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Abstract— This research explores the predictive capabilities of XGBoost (XGB) and Random Forest (RF) models for customer upsell 

responses, emphasizing the use of Explainable Artificial Intelligence (XAI) techniques to gain insights. Initially trained without 

hyperparameter tuning, both models were later optimized using 5-fold cross-validation. While RF consistently achieved high accuracy 

(0.99), XGB exhibited lower accuracy (0.85) yet demonstrated superior precision and recall. Post-tuning, XGB maintained its 

competitive edge despite a slight decrease in ROC-AUC scores (0.76 and 0.75 versus RF's 0.67 and 0.72), indicating proficiency in 

classifying positive cases. XAI techniques complemented XGB’s prediction, revealing significant predictors such as inactive duration 

in days, race (Chinese), total communication count, age, and active period in days. Lesser predictive value was attributed to factors 

such as race (Indian), gender (female), and region (northern). While the feature importance plot provided a broad overview, it did not 

detail specific attribute relationships to predictions. To address this, a summary violin plot was employed to illustrate how feature 

importance varies with actual values, enhancing the understanding of each feature's impact. Results indicated that longer inactivity 

periods negatively influenced predictions, while non-Chinese ethnicity, higher communication frequency, and younger age were 

associated with positive outcomes. Dependence plots further elucidated these relationships, highlighting how older non-Chinese 

customers and those with shorter inactive periods and frequent communication were more likely to accept offers. Local explanations 

using Shapley's force plot and LIME offered deeper insights into specific instances. Overall, the study underscores the complementary 

use of XAI techniques to understand a model’s predictions.  
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I. INTRODUCTION

An "upsell" is a sales tactic that aims to convince existing 

clients to upgrade from a lower-priced service or product to a 

higher-priced one. This could enhance customer interactions 

with the company [1], hence increasing sales and adding 

value. Multiple studies have shown that the act of upselling, 

which involves upgrading existing clients, is more financially 
helpful compared to the process of recruiting new consumers. 

Existing literature indicates that improving customer 

happiness can lead to an increase in revenue [1], [2], [3]. 

Historically, semi-manual upselling techniques entailed sales 

representatives regularly engaging with consumers to explore 

their preferences, difficulties, and new product options, 

potentially leading to an upsell [4]. This could potentially 

yield inaccurate recommendations, hence eroding confidence, 

diminishing client happiness, and ultimately jeopardizing 

customer retention. This incentivizes all salespeople and 

stakeholders to meticulously coordinate their upselling 

endeavors and strive to pinpoint optimal prospects for 

upselling in order to secure the sustainability of the 

telecommunications companies. 

Utilizing machine learning algorithms to forecast the 

reaction of prospective clients can significantly save the time, 

expense, and exertion involved in addressing those who have 
little or no interest. Nevertheless, while prediction has 

demonstrated its advantages, augmenting information to 

improve customer satisfaction may present certain 

difficulties. The endeavor is hindered by ethical concerns, 
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privacy issues, and the need for consent. Since the output is 

critical in many domains, It raises some concerns because it 

can have some drawbacks that can lead to bias and unfair 

decisions [5], [6], [7], [8], [9]. Business in general would no 

longer want to be spoon-fed results; instead, they want to 

absorb and understand the information offered to them [10]. 
A good explanation helps the user to gain a thorough 

understanding of a model, which is required for further 

improvement or addressing flaws as well as to increase trust 

among all users on why and how predictions are made [11]. 
Therefore, the decisions that form the basis of a model's 

forecast are essential to gain a deeper understanding of the 

aspects that impact the decision-making process. This is done 

by using existing data, which can either fully eliminate the 

need for other data or, at the very least, delay the need of it.  

Explainable Artificial Intelligence (XAI) refers to the 

approaches used to explain predictions. Popular techniques 

include Feature Importance approaches, Partial Dependence 

Plots (PDP), Individual Conditional Expectation (ICE) plots, 

Shapley Additive Explanations (SHAP), and Local 

Interpretable Model-agnostic Explanations (LIME). The 
objective of XAI techniques is to provide understandable 

explanations on how a machine learning model arrives at a 

prediction. Certain machine learning models are often 

perceived as black-box, exhibiting a level of complexity that 

makes the models difficult to comprehend [12]. Black-box 

ML models incorporate a complex mathematical function or 

require an in-depth grasp of the distance function. [13]. Some 

samples of ML that use complex mathematical functions are 

SVM, XGB, and Neural Network (NN) while the models that 

use distance functions are KNN and K-Means. Black-box 

model reasoning is complicated to understand [9], [13], [14], 
[15] and frequently requires professional knowledge of actual 

applications. Black-box models that predict without 

explanation are deemed problematic for a variety of reasons, 

not just because of their lack of transparency, but also because 

they conceal potential biases inside the system [16]. This is 

different compared to white-box models like decision trees 

and linear regression. White-box models are inherently 

transparent, offering data scientists explicit justifications for 

the predicted outcomes [17]. The white-box models’ 

algorithm is more neutral, and the decision structure of the 

models is straightforward to understand [18]. Therefore, the 

evaluation of XAI is an expanding field of research that is 
worth investigating. 

Within the scope of this study, the assessment of XAI in 

several sources of literature has revealed deficiencies, 

highlighting the importance of this study. Prior research has 

not examined the use of XAI in Malaysian telecommunication 

firms specifically for upsell models. There is a scarcity of 

research in the current literature that examines XAI 

approaches using data particularly obtained from Malaysian 

telecommunications companies. It is important to address this 

gap, as there may be differences in data and results between 

Malaysia and other locations. Recently, the primary focus of 
research in the telecommunications field has been on churned 

customers. This study seeks to shift the current emphasis on 

churn and instead investigate the use of XAI in the context of 

upselling, acknowledging the significance of upselling tactics 

in the telecoms business. Finally, there is a significant 

opportunity to improve the assessment methods used to 

explain outputs and assess the processes used to provide these 

explanations. Existing literature emphasizes the need to 

improve the current evaluation process by comparing the 

results produced by XAI methodologies and including experts 

in the field. In addition, they emphasized deficiencies in the 

assessment of the techniques employed for constructing 

explanations, which have not been resolved in the literature. 

Therefore, the objective of this work is to determine the 

most effective black-box model for Malaysian 

telecommunications data in predicting upsell and utilize 
model-agnostic XAI approaches (LIME and SHAP) on that 

model. Then analyze and interpret the global and local 

explanations generated by both LIME and SHAP techniques, 

tailored explicitly to the context of upselling practices within 

the telecommunications industry. 

II. MATERIALS AND METHOD 

A. Explainable Artificial Intelligence (XAI) 

XAI can be categorized into two primary groups: model-
specific and model-agnostic. Model-specific approaches 

exploit the inherent structures of the model being used. This 

approach entails utilizing the internal mechanics of the model 

to clarify the process by which the algorithm arrives at 

judgments. Although model-specific techniques provide a 

more comprehensive understanding of a model's internal 

mechanisms and facilitate the development of personalized 

and interpretable models, their drawback is the need to 

reconstruct the entire structure of the model, which adversely 

affects both duration and performance. This implies that any 

alterations in the structure of the model will require 

substantial revisions to the process or minor adjustments to 
the hyperparameters of the algorithm [19]. 

On the other hand, model-agnostic techniques are 

specifically designed to be applicable in various 

circumstances [5]. These techniques are not dependent on the 

model’s structure and can be applied to any machine learning 

algorithm [20]. They operate by perturbing and modifying the 

input data, while observing the effect of these modifications 

on the model's performance compared to the original data. 

Contrary to model-specific methods, these techniques do not 

impact the model's performance as they do not necessitate 

retraining. Notable post-hoc model agnostic techniques 
employed in XAI for explaining existing models include 

SHAP and LIME [20], [21], [22], [23]. 

The explanations are classified into two distinct levels: 

local explainability and global explainability. Global 

explainability pertains to understanding the complete 

functioning of the model or obtaining a comprehensive view 

of its operations. The explanations provide a comprehensive 

account of the model's reasoning process during training, 

which can be helpful for users who are looking to gain insights 

into the entire dataset [24]. Conversely, local explainability 

focuses on individual model predictions and provides an 
explanation of how the model's output changes when specific 

attributes are varied. Local explanations are usually obtained 

from models either directly or through closely related local 

models [22]. Their purpose is to comprehend the reasoning 

behind the model's application to specific instances and to 

address specific queries [24]. This study employs a model-

agnostic approach. 
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B. Differences Between LIME and SHAP 

Local Interpretable Model Agnostic Explanation (LIME) 

is used to explain a model based on Local explanation, which 

means the explanation is crafted close to the observation, and 
model agnosticism, where it may provide an explanation for 

any supervised learning model by considering it as a black 

box separately [25]. To make the word easier to understand, 

user can think of LIME as an algorithm that any ML model 

can use to explain its predictions. It does this by making a 

local approximation of the model around a specific prediction 

and then explaining how the model behaves in that area. The 

findings were obtained by imposing a regularization 

constraint on the linear regression model to access a single 

input feature that matches a line of linearity. Essentially, 

LIME attempts to provide a local linear approximation of the 
model's behavior by developing local surrogate models that 

are trained to replicate the ML model's predictions locally. 

This framework was suggested by [26] to address the problem 

of understanding the reasoning behind a black-box model. 

The advantages of LIME are users can still use the same 

local interpretable model for explanation even if the 

underlying ML model is replaced. It can provide a human-

friendly explanation and is able to interact with various types 

of data, including tabular, text, and even image files. The 

primary disadvantage of LIME is that users must experiment 

with different kernel settings and determine whether the 

offered explanation makes complete sense [25]. Another issue 
highlighted by [27] in a study was that LIME provided 

different explanations after repeating the same process, 

making it difficult to trust the explanations. 

Shapley proposed SHapley Additive exPlanation (SHAP) 

in 1953 as a method for explaining the outputs of the ML 

model based on game theory. It provides a contribution value 

to each feature, indicating its significance in establishing the 

final prediction. SHAP is introduced as an alternative kernel-

based estimation method for Shapley values influenced by the 

local surrogate model [25]. KernelSHAP is a broad method 

for calculating SHAP values that can provide more precise 
and robust explanations. However, it necessitates a large 

amount of computation power, making it slow to 

generate[28]. 

In the regression model, the weighting of instances 

distinguishes SHAP from LIME. While LIME weights 

instances based on their proximity to the original instances, 

SHAP weights sampled instances based on their weight in 

coalition to estimate Shapley value. SHAP gained popularity 

in XAI-related research where it has been utilized in a variety 

of ML model explanation use cases. In recent years, there 

have been intuitive and interesting representations of several 

aspects of model explainability for this library 

C. Upsell Prediction 

There are several studies have been conducted to improve 

the accuracy or conversion rate for the upselling models [1], 

[4], [3], [29], [30]. Based on the results of the upsell prediction 

studies in Table 1, three out of five studies demonstrate that 

the black-box model is the most accurate model, and there are 

not many studies that focus on the explanation of the model 

output. This is one of the gaps detected in upsell prediction, 
as well as the rationale for why the use case of upsell is 

selected in this study. 

TABLE I 

LATEST RESEARCH CONDUCTED ON UPSELL PREDICTION 

References Domain Focus Result XAI 

[4] Telco Accuracy LR No 
[30] Airline Accuracy GBM Yes 
[3] Health Accuracy GBM No 
[29] Telco Accuracy SVM No 
[1] Telco Accuracy LR No 

D. Application of XAI in Telecommunication Industries 

Duval [31] in his study utilized six XAI libraries, namely 

PDP, ICE, LIME, SHAP, ALE (Accumulated Local Effects), 

and GSM (Global Surrogate Model), to analyze a 

telecommunication customer churn prediction model that 

employed XGBoost (XGB) and Artificial Neural Network 

(ANN). The research primarily focused on explainable data 

sciences, employing a rigorous theoretical approach to 
showcase the implementation, interpretation, and 

amalgamation methods. The aim was to achieve a 

comprehensive understanding of real-world issues. Duval 

emphasized the importance of employing various 

methodologies, with survival analysis being particularly 

noteworthy. The evaluation of libraries encompassed six 

primary elements: summary statistics of features, 

visualization capabilities, internal workings of models, 

inherently interpretable models, text-based explanations, and 

individual data points. The study also stressed on the 

significance of focusing on multiple machine learning 

algorithms and data sources in future research to create more 
sophisticated explainable artificial intelligence (XAI) systems 

that can provide user-friendly explanations for different 

models. 

Leung et al. [24] improved the clarity of explanations by 

utilizing churn data and an RF algorithm. The study 

implemented a two-tiered strategy, consisting of an 

abstraction layer that connects predictive models with 

business operations. The ML model and explanation library 

were hosted in the back end, while the front end displayed 

SHAP explanations and graphical information. The RF 

machine learning model, in conjunction with SHAP, 
produced four categories of explanations: an overview of the 

model, global explanations, local explanations, and 

recommendations. The data included fundamental 

demographic information such as age, gender, marital status, 

income, and profession. They determined that their method 

provided a versatile solution, advocating for the incorporation 

of interactive visualizations in XAI to improve understanding. 

Nkolele and Wang [32] demonstrated the application of 

machine learning model explanation techniques using churn 

data. The study employed three models, namely Decision 

Tree (DT), Random Forest (RF), and Light Gradient Boosting 

(LGB), along with SHAP and LIME for attribute evaluation 
and visualization of explanations. The importance of 

conducting explainability analysis in machine learning for 

customer churn was emphasized, with a focus on the valuable 

insights that can be obtained from a decision tree. The need 

for further research to investigate counterfactual explanations 

was also emphasized. 

Ullah et al. [20] investigated the use of Layer-wise 

Relevance Propagation (LRP) to improve the clarity of 

explanations in XAI. Originally developed for computer 

vision deep models, LRP has been utilized for analyzing 
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categorical and numeric datasets in the context of credit card 

fraud detection and telecommunication churn data. When 

comparing LIME and SHAP, it was found that LRP is 

particularly effective in terms of computational efficiency. 

The study emphasized the significance of examining the 

suitability of LRP for structured datasets and its comparability 

with other techniques such as LORE, MAPLE, and L2X for 

potential real-world applications. 

Meanwhile, this study discovered a dominant pattern in 

XAI research in the telecommunications industry, where there 
is a strong emphasis on studying churn as the main case study. 

Significantly, it is evident that there is a lack of Malaysian 

research investigating the application of XAI for upsell 

prediction. This research also highlights the widespread use 

of XGB and RF as the primary models in XAI 

implementation, consistently demonstrating superior 

performance compared to other algorithms. These findings 

provided the foundation for the methodology used in this 

study, strengthening the justification for the chosen 

approaches [20]. 
This study’s methodology encompasses two core layers: 

prediction and explanation. Figure 1 illustrates the 

components within each layer and the following subsections 

discuss them. 

 

 
Fig. 1  Methodology details 

A. Prediction Layer 

The goal of this layer is to generate a set of predictions 

using the most effective model, which will then be passed on 

to the explanation layer for interpretation. The prediction 

pipeline was based on the CRISP-DM approach. 

1)   Dataset: The dataset consists of 27 attributes and 

1,572,503 entries collected from a recent marketing campaign 

conducted by a telecommunications company in Malaysia. 
The target audience of this campaign was specifically active 

consumers who have been living in Malaysia and continue to 

leverage the telco's services. The target variable is the Last 

Upsell Campaign Result, which is represented by a value of 1 

if the customer accepts the upsell offer and 0 if they do not. 

The discovery uncovers a notable imbalance in the data, as 

only 0.4% (6,100 occurrences) of the complete dataset agreed 

to the proposal. This observation is consistent with previous 

research that shows a common pattern where three out of five 

studies using upsell data have consistently shown a low rate 

of customer acceptance, leading to high imbalance. 

2)   Data pre-processing:  To address the problem of 

imbalanced data, the technique of random oversampling was 

employed. This study chose not to use undersampling because 

the dataset is smaller than the one used by Melidis [3], which 

could potentially affect the performance of the modelling. 

This choice was made to prevent the loss of important data 

and to maximize the accuracy of predicting uptake. The 

evaluation of dataset correlation necessitated the application 

of Pearson correlation on the oversampled data. Attributes 

that showed a correlation higher than 90% were removed to 

enhance the performance of the model during the modelling 

phase. The choice of a 90% threshold was made to reduce the 

impact of multicollinearity, which could otherwise lead to 

unstable models, inaccurate coefficient estimates, difficulties 
in interpreting the effects of individual variables, and reduced 

predictive accuracy. Eliminating variables with strong 

correlations reduced redundancy in the model. The decision 

to not adopt lower correlation thresholds was based on the 

understanding that variables with lower percentages may still 

have significance for the model. Removing these variables 

could potentially reduce the predictive accuracy. Considering 

the relatively small number of attributes examined in this 

study, eliminating any additional attributes could potentially 

harm the performance of the model. Furthermore, the dataset 

was subjected to preprocessing procedures that included 
eliminating records with missing values and outliers, leading 

to a decreased dataset size of 1,572,497 entries. Due to high 

correlation and null values, a total of 7 attributes were 

removed from the dataset, leaving only 20 attributes. 

3)   Modelling:  At the point of writing, based on the 

investigation of most recent literature, the statistics (Figure 2) 

show that RF has the most utilization in the studies, followed 

by Logistic Regression (LR), Gradient Boosting Machine 

(GBM), Support Vector Machine (SVM), and XGB. Since the 

goal of this study is to apply XAI techniques to the most 

effective black-box model, the Linear Regression model 
cannot be used in this experiment because LR is a white-box 

model. 

 
Fig. 2  Performance of Models from Literature 

XGB exhibits superior performance, as it ranks among the top 

two performers in all three use cases, with ANN and RF 

following suit. RF and XGB were selected for this study based 

on their results, as both algorithms offer a favorable balance 

between utilization and performance. To enhance the model's 

performance, the hyperparameters were fine-tuned by 

employing a 5-fold cross-validation approach to identify the 

optimal hyperparameters for both models. 

4)   Performance measurement:  During this stage, the 
performance of the model was evaluated using metrics such 
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as F1 score, specificity, sensitivity, and Receiver Operating 

Characteristic (ROC) score. Considering the unequal 

distribution of the data and the main goal of maximizing 

accurate positive predictions, the ROC AUC (Area Under the 

Curve) was chosen as the primary evaluation metric. The 

ROC curve is a widely used metric that is especially useful 

for evaluating datasets with imbalanced classes. It provides a 

concise summary of the performance of a classifier by 

considering different rates of true positive and false positive 

results. Additionally, it assists in determining the most 
effective threshold for maximizing outcomes [33]. The AUC, 

which provides a single value for comparing multiple models, 

varies from zero to one. A value less than 0.5 signifies an 

impractical categorization [34]. The model with the highest 

ROC AUC will be combined with XAI libraries to achieve the 

goals of the project.  

B. Explanation Layer 

The optimal model from the modelling layer is 
subsequently integrated with XAI libraries to achieve the 

primary goal of this project: applying model-agnostic XAI 

techniques (LIME and SHAP) to the best-performing black-

box model. Initially, all necessary objects for calculating 

explanation values were created in Jupyter Notebook using 

the LIME and SHAP libraries. These objects serve as the 

foundation for generating various explanation mediums, such 

as diagrams and tables. The SHAP values computed during 

the XAI application were used to produce global explanation 

plots using the SHAP library. 

From the test datasets, observations were selected for local 

explanations using SHAP, generating visualization plots. 
These same observations were then used as a basis for 

constructing local explanations with LIME. This approach 

ensures a valid comparison by contrasting similar explanatory 

instances. The data was thoroughly analysed. The global and 

local explanations were discussed in detail, providing a 

comprehensive understanding of how the attributes influence 

the prediction outcomes. 

III. RESULTS AND DISCUSSION 

A. Most Effective Model Chosen 

For this study, XGB and RF models were first trained 

without adjusting hyperparameters in order to establish the 

initial performance level. Afterwards, a 5-fold cross-

validation was conducted using the GridSearchCV library in 

Python to determine the best hyperparameter values for each 

model, with the goal of improving their performance. The 

optimal hyperparameters obtained are presented in Table 2, 

and the models were subsequently retrained based on these 

hyperparameters. 

TABLE II 

OPTIMAL HYPERPARAMETER 

Algorithm n_estimat

or 

max 

depth 

learning_

rate 

min_samp

le_split 

XGB 50 8 0.3 N/A 
RF 10 8 N/A 2 

According to the analysis in Table 3, the RF model 

achieves the highest accuracy at 0.99, both with and without 

hyperparameter tuning, followed by both the tuned and 

untuned XGB models, each with an accuracy of 0.85. 

However, precision and recall metrics reveal that XGB 

outperforms RF, showing higher precision (0.012) and recall 

(0.53 for untuned, 0.46 for tuned) compared to RF, which has 

a precision of 0.0 for the untuned model and slightly improved 

values with tuning (0.02 and 0.01). This discrepancy is 

reflected in the ROC-AUC scores, where XGB models have 

higher values (0.76 and 0.75) compared to RF (0.67 and 0.72), 

indicating superior performance in classifying positive cases. 

TABLE III 

MODEL PERFORMANCE 

 RF(Nor

mal) 

XGB(Nor

mal) 

RF(Tuned

) 

XGB(Tun

ed) 

Accuracy 0.99 0.83 0.99 0.85 
Precision 0.0 0.012 0.02 0.012 
Recall 0.0 0.53 0.01 0.46 

F1 Score 0.01 0.023 0.02 0.24 
ROC-AUC 0.67 0.76 0.72 0.75 

 

Nevertheless, the ROC-AUC score for XGB decreases by 

0.1 after hyperparameter tuning, implying that while the 

model makes more reliable overall predictions, it may 
increase the number of false negatives. Achieving optimal 

model performance necessitates balancing accuracy and 

recall, as improving one metric often adversely affects the 

other. This balance is crucial depending on the specific task, 

especially when identifying true positives is more important 

than reducing false positives. 

Further analysis using confusion matrices confirms these 

findings (Figure 3). The untuned RF model fails to predict any 

true positives, whereas the untuned XGB correctly predicts 

969 out of 1,830 positive cases. Hyperparameter tuning 

slightly improves RF's performance, predicting two true 

positives. Conversely, the tuned XGB model predicts fewer 
true positives (839, down from 969). Despite this reduction, 

the tuned XGB's precision increases, predicting that 68,501 

customers would accept the offer with a true positive rate of 

1.22%, compared to the untuned XGB's 80,768 predictions 

with a 1.2% true positive rate. These results indicate that the 

tuned XGB model is optimal for predicting upsell propensity, 

effectively balancing precision and recall identifying 

actionable leads, which is critical for campaign targeting and 

minimizing effort and revenue loss. 

 
Fig. 3  Confusion Matrix for All Models 

B. Explaining Predictions 

SHAP and LIME were utilized to elucidate the predictions 

of the black-box model. Both are model-agnostic techniques, 
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with SHAP providing explanations at both global and local 

levels, while LIME offers explanations only at the local level.  

1)   Output of SHAP Global Explanation: Global 

explanations were generated using a feature importance plot 

to provide an overarching understanding of how the XGB 

model makes predictions without focusing on specific inputs 

or outputs. Illustrated in Figure 4 (a), this plot highlights the 

significance of various attributes based on their mean Shapley 

values, identifying inactive duration in days as the most 

influential predictor, followed by race (Chinese), total 
communication count, age, and active period in days. 

Attributes such as race (Indian), gender (female), and region 

(northern) were found to have lesser predictive value. 

However, while this plot offers a general overview, it does not 

provide detailed insights into the specific relationships 

between these attributes and the predicted outcomes.  

To better understand how feature importance varies with 

actual values, a summary violin plot from the SHAP library 

was created, as shown in Figure 4 (b). This plot combines 

feature importance and feature effects, with each point 

representing a Shapley value for a specific instance and 
feature. The y-axis position corresponds to the feature, while 

the color gradient indicates the feature's value from high to 

low. This plot provides a more detailed view of how each 

feature's importance changes across different values, enabling 

a deeper analysis of their impact on predictions. It allows 

users to visualize the distribution of Shapley values for each 

feature, thus offering insights into how the model's decisions 

vary based on the specific characteristics of each instance.  

 
Fig. 4  SHAP Global Explanation 

 

The results indicate that the duration of inactivity 

significantly influences predictions, with longer inactive 

periods leading to more negative scores and shorter periods 

resulting in more positive scores. This correlation is expected, 

as active customers are more likely to respond positively to 

offers. Non-Chinese customers also showed a higher 
likelihood of accepting offers, and increased communication 

with the service provider positively affected prediction 

results. Additionally, younger customers were more likely to 

accept offers, contrary to initial expectations regarding the 

active period in days, which negatively affected predictions. 

Dependence plots from the SHAP library (Figure 5) were also 

reviewed to further understand model behavior, revealing 

relationships between different attributes. For example, older 

non-Chinese customers had a more pronounced impact on 

predicting non-take-up compared to Chinese customers of 

similar age, and customers with shorter inactive periods and 

higher communication frequency were more likely to accept 

offers. These insights highlight the importance of considering 

various attributes and their interrelationships when 

interpreting model predictions. 

 

 

Fig. 5  SHAP Global Explanation (Dependence Plot) 

2)   Output of SHAP Local Explanation: In XAI, local 

explanation entails elucidating the reasoning behind a model's 

decision for a specific instance. Shapley's force plot serves as 

a tool to explicate the underlying logic behind predictions for 

two chosen instances, namely the 12th and 58th observations, 

as depicted in Figures 6 and 7, respectively. These instances 

have contrasting predictions. In the case of Observation 12, 
the model forecasts a minimal probability of -3.51 for 

accepting the upsell offer. This subdued likelihood primarily 

stems from this particular customer’s Chinese ethnicity and 

advanced age, nearing 60 years, which corresponds to the 

broader explanation provided earlier at the global level. 

Furthermore, the total amount of subscription (pkg_amt) of 

this customer is high thus adversely favoring any upsell. This 

confirms our earlier global explanation visualized by the 

violin plot in Figure 4 (b).  

 
Fig. 6  SHAP Local Explanation (Force Plot for 12th Observation) 

On the contrary, in the 58th observation (depicted in Figure 

7), there is a notably higher predicted probability, standing at 

1.86, suggesting a greater likelihood of accepting an upsell 

offer. This inclination predominantly stems from the 

relatively brief period of inactivity (inactive_period_in_days) 

observed for this customer, indicating an active engagement. 

Furthermore, this customer is newly onboarded with a tenure 

of only one year with the company, hence, exhibited a 

propensity to engage with upsell offers. This aligns with the 
global explanation of the model (refer Figure 4 (b)). 

Observation 58 indicates having Indian ethnicity, yet this very 

feature negatively contributes to the acceptance of upsells. 

Evidently from this observation, the XGB model has 

discerned a trend wherein customers not of Chinese descent 

generally display a higher tendency to accept upsell offers, 

potentially influenced by historical data indicating elevated 

acceptance rates among this demographic. However, within 

this non-Chinese cohort, the model has detected a lower 

inclination among Indian customers to accept such offers 

compared to their non-Chinese counterparts (e.g., Malay, 

others), which could be ascribed to cultural inclinations, past 
consumer behavior, or other factors specific to the Indian 

demographic. Interestingly, both observations indicate the 
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lack of enthusiasm among residents of the Johor state towards 

accepting any upsell.  

 
Fig. 7  SHAP Local Explanation (Force Plot for 58th Observation) 

3)   LIME Global Explanation: LIME is not 

recommended for providing a global explanation as it's 

designed to be local, and its output might be misleading or 

inconsistent. Technically, it is possible to use LIME to 

provide global explanations, but it would require generating 

explanations for many instances and then aggregating the 

results. This would be a time-consuming process and may not 

provide a clear overall picture of the model's behavior. 

4)   Output of LIME Local Explanation: The LIME 

technique provides additional local-level explanations when 

compared to SHAP. Figure 8 displays the results for the 12th 
observation, while Figure 9 shows the results for the 58th 

observation. LIME's output for the 58th observation reveals a 

high probability of 0.97 for not accepting the upsell and a low 

probability of 0.03 for accepting it. In contrast to SHAP, 

LIME’s prediction for this customer was greatly influenced 

by the recorded long period of inactivity.  This maps more 

closely to the earlier global explanation. Furthermore, LIME 

shows XGB’s ability to learn from the training set that 

resident from the central and southern regions of Malaysia, 

particularly Johor and Selangor, are not inclined to the offered 

upsell, however, people in the Northern region states does. 

Another notable result is this upsell is generally more 
appealing to male customers instead of female customers, 

although with this specific customer the gender neither pushes 

the prediction towards nor away from the predicted class. 

 
Fig. 8  LIME Local Explanation (Details for 12th Observation) 

Observation 58, as depicted in Figure 9, has a high 

likelihood of accepting the upsell, with a probability score of 

0.87. The primary factor contributing to this prediction is the 

customer's short inactivity period. The second most 

significant factor is race, where not being ethnically Chinese 

leads the model to predict a positive response to the offer. 

Other influential features include the total number of credit 

card changes (cc_change_cnt), the method of the last payment 

(last_actual_payment_mtd), the account subtype 
(acc_sub_type), the customer's credit risk (credit_class), and 

the combined attributes of gender, region, and state, 

specifically states located in northern Malaysia. Although 

Observation 58 does not reside in these northern regions, the 

XGB model still utilizes these features to forecast the 

outcome.  

 
Fig. 9  LIME Local Explanation (Details for 58th Observation) 

IV. CONCLUSION 

In conclusion, the study utilized global explanations with a 

feature importance plot to elucidate the predictive 

mechanisms of the XGB model. This analysis revealed that 

the most influential predictors included inactive duration in 

days, race (Chinese), total communication count, age, and 

active period in days. Lesser predictive value was attributed 

to factors such as race (Indian), gender (female), and region 

(northern). While the feature importance plot provided a 

broad overview, it did not detail specific attribute 
relationships to predictions. To address this, a summary violin 

plot was employed to illustrate how feature importance varies 

with actual values, enhancing the understanding of each 

feature's impact.  

Results indicated that longer inactivity periods negatively 

influenced predictions, while non-Chinese ethnicity, higher 

communication frequency, and younger age were associated 

with positive outcomes. Dependence plots further elucidated 

these relationships, highlighting how older non-Chinese 

customers and those with shorter inactive periods and 

frequent communication were more likely to accept offers. 

Local explanations using Shapley's force plot and LIME 
offered deeper insights into specific instances. For 

Observation 12, advanced age and high subscription amount 

were primary factors for a negative prediction, whereas 

Observation 58 showed a high likelihood of acceptance due 

to a short inactivity period and non-Chinese ethnicity. LIME 

results corroborated these findings, emphasizing regional and 

demographic influences on predictions. Overall, the study 

underscores the importance of considering multiple attributes 

and their interrelationships in model interpretations, 

providing a comprehensive understanding of how the XGB 

model makes predictions. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the support by the 

Universiti Teknologi MARA Shah Alam, Selangor, Malaysia 

and Sohar University, Oman. 

REFERENCES 

[1] S. M. A. M. Manchanayake et al., “Potential Upselling Customer 

Prediction Through User Behavior Analysis Based on CDR Data,” 

2019 14th Conference on Industrial and Information Systems (ICIIS), 

pp. 46–51, Dec. 2019, doi: 10.1109/iciis47346.2019.9063278. 

1867



[2] B. Denizci Guillet, “Online upselling: Moving beyond offline 

upselling in the hotel industry,” International Journal of Hospitality 

Management, vol. 84, p. 102322, Jan. 2020, 

doi:10.1016/j.ijhm.2019.102322. 

[3] A. Melidis, “Personalized marketing campaign for upselling using 

predictive modeling in the health insurance sector,” 2020, [Online]. 

Available: https://run.unl.pt/handle/10362/99076 

[4] N. Dookeram, Z. Hosein, and P. Hosein, “A Recommender System for 

the Upselling of Telecommunications Products,” 2022 24th 

International Conference on Advanced Communication Technology 

(ICACT), pp. 66–72, Feb. 2022, 

doi:10.23919/icact53585.2022.9728818. 

[5] V. Belle and I. Papantonis, “Principles and Practice of Explainable 

Machine Learning,” Frontiers in Big Data, vol. 4, Jul. 2021, 

doi:10.3389/fdata.2021.688969. 

[6] B. Dimanov, U. Bhatt, M. Jamnik, and A. Weller, “You shouldnat trust 

me: Learning models which conceal unfairness from multiple 

explanation methods,” Frontiers in Artificial Intelligence and 

Applications, vol. 325, no. 2019, pp. 2473–2480, 2020, 

doi:10.3233/FAIA200380. 

[7] S. Mohseni, N. Zarei, and E. D. Ragan, “A Multidisciplinary Survey 

and Framework for Design and Evaluation of Explainable AI 

Systems,” ACM Transactions on Interactive Intelligent Systems, vol. 

11, no. 3–4, pp. 1–45, Sep. 2021, doi: 10.1145/3387166. 

[8] M. Nazar, M. M. Alam, E. Yafi, and M. M. Su’ud, “A Systematic 

Review of Human–Computer Interaction and Explainable Artificial 

Intelligence in Healthcare With Artificial Intelligence Techniques,” 

IEEE Access, vol. 9, pp. 153316–153348, 2021, 

doi:10.1109/access.2021.3127881. 

[9] C. Rudin, “Stop explaining black box machine learning models for 

high stakes decisions and use interpretable models instead,” Nature 

Machine Intelligence, vol. 1, no. 5, pp. 206–215, May 2019, 

doi:10.1038/s42256-019-0048-x. 

[10] N. Burkart and M. F. Huber, “A Survey on the Explainability of 

Supervised Machine Learning,” Journal of Artificial Intelligence 

Research, vol. 70, pp. 245–317, Jan. 2021, doi: 10.1613/jair.1.12228. 

[11] R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, “A historical 

perspective of explainable Artificial Intelligence,” WIREs Data 

Mining and Knowledge Discovery, vol. 11, no. 1, Oct. 2020, 

doi:10.1002/widm.1391. 

[12] A. Barredo Arrieta et al., “Explainable Artificial Intelligence (XAI): 

Concepts, taxonomies, opportunities and challenges toward 

responsible AI,” Information Fusion, vol. 58, pp. 82–115, Jun. 2020, 

doi: 10.1016/j.inffus.2019.12.012. 

[13] O. Loyola-Gonzalez, “Black-Box vs. White-Box: Understanding 

Their Advantages and Weaknesses From a Practical Point of View,” 

IEEE Access, vol. 7, pp. 154096–154113, 2019, 

doi:10.1109/access.2019.2949286. 

[14] S. Lockey, N. Gillespie, D. Holm, and I. A. Someh, “A Review of 

Trust in Artificial Intelligence: Challenges, Vulnerabilities and Future 

Directions,” Proceedings of the 54th Hawaii International Conference 

on System Sciences, 2021, doi: 10.24251/hicss.2021.664. 

[15] C. C. Yang, “Explainable Artificial Intelligence for Predictive 

Modeling in Healthcare,” Journal of Healthcare Informatics Research, 

vol. 6, no. 2, pp. 228–239, Feb. 2022, doi: 10.1007/s41666-022-

00114-1. 

[16] A. M. Antoniadi et al., “Current Challenges and Future Opportunities 

for XAI in Machine Learning-Based Clinical Decision Support 

Systems: A Systematic Review,” Applied Sciences, vol. 11, no. 11, p. 

5088, May 2021, doi: 10.3390/app11115088. 

[17] P. L. Fung et al., “Evaluation of white-box versus black-box machine 

learning models in estimating ambient black carbon concentration,” 

Journal of Aerosol Science, vol. 152, p. 105694, Feb. 2021, 

doi:10.1016/j.jaerosci.2020.105694. 

[18] T. Rieg, J. Frick, H. Baumgartl, and R. Buettner, “Demonstration of 

the potential of white-box machine learning approaches to gain 

insights from cardiovascular disease electrocardiograms,” PLOS 

ONE, vol. 15, no. 12, p. e0243615, Dec. 2020, 

doi:10.1371/journal.pone.0243615. 

[19] A. Das and P. Rad, “Opportunities and Challenges in Explainable 

Artificial Intelligence (XAI): A Survey,” pp. 1–24, 2020, [Online]. 

Available: http://arxiv.org/abs/2006.11371 

[20] I. Ullah, A. Rios, V. Gala, and S. Mckeever, “Explaining Deep 

Learning Models for Tabular Data Using Layer-Wise Relevance 

Propagation,” Applied Sciences, vol. 12, no. 1, p. 136, Dec. 2021, 

doi:10.3390/app12010136. 

[21] J. Duell, X. Fan, B. Burnett, G. Aarts, and S.-M. Zhou, “A Comparison 

of Explanations Given by Explainable Artificial Intelligence Methods 

on Analysing Electronic Health Records,” 2021 IEEE EMBS 

International Conference on Biomedical and Health Informatics 

(BHI), pp. 1–4, Jul. 2021, doi: 10.1109/bhi50953.2021.9508618. 

[22] G. Plumb, D. Molitor, and A. Talwalkar, “Model agnostic supervised 

local explanations,” Adv Neural Inf Process Syst, vol. 2018-Decem, 

no. NeurIPS, pp. 2515–2524, 2018. 

[23] D. Slack, S. Hilgard, E. Jia, S. Singh, and H. Lakkaraju, “Fooling 

LIME and SHAP,” Proceedings of the AAAI/ACM Conference on AI, 

Ethics, and Society, pp. 180–186, Feb. 2020, 

doi:10.1145/3375627.3375830. 

[24] C. K. Leung, A. G. M. Pazdor, and J. Souza, “Explainable Artificial 

Intelligence for Data Science on Customer Churn,” 2021 IEEE 8th 

International Conference on Data Science and Advanced Analytics 

(DSAA), pp. 1–10, Oct. 2021, doi: 10.1109/dsaa53316.2021.9564166. 

[25] C. Molnar, Interpretable Machine Learning. 2022. [Online]. 

Available: https://christophm.github.io/interpretable-ml-book 

[26] M. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: 

Explaining the Predictions of Any Classifier,” Proceedings of the 2016 

Conference of the North American Chapter of the Association for 

Computational Linguistics: Demonstrations, 2016, 

doi:10.18653/v1/n16-3020. 

[27] D. Alvarez-Melis and T. S. Jaakkola, “On the Robustness of 

Interpretability Methods,” no. Whi, 2018, [Online]. Available: 

http://arxiv.org/abs/1806.08049 

[28] P. S. R. Aditya and M. Pal, “Local Interpretable Model Agnostic Shap 

Explanations for machine learning models,” no. c, 2022. 

[29] L.-Y. Zhou, D. M. Amoh, L. K. Boateng, and A. A. Okine, “Combined 

Appetency and Upselling Prediction Scheme in Telecommunication 

Sector Using Support Vector Machines,” International Journal of 

Modern Education and Computer Science, vol. 11, no. 6, pp. 1–7, Jun. 

2019, doi: 10.5815/ijmecs.2019.06.01. 

[30] N. A. Emadi, S. Thirumuruganathan, D. R. Robillos, and B. J. Jansen, 

“Will You Buy It Now?: Predicting Passengers that Purchase Premium 

Promotions Using the PAX Model,” Journal of Smart Tourism, vol. 1, 

no. 1, pp. 53–64, Mar. 2021, doi: 10.52255/smarttourism.2021.1.1.7. 

[31] A. Duval, “Explainable Artificial Intelligence ( XAI ) Explainable 

Artificial Intelligence ( XAI ) by Alexandre Duval MA4K9 Scholarly 

Report Submitted to The University of Warwick Mathematics 

Institute,” no. April, p. 58, 2019, doi: 10.13140/RG.2.2.24722.09929. 

[32] R. Nkolele and H. Wang, “Explainable Machine Learning: A 

Manuscript on the Customer Churn in the Telecommunications 

Industry,” 2021 Ethics and Explainability for Responsible Data 

Science (EE-RDS), pp. 1–7, Oct. 2021, doi: 10.1109/ee-

rds53766.2021.9708561. 

[33] K. Roshan and A. Zafar, “Utilizing XAI Technique to Improve 

Autoencoder based Model for Computer Network Anomaly Detection 

with Shapley Additive Explanation(SHAP),” International journal of 

Computer Networks &amp; Communications, vol. 13, no. 6, pp. 109–

128, Sep. 2021, doi: 10.5121/ijcnc.2021.13607. 

[34] A. Tharwat, “Classification assessment methods,” Applied Computing 

and Informatics, vol. 17, no. 1, pp. 168–192, Jul. 2020, 

doi:10.1016/j.aci.2018.08.003. 

 

1868




