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Abstract— Text classification has become very serious problem for big organization to manage the large amount of online data and 

has been extensively applied in the tasks of Natural Language Processing (NLP). Text classification can support users to excellently 

manage and exploit meaningful information require to be classified into various categories for further use. In order to best classify 

texts, our research efforts to develop a deep learning approach which obtains superior performance in text classification than other 

RNNs approaches. However, the main problem in text classification is how to enhance the classification accuracy and the sparsity of 

the data semantics sensitivity to context often hinders the classification performance of texts. In order to overcome the weakness, in 

this paper we proposed unified structure to investigate the effects of word embedding and Gated Recurrent Unit (GRU) for text 

classification on two benchmark datasets included (Google snippets and TREC). GRU is a well-known type of recurrent neural 

network (RNN), which is ability of computing sequential data over its recurrent architecture. Experimentally, the semantically 

connected words are commonly near to each other in embedding spaces. First, words in posts are changed into vectors via word 

embedding technique. Then, the words sequential in sentences are fed to GRU to extract the contextual semantics between words. The 

experimental results showed that proposed GRU model can effectively learn the word usage in context of texts provided training data. 

The quantity and quality of training data significantly affected the performance. We evaluated the performance of proposed 

approach with traditional recurrent approaches, RNN, MV-RNN and LSTM,” the proposed approach is obtained better results on 

two benchmark datasets in the term of accuracy and error rate. 
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I. INTRODUCTION 

With the rapid development of social and technical 

information area, the continuous increasing the numbers of 

digital text format, means that the advent of huge text data 

age [1]. Text classification as an electronic basis for 

information retrieve, digital libraries and other fields, has a 

best application prospects [2]. Therefore, in this context how 

to organize and use these large amounts of text information 

becomes particularly important. The automatic text 

classification has become fundamental problem for big 

organization to manage the large amount of data. Automatic 

TC is a key technology to organizing and process large scale 

online resources. The lastly few years have realized 

remarkable attention in deep learning approaches that learn 

layered, hierarchical representations of high-dimensional 

data [3]. These deep learning approaches have been 

effectively applied to pattern recognitions [4], sentiment 

analysis [5] and computer vision [6], but not widely to text 

classification. The traditional text representation that there 

are dimension of disaster, data sparse and other issues has 

become a bottleneck in the performance of a large number of 

natural language processing tasks.  

The advent of deep learning approaches has increase to a 

number of new techniques for sentiment analysis. The 

availability of huge unlabelled textual data can be used to 

learn the meanings of words and the structure of sentence 

formation. This has been attempted by word2vec [1] which 

learns word embeddings from unlabelled text samples. It 

learns both by predicting the word given its surrounding 

words (CBOW) and predicting surrounding words from 

given word (SKIP-GRAM). These word embeddings are 

applied for creating dictionaries and act as dimensionality 

reducers in existing method like Tf-idf, etc. More 

approaches are found capturing sentence level 

representations like recursive neural tensor network (RNTN) 

[7]. Convolution neural network which has primarily been 

used for image related task has been shown effective in text 

classification [8].  

The main problem is the variable length of the natural 

language. Some of it is solved by fixed size context windows 

but it fails to extract semantics which extend longer than the 

context window. Recurrent neural network have the 
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capability to take variable size of text sequence but they are 

extremely tricky to learn. Hence new types of RNN were 

employed like LSTM and GRU. LSTM was proposed in 

1997 by Hochreiter et al. [9]  and is making news in many 

NLP task like sentiment analysis, translation and sequence 

generation. GRUs is quite recent development proposed by 

K. Cho [10] in 2014. GRU are much simpler in structure and 

probably more practical than LSTM. We attempt to show its 

advantages over LSTM in sentiment analysis in this work. 

Different approaches have used by other researcher included 

are Tf-idf, Word2Vec (vector average), Word2Vec (k – 

means dictionary), and Ensemble model. It was found that 

among all the single models GRU outperformed all of them, 

whereas this result of GRU model was further improved 

after using ensemble model. 

In this research, we have to investigate the effectiveness 

of GRU network based on pre-trained word embedding 

method such as Glove for text classification. Applied GRU 

network for the goal of overcome the issue of gradient 

exploding or vanishing in an existing RNNs. In this work, 

we conduct the experimental setup on two benchmark 

datasets, Google snippets and TREC and compared the 

performance of GRU model with three existing RNNs 

models namely are, Recursive Neural Network (RNN), 

“Matrix-Vector Recurrent Neural Network (MV-RNN) and 

Long Short Term Memory (LSTM). We found that GRUs is 

effective in the task of text classification because of their 

capability to remember long time dependencies and 

efficiently capture the semantics between words. GRU 

approaches are especially useful for sequential datasets. 

Experimental results demonstrate that the (our approaches) 

GRU model performs better on both datasets in the term of 

accuracy and error rate 

II. RELATED WORK 

Classification is one of the hot topic and has been widely 

used in natural language processing. Texts mining which 

does not only contain of classification also included 

unstructured data analysis such as topics detection, spam 

filtering, sentiment analysis, sematic role labelling and 

documents classification. It is usually recognized that deep 

learning architectures have obtained great achievement in 

natural language processing Unstructured data passes 

through a series of processes while it is being converted into 

structured form; preprocessing, feature selection, term 

weighting and finally obtaining document vectors 

respectively.” There are several deep learning models that 

have been used in various tasks of NLP such as web news 

classification, chunking, semantically related words and 

language modelling. A natural language model especially 

estimates the expectation of the next word being w in a 

sequence [11]. In instance, the “deep recursive neural 

networks model have been applied for parsing and sentiment 

analysis [12] and question answering [13] and logical 

inference [14]. Recurrent neural networks have been 

successfully used in language modelling [15], speech 

recognition, and sentence generation from images [16].  

A pioneering work introduced by Bengio et al. [17] 

applied a neural network language model (NNLM) to learn 

word embeddings based on the preceding contexts of each 

word. The C&W model explored the concept of applying 

the preceding contexts alone to in-corporate both preceding 

and succeeding contexts into word embeddings using a 

convolutional network. Mikolov et al. [18] further proposed 

the CBOW and skip-gram approaches that apply a simple 

single-layer structure to allow effective processing of word 

embeddings from very big datasets. In [19] respectively 

presented that approaches developed word embeddings 

based exclusively on linear contexts and local contexts 

(typically a few words in the preceding and succeeding 

contexts), and thus proposed dependency-based word 

embeddings and global vectors (GloVe). The semantics-

based word embeddings are handled the limitation of linear 

contexts by proposing syntactic con texts derived from a 

dependency parser, however the GloVe method addresses 

the limitation of local contexts by accounting for global 

word to word co-occurrence statistics. 

Recent advances in recurrent neural network-based 

language models (RNN-LM) have presented the value of 

distributed representations and the capability to model 

arbitrarily long dependencies [20]. In [21] explains a simple 

variation of the RNN that can produce meaningful sentences 

by learning from a character-level corpus. More recently, 

[22] have illustrated that an RNN-LM is ability of 

producing image descriptions by conditioning the network 

model on a pre-trained convolutional image feature 

representation. Moreover, the ability to train deep networks 

provides a more sophisticated way of exploiting relations 

among labels and features, therefore making the prediction 

more accurately. 

 In addition, this feature enables that RNNs is applicable 

for sequential tasks such as text classification and named 

entity recognition. Furthermore, [23] proposed a tree-LSTM, 

a variant of RNN allowing for richer network topologies 

where each LSTM unit is able to incorporate information 

collected from multiple child units. In addition,” Zhou et al. 

[24] achieved success in extracting meaningful features 

from documents automatically by combining bi-directional 

LSTM with an attention mechanism.  

III. TEXT CLASSIFICATION STEPS  

Usually, text classification process contains four major steps: 

[25]. However, an initially steps regarding to collecting and 

preparing the datasets on which the work will be done. 

A. Data Preprocessing 

Preprocessing techniques plays important role to improve 

the performance of the models. It is the initial step to convert 

unstructured texts into structured form and increase the 

quality of the texts dataset by preprocessing technique in text 

mining studies and its applications. We discuss the three key 

steps of data preprocessing namely, tokenization, stop words 

removal, and stemming.  

1) Tokenization 

Tokenization is a technique of breaking a stream of texts 

into words, phrases, symbols, or other useful elements as 

known tokens. The purpose of the tokenization is the 

exploration of the words in a sentence. 

2) Stop Word Removal 

In this stage the removal of common meaningless words 

which are filtered out before or after processing of natural 
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language data (text). For few websites, mostly used common 

and short function words, such as ’the’, ‘an’, ‘is’, ’at’, ’of’, 

‘but’ and so on. 

3) Stemming 

Stemming is the technique of mislead the variants forms 

of word into a similar representation, the stems. For example, 

the text words:  “presentation”, “presented”, “presenting” 

could all be reduced to a common representation “present”. 

“It’s an extensively applied in text processing for information 

retrieval (IR) based on the assumption that posing a query 

with the term presenting implies attention in documents 

consisting the words presentation and presented. 

B. Document representation 

In this stage, before classification, data have to be 

illustrated in the format that the classification algorithm can 

identify” Bag of Words (BOW) is one of the most applied 

techniques. It is a representation of text that defines the 

occurrence of words within a document. 

C. Dimension Reduction 

Sometimes, hundreds of thousands of words in a text 

corpus, so it is not possible to do the classifying for all those 

words as features; also, the computer could have issues to 

computing such amounts of data. That is why it is essential 

to choose the best illustrative features as inputs for the 

classification step. 

D. Model Training 

This is the major step of text classification. It consists 

selecting a portion of text from the dataset to determine the 

leaning set, implements the training on it, and after that 

produce the model. 

IV. MODEL ILLUSTRATION 

Deep learning approaches were derived from artificial 

neural networks and currently it is a largest area of machine 

learning and has successfully applied to achieve an excellent 

performance in several fields, such as pattern recognition, 

signal processing, computer vision and natural language 

processing. In this section, we have decided to explore 

RNNs models for sequential data of modelling and text 

classification.   

A. Recurrent Neural Networks 

 

Fig. 1 The architecture of traditional RNNs 

Recurrent neural networks (RNNs) are derived from 

artificial neural networks in which connections between the 

units a bidirectional cycle. RNN structure is designed to 

sequential events included word sequences; this architecture 

is usually appropriate for extracting the significant linguistic 

information through the long sequential of words within a 

corpus. At each time-step, the current input and the previous 

time steps t hidden state are add as inputs after passing 

through their weights matrix U, W and V respectively as 

presented in Fig. 1. 

Equations included of RNN are: 

                              ht = ƒh (U.xt + W.ht-1 + b(h))                 (1) 

                               Ot = ƒo(V.ht)                                         (2) 

Where equation 1 is to compute the hidden state value “ht 

and equation 2 to compute the output Ot. W is the recurrent 

weight matrix, U is the input to hidden layer matrices and V 

is the hidden layer to output matrices. However, RNNs are 

hard to train and suffer from vanishing and exploding 

gradients issue. Either the gradients become so small that 

learning stops or the gradient becomes so large that the 

weights overflow the max length. The most efficient solution 

to this issue is adding a gating mechanism to the RNNs. Two 

gated variations of RNNs, Long Short-Term Memory 

(LSTM) networks and Gated Recurrent Unit (GRU), have 

been developed to great tickle gradient vanishing problems. 

B. Long Short-Term Memory (LSTM) 

LSTMs were proposed by Hochrieter et al. in [9] which is 

developed on the basis of RNN to handle the issue relevant 

to gradient vanishing or exploding. LSTM mechanism is 

basically use varieties of gates for the ultimate goal of 

controlling the passing sequential data. LSTM network has 

similar flow as a standard RNNs can regulates the 

propagation of activations along the network which provides 

it to learn when to ignore a current input, when to remember 

the past hidden state or when to emit a non-zero” input. These 

networks are efficiently remembering data for long or short 

period of time and hence the name Long Short-Term 

Memory. Mathematically, the architecture of LSTM is 

presented in Fig 2. 

 

Fig. 2 The block architecture of LSTM 

There three gates applied: input gate, output gates and 

forget gate. The input gate decide how much relevant 

information to add from current step, forget gate determine 

how much of the previous state is let through and output 

gate determine how much the current node affects the 

external network. Mathematically, the relationship between 

the inputs, forget and the output gates of LSTM is computed 

by a set of the following equations. 

                          i(t) = σg (W(i)xt + U(i)ht-1 + b(i)
 )                        (3) 

                         f(t) = σg (W(f)xt + U(f)ht-1 + b(f)
 )                          (4) 

                         o(t) = σg (W(o)xt + U(o)ht-1 + b(o)
 )                          (5) 
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                         ĉ(t) = tanh (W(ĉ)xt + U(ĉ)ht-1 + b(ĉ)
 )                   (6) 

                         c(t) = f(t) * c(t-1) + i(t) * ĉ(t)                             (7) 

                         h(t) = o(t) * tanh(c(t))                                    (8) 

“Equations (3), (4) and (5) are used to compute the value of 

the input, forget and output gates respectively. Equation (6) 

is employed to compute the value of the proposed state ĉt 

which is replaced to find the current state ct in (7). Finally, 

the hidden state ht is computed using (8). Each of the three 

gates and the proposed state has their own weights matrix U 

and W with a bias vector b that is learn through training. ‘o’ 

indicates element-wise product. 

V. PROPOSED ARCHITECTURE 

In this section, we describe the details of the proposed 

architecture, which include the input layer, embedding layer, 

recurrent layer, output layer and finally classification layer 

as softmax. Our architecture uses word embeddings as inputs 

and require them to a GRU learn to capture the semantics 

features, and are finally follow by a classifier layer. 

A. Word Embedding layer 

Word embeddings concentrates on training distributed 

word vector representation of words by leverage the 

contextual data in big dataset using deep learning approaches. 

Distributed representations are useful for the input of deep 

neural networks. Existing representations, such as one-hot 

representation, will lead to the curse of dimensionality [26]. 

Recent research [24] presents that neural networks can 

converge to a better local minima with a suitable 

unsupervised pre-training procedure. In this experiment, we 

set the word embedding dimension d and the GRU hidden 

dimension. Then, all words embedding from the text data 

were initializes by 200-dimensional GloVe word vectors 

pre-trained by Penington et al. [27]. This model is the state-

of-the-art in several NLP tasks. In this technique, context 

words are applied as inputs of a neural network and effort to 

classify the target word. In [28], the author shown GloVe, a 

competing set of pre-trained embeddings, indicated that 

word embedding was unexpectedly between the mainstream. 

Consistently, each feed-forward RNN which attains words 

from a term as an input and embeds them as vectors into a 

lower dimensional space, and it then refine all through back 

propagation, essentially crop word embeddings as the 

weights of the first layer, referred as Embedding Layer. 

More specifically,” the initial the relationship among the 

probabilities of the coexistence of two words is factors that 

contain information, and therefore relies on the encoding of 

this information as a vector difference. 

B. Text classification using Recurrent Layer  

RNN is a particular kind of artificial neural networks 

structure especially applied for sequential modelling. GRU is 

other variant of RNN and relatively development introduced 

by “Cho et al. [10]. GRU is Similar to the LSTM unit, but 

without a separate memory and has gating mechanism that 

controls the flow of information inside the unit. GRU 

calculates two gates called update and reset gates which 

handle the flow of information from previous activation 

when calculating new candidate state by using a reset gate. 

The amount of previous activation and new candidate 

activation into new activation are tied by an update gate. 

Each hidden state at time-step t is computed using the 

following equations: 

Update gate: 

                             zt = σg (W(z)xt + U(z)ht-1 + b(z)
 )”                   (9) 

 Reset gate: 

                             rt = σg (W(r)xt + U(r)ht-1 + b(r)
 )                       (10) 

Candidate state 

                              ĥt = tanh (W(ĥ)xt) + U(ĥ)(rt * ht-1)              (11) 

Final Output 

                               ht =  zt * ht-1 + (1 - zt) * ĥt-1                (12) 

where * is element-wise multiplication and σg is the 

logistic sigmoid activation function. Wz, Wr, Wĥ are the 

feedforward weights and Uz, Ur and Uĥ are the recurrent 

weights of the update gate, reset gate and output candidate 

state respectively. bz, br and bĥ are the biases of these gates 

and candidate state ĥt. 

The update gate is calculated from the current input and 

the hidden state of previous time step. This gate determines 

to handle how much of portions of new memory and old 

memory should be combine in the final memory. Similarly 

the reset gate is computed but with various set of weights. It 

manages the balance among previous memory and the new 

input information in the new memory. 

 
       

      Fig. 3 The proposed GRU-Embedding base architecture for text 

classification 

C. THE CLASSIFICATION LAYER 

In neural networks, for text sentiment classification, 

softmax regression is frequently implemented as a final layer 

for binary and multiclass classification. Its computes fast and 

provide results with a probabilistic description. It provides a 
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fixed-dimensional input from the lower layer; the 

classification layer refines changes followed by a softmax 

activation function to calculate the predicting possibilities 

for all of the categories [29]. This is done by:  

 

Ɏ =         (13) 

 

where Ɏ is the predicted distribution of the text, Ypre is the 

selected text label, and bo are the parameters of the 

softmax classifier to be learned. 

VI. EXPERIMENT SETUP 

In this experiment, we conducted an experiments study to 

evaluate the proposed word embedding based GRU model 

for text classification on two benchmark datasets: Google 

snippets and TREC dataset to train & test our model. And 

we compared proposed model with other traditional RNNs 

approaches include, MV-RNN, LSTM, and Recursive 

Neural Network. 

A. Datasets    

To evaluates the efficiency of the proposed GRU model, we 

conducted experiment respectively on two benchmark 

datasets Google Snippets [30] and TREC [31]. 

1) Google Snippets  

This dataset contain of 10,060 training snippets, and 2,280 

for testing snippets from 8 classes as presented in table 1. 

The average words of each snippet has 18.05 

2) TREC. 

As illustrated in table 2, TREC consists 6 various question 

types classes such as “LOC, NUM, ENTY and so on. The 

training dataset contains of 5,452 labeled questions, and the 

test dataset contains of 500 questions. 

TABLE I  

STATISTICS SUMMARY OF GOOGLE SNIPPETS DATASETS 

Labels Training validation 

Business 1200 300 

Computers 1200 300 

Culture-arts-entertainment 1870 330 

Education science 2330 320 

Engineering 200 130 

Health 890 300 

Politics-Society 1230 300 

Sports 1140 300 

Total 10,060 2,280 

 

TABLE II  
STATISTICS SUMMARY OF TREC DATASETS 

Labels Training Validation 

DESC. 1157 134 

ENTY. 1255 98 

ABBR. 89 11 

HUM. 1220 63 

NUM. 890 110 

LOC. 841 84 

Total 5,452 500 

B. Implementation setting 

In order to improve the performance of the proposed 

model that first step is the quality of the dataset, we enhance 

the quality of text dataset by preprocessing technique such as 

eliminating stop words from the input sequence (e.g.” “and”, 

“are” “of”, “the”, “to”) and also used streaming to reduce all 

similar presentation words in one common word and 

punctuations. In this experiment, we set the word embedding 

dimension d and the GRU hidden dimension. Then, all 

words embedding from the text data were initializes by 200-

dimensional GloVe word vectors pre-trained by Penington et 

al. [27]. Some researchers adopted the fine-tuned training 

strategies for word vectors to enhance the performance for 

sentence sentiment classification tasks [32].  

In variation, with the aim of well reflected generalization 

capability of the model, we prefer to apply the common 

embeddings for all datasets. What is more, we processed all 

the context words as classification resource words to 

implementing the self-attention mechanism as if there was 

no classification resource word in the texts. For the deep 

learning networks, the hidden states of the GRU unit in each 

layer were set to 200. Through the training process, we 

optimized the proposed model with the AdaDelta algorithm 

[33] by following the learning rate of 0.001 and the mini-

batch size of 64. To alleviate the overfitting problem, we 

applied the dropout strategy [34], with a dropout rate of 0.5 

or the GRU layer and 10−5 for the coefficient λr of L2 

regularization. To evaluate state-of-the-art performance, we 

have used accuracy and error rate as a metrics for the text 

classification task. Completely simulations were 

implemented on Intel Core i7-3770XPU @3.40 GHz, and 

4GB of RAM machine. 

VII. EMPIRICAL RESULTS AND ANALYSIS 

In our framework, the out-of-vocabulary words in texts 

are simply discarded, since they are often low-frequency 

tokens. The overall experimental performance and results are 

summarized as follows. 

A. Overall performance 

In this experiment, we executed the implementation of our 

proposed GRU model on two Google snippets, and TREC 

benchmark datasets with particular parameters. We 

employed to evaluate performance of the proposed GRU 

model with three well-known traditional recurrent neural 

network included Recursive Neural Network (RNN), 

Recursive Matrix-Vector Neural Network (MV-RNN) and 

Long Short Term Memory (LSTM) on both datasets. Model 

training was completed over the stochastic gradient descent 

through shuffled mini-batches. We also observed that 

maintaining the embedding dimensions equivalent to the 

number of gated units performed well than networks 

containing units much more than words embedding 

dimensions. In our work, we employed the pre-trained 

GloVe method in the word-level embedding layer in 

sequence to transfer each word in the texts for calculating a 

real value vector representation of a word. 

In this experiment, we evaluated the classification results, 

based on standard evaluation metrics of accuracy and means 

square errors (MSE) were used to compared state-of-the-art 

three existing RNNs models, namely RNN, MV-RNN and 

LSTM. For the first dataset of Google snippets, the 

performance comparisons between three models are 

presented in Fig. 4 
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Fig. 4 The performance comparison of three classifiers for Google snippets 

 

As shown in Fig.3, the best performance can be achieved 

for GRU with an accuracy of 0.848. We can see the 

consistently better performance for our proposed model than 

RNN, MV-RNN and LSTM. Recursive recurrent network 

showed the worst performance due to its high false positive 

rates. Next, the performance for more casual TREC dataset 

is presented in Fig. 5 

 
Fig. 4 The performance comparison of classification for TREC 

 

As shown in Fig. 5, the performance of all models is 

comparable with slight differences. The best performance 

has achieved GRU in the term of accuracy 0.952, while 

LSTM obtained a comparable F-measure of 0.934.  

B. Comparison an Error rate with traditional RNNs 

In this section, we perform to analysis an error rate of our 

proposed GRU model with three state-of-the-art deep 

learning RNNs models LSTM, MV-RNN and RNN. 

Execution setup showed that with the continuous increase of 

epochs, the mean square error is continuously decreasing 

and the final MSE is 1.182 on Google snippets dataset and 

0.629 on TREC.  

 

Where n is the number of the data points and Pi, 

are refers to observed values and predicted values. We 

fixed both the word embedding dimensions and number of 

units to 64 and execute the model on various parameters are 

mention in implementation setting. We found that proposed 

model converged faster as compared other RNNs models to 

achieved lower error rate even after many epochs. To make 

these models comparable, we implement these models with 

the identical structural design. We evaluate our GRU model 

with state-of-the-art existing RNNs models on two Google 

snippets, and TREC datasets. Table 1 demonstrates the 

results that proposed GRU model achieves much better 

performance in the term of the error rate than RNN, MV-

RNN and LSTM.   
 TABLE III 

COMPARISON ERROR RETE (%) WITH EXISTING RNNS MODELS. 

Models Google snippets TREC 

RNN 2.063 0.977 

MV-RNN 1.652 0.914 

LSTM 1.757 0.783 

GRU (Proposed) 1.182 0.629 

VIII. CONCLUSION 

In this paper, we have addressed the issue of efficiently 

analyzing the document-level text classification approach 

based on GRU. In this way, we explored traditional 

Recurrent Neural Networks (RNNs) architectures on two 

benchmark text classification datasets. We found that Gated 

Recurrent Units to be the better choice in terms of accuracy 

and error rates. The pre-trained words embeddings such as 

GloVe word vector model are used to extract the textual 

semantics features between words in texts. We conclude that 

GRU is a suitable model for sequential data of text 

classification especially when there are more amounts of 

learning data. Being a recurrent network it can effectively 

capture long sequence data required for natural language 

understanding.  Empirical results on two benchmark datasets 

included (Google snippets and TREC) show that our 

proposed model achieved state-of-the-art superior 

performance compared to other traditional RNNs models. 

Furthermore, it is remarkable to observe future work on 

investigating proposed model for further tasks of natural 

language processing. 
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