment, we evaluated the classification results,

based on standard evaluation metrics of accuracy and means

square errors (MSE) were used to compared state-of-the-art

three existing RNNs models, namely RNN, MV-RNN and

LSTM. For the first dataset of Google snippets, the

performance comparisons between three models are

presented in Fig. 4

382

Fig. 4 The performance comparison of three classifiers for Google snippets

As shown in Fig.3, the best performance can be achieved

for GRU with an accuracy of 0.848. We can see the

consistently better performance for our proposed model than

RNN, MV-RNN and LSTM. Recursive recurrent network

showed the worst performance due to its high false positive

rates. Next, the performance for more casual TREC dataset

is presented in Fig. 5

Fig. 4 The performance comparison of classification for TREC

As shown in Fig. 5, the performance of all models is

comparable with slight differences. The best performance

has achieved GRU in the term of accuracy 0.952, while

LSTM obtained a comparable F-measure of 0.934.

B. Comparison an Error rate with traditional RNNs

In this section, we perform to analysis an error rate of our

proposed GRU model with three state-of-the-art deep

learning RNNs models LSTM, MV-RNN and RNN.

Execution setup showed that with the continuous increase of

epochs, the mean square error is continuously decreasing

and the final MSE is 1.182 on Google snippets dataset and

0.629 on TREC.

Where n is the number of the data points and Pi,

are refers to observed values and predicted values. We

fixed both the word embedding dimensions and number of

units to 64 and execute the model on various parameters are

mention in implementation setting. We found that proposed

model converged faster as compared other RNNs models to

achieved lower error rate even after many epochs. To make

these models comparable, we implement these models with

the identical structural design. We evaluate our GRU model

with state-of-the-art existing RNNs models on two Google

snippets, and TREC datasets. Table 1 demonstrates the

results that proposed GRU model achieves much better

performance in the term of the error rate than RNN, MV-

RNN and LSTM.
 TABLE III

COMPARISON ERROR RETE (%) WITH EXISTING RNNS MODELS.

Models Google snippets TREC

RNN 2.063 0.977

MV-RNN 1.652 0.914

LSTM 1.757 0.783

GRU (Proposed) 1.182 0.629

VIII. CONCLUSION

In this paper, we have addressed the issue of efficiently

analyzing the document-level text classification approach

based on GRU. In this way, we explored traditional

Recurrent Neural Networks (RNNs) architectures on two

benchmark text classification datasets. We found that Gated

Recurrent Units to be the better choice in terms of accuracy

and error rates. The pre-trained words embeddings such as

GloVe word vector model are used to extract the textual

semantics features between words in texts. We conclude that

GRU is a suitable model for sequential data of text

classification especially when there are more amounts of

learning data. Being a recurrent network it can effectively

capture long sequence data required for natural language

understanding. Empirical results on two benchmark datasets

included (Google snippets and TREC) show that our

proposed model achieved state-of-the-art superior

performance compared to other traditional RNNs models.

Furthermore, it is remarkable to observe future work on

investigating proposed model for further tasks of natural

language processing.

REFERENCES

[1] J. Protasiewicz, “A recent overview of the state-of-the-art elements
of text classification,” Expert Syst. Appl., vol. 106, pp. 36–54, 2018.

[2] W. Sharif, N. A. Samsudin, M. M. Deris, and M. Aamir, “Improved

relative discriminative criterion feature ranking technique for text
classification,” Int. J. Artif. Intell., vol. 15, no. 2, pp. 61–78, 2017.

[3] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,

and J. Garcia-Rodriguez, “A Review on Deep Learning Techniques
Applied to Semantic Segmentation,” pp. 1–23, 2017.

[4] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and

Transferring Mid-Level Image Representations using Convolutional

Neural Networks,” IEEE Conf. Comput. Vis. Pattern Recognit., pp.

1717–1724, 2014.

[5] D. Tang, F. Wei, B. Qin, N. Yang, T. Liu, and M. Zhou, “Sentiment

Embeddings with Applications to Sentiment Analysis,” IEEE Trans.

Knowl. Data Eng., vol. 28, no. October, pp. 496–509, 2016.

[6] R. Zhao, W. Ouyang, H. Li, and X. Wang, “Saliency detection by

383

multi-context deep learning,” Proc. IEEE Comput. Soc. Conf.

Comput. Vis. Pattern Recognit., vol. 07–12–June, pp. 1265–1274,

2015.

[7] O. I. and C. Cardie, “Deep Recursive Neural Networks for

Compositionality in Language,” Adv. neural Inf. Process. Syst., pp.

2096–2104, 2014.

[8] A. Dahou, M. A. Elaziz, J. Zhou, and S. Xiong, “Arabic Sentiment

Classification Using Convolutional Neural Network and Differential

Evolution Algorithm,” Comput. Intell. Neurosci., vol. 2019, pp. 1–16,
2019.

[9] S. Hochreiter, “Long Short Term Memory,” Neural Comput., vol. 9,

no. 8, pp. 1–32, 1997.
[10] K. Cho, “On the Properties of Neural Machine Translation: Encoder–

Decoder Approaches,” arXiv, vol. 5, pp. 1–9, 2014.

[11] R. Collobert and J. Weston, “A unified architecture for natural
language processing,” Proc. 25th Int. Conf. Mach. Learn. - ICML ’08,

pp. 160–167, 2008.

[12] R. Socher, A. Perelygin, and J. Wu, “Recursive deep models for

semantic compositionality over a sentiment treebank,” Proc. …, no.

October, pp. 1631–1642, 2013.

[13] M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and H. Daumé III,

“A Neural Network for Factoid Question Answering over

Paragraphs,” Proc. 2014 Conf. Empir. Methods Nat. Lang. Process.,

pp. 633–644, 2014.
[14] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large

annotated corpus for learning natural language inference,” 2015.

[15] A. Kumar et al., “Ask Me Anything: Dynamic Memory Networks for
Natural Language Processing,” vol. 48, 2015.

[16] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light Gated

Recurrent Units for Speech Recognition,” IEEE Trans. Emerg. Top.

Comput. Intell., vol. 2, no. 2, pp. 92–102, 2018.

[17] T. Mikolov, J. Kopecky, L. Burget, O. Glembek, and J. Cernocky,

“Neural network based language models for highly inflective

languages,” Icassp-2009, pp. 4725–4728, 2009.

[18] T. Mikolov, G. Corrado, K. Chen, and J. Dean, “Efficient Estimation

ofWord Representations in Vector Space,” arXiv Prepr.

arXiv1301.3781, pp. 1–12, 2013.

[19] M. J. Berger, “Large Scale Multi-label Text Classification with

Semantic Word Vectors,” Tech. Rep., pp. 1–8, 2014.

[20] P. Liu, X. Qiu, and X. Huang, “Recurrent Neural Network for Text

Classification with Multi-Task Learning,” Proc. 25th Int. Jt. Conf.

Artif. Intell. IJCAI-16, p. to appear, 2016.

[21] Y. Xiao and K. Cho, “Efficient Character-level Document

Classification by Combining Convolution and Recurrent Layers,”

arXiv, vol. 1602, no. 00367, 2016.

[22] A. Karpathy, “Deep Visual-Semantic Alignments for Generating

Image Descriptions.”

[23] M. Sundermeyer, H. Ney, and R. Schlüter, “From Feedforward to

Recurrent LSTM Neural Networks for Language Modeling,”

IEEE/ACM Trans. Audio, Speech, Lang. Process, vol. 23, no. 3, pp.

517–529, 2015.
[24] Z. H. I. Li, F. A. N. Yang, and Y. Luo, “Context Embedding Based

on Bi-LSTM in Semi-Supervised Biomedical Word Sense

Disambiguation,” IEEE Access, vol. 7, pp. 72928–72935, 2019.
[25] V. Srividhya and R. Anitha, “Evaluating Preprocessing Techniques

in Text Categor ization,” Int. J. Comput. Sci. Appl., vol. 47, no. April,

pp. 49–51, 2010.
[26] R. Johnson and T. Zhang, “Effective Use of Word Order for Text

Categorization with Convolutional Neural Networks,” no. 2011,

2014.

[27] J. Pennington, R. Socher, and C. D. Manning, “GloVe : Global

Vectors for Word Representation,” Proc. Conf. Empir. Methods Nat.

Lang. Process., no. October, pp. 1532–1543, 2014.

[28] A. Cochez et al., “This is an electronic reprint of the original article .

This reprint may differ from the original in pagination and

typographic detail . Global RDF Vector Space Embeddings,” Int.

Semant. Web Conf., pp. 190–207, 2017.

[29] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,

“Semi-Supervised Recursive Autoencoders for Predicting Sentiment
Distributions,” Proc. Conf. Empir. methods Nat. Lang. Process., no.

ii, pp. 151–161, 2011.

[30] X. Phan, “Learning to Classify Short and Sparse Text & Web with
Hidden Topics from Large-scale Data Collections,” Proc. 17th Int.

Conf. World Wide Web, pp. 91–100, 2008.

[31] D. Roth, “Learning Question Classifiers £,” Proc. 19th Int. Conf.

Comput. Linguist., vol. 1, no. August, pp. 1–7, 2002.

[32] H. Lee, “for Modeling Sentences and Documents,” Proc. 15th Annu.

Conf. North Am. Chapter Assoc. Comput., no. June, pp. 1512–1521,

2015.

[33] D. P. Kingma and J. L. Ba, “A method for stochastic optimization,”

arXiv, no. March, pp. 1–15, 2015.

[34] G. Hinton, “Dropout : A Simple Way to Prevent Neural Networks

from Overfitting,” J. Mach. Learn. Res. 2014, 15, vol. 15, pp. 1929–

1958, 2014.

