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Abstract—Quantifying motoric impulsivity in pediatric settings is crucial for safeguarding children and for devising effective 

intervention strategies. Existing quantitative techniques, such as accelerometry, have been utilized to assess it, but they often prove 

insufficient for accurately differentiating impulsive movements from regular ones. Conventional assessment methods are frequently 

used and rely on subjective assessments, which hinders the accurate characterization of impulsive behavior. To address this research 

gap, our study introduced an innovative objective approach using computer vision and deep learning techniques. We utilized MediaPipe 

to track precise body movement data from a child. The data were then analyzed using a Bidirectional Long Short-Term Memory (Bi-

LSTM) network to process sequential information and recognize patterns indicative of impulsivity. Our approach successfully 

distinguished impulsive movements, marked by rapid changes in position and inconsistent movement velocities, from typical behavioral 

patterns with an accuracy rate of 98.21%. This research demonstrates the effectiveness of combining computer vision and deep learning 

to measure motoric impulsivity more precisely and impartially than prevailing qualitative techniques. Our model quantifies behaviors, 

enabling the development of improved safety protocols and targeted interventions in educational and recreational settings. This 

research has broader implications, suggesting a framework for future studies on pediatric motion analysis and behavioral assessment.  
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I. INTRODUCTION

Motoric impulsivity, characterized by spontaneous 
uncontrolled movements and an inability to suppress reflexes, 
is a prevalent symptom observed in several psychological 
disorders, including Attention-Deficit Hyperactivity Disorder 
(ADHD) [1], [2], bipolar disorder [3], [4], and depressive 
disorders [5], [6]. This impulsive behavior typically manifests 
as restlessness, constant motion, or interruption of others, 
which can present significant challenges in social settings, 
particularly in children [7]. Such behavior can result in safety 
hazards and difficulties in various environments such as 
schools, homes, and playgrounds. Children who are highly 
physically active, including those with motoric impulsivity 
disorders such as ADHD, are at a greater risk of sustaining 
injuries. The prevalence of injuries among children with 
ADHD ranges from 3 to 7% throughout their school years. 
Notably, children who have been diagnosed with this 
condition are more susceptible to accidents and nearly twice 

as likely to experience injuries as their peers who do not have 
ADHD [8]. 

Despite the significant impact of motoric impulsivity on 
various aspects of child development and well-being, accurate 
and objective assessment of this complex behavior remains a 
critical challenge due to the limitations of existing qualitative 
and quantitative methods. Assessment of motoric impulsivity 
is of paramount importance for several reasons. First, 
identifying and intervening early in children’s impulsive 
behaviors can have a profound impact on their academic 
performance, social development, and overall well-being [9], 
[10]. Furthermore, a deeper understanding of the underlying 
mechanisms and elements contributing to motoric impulsivity 
can inform the development of more effective therapeutic 
approaches and targeted interventions for related disorders 
such as ADHD [11].  

Various techniques have been employed to address this 
issue, which can be classified into two groups: quantitative 
and qualitative. Quantitative techniques have been found to 
be effective in objectively assessing and characterizing 
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motoric impulsivity. Among these techniques, motion 
tracking and analysis using specialized equipment such as 
cameras or inertial sensors is one approach. This method 
allows for precise measurement and quantification of various 
movement features, including velocity, acceleration, and 
directional changes. 

Optical motion capture is a well-established method that 
involves attaching markers to a subject's body and employing 
specialized cameras to track the movement of these markers 
over a period of time. Through this process, a digital 
representation of the subject's movements can be obtained, 
facilitating the quantification of the movement patterns and 
dynamics. Studies have utilized this technique to analyze 
various aspects of limb movements, such as the range of 
motion, velocity, and coordination, in individuals with 
impulsivity-related disorders [12], [13]. 

Wearable inertial sensors, including accelerometers and 
gyroscopes, have been used to directly track and quantify 
body movements. These sensors can be incorporated into 
specialized attire or attached to specific body segments to 
provide precise measurements of linear and angular 
movements [14], [15]. By analyzing the collected data, 
researchers can extract various kinematic features such as 
acceleration profiles, jerk (rate of change of acceleration), and 
movement trajectories, which may be indicative of impulsive 
behavior. 

Although quantitative techniques have demonstrated 
potential in assessing and quantifying motoric impulsivity, 
they often rely on specialized equipment or arrangements, 
which can prove costly and potentially intrusive for subjects, 
particularly for children. Furthermore, these methods may 
encounter challenges in capturing the subtleties and contexts 
of movements because they principally concentrate on raw 
kinematic data without accounting for environmental or 
situational factors.  

On the other hand, the evaluation of motoric impulsivity 
has traditionally relied on qualitative methods, primarily 
involving subjective observations and clinical assessments. 
These techniques typically involve trained professionals such 
as psychologists or clinicians, who observe and score an 
individual's behavior using predefined scales or checklists. 

A commonly used strategy is the implementation of 
standardized assessment tools such as the Conners' Rating 
Scales [16] or the ADHD Rating Scale [17]. These 
instruments offer a systematic means of evaluating various 
facets of impulsive conduct, including motor restlessness, 
squirming, and difficulty in remaining in one place. Medical 
practitioners and caregivers assess the frequency and intensity 
of these behaviors through observations, thereby facilitating 
the detection and quantification of motoric impulsivity. 

Observational coding systems are another qualitative 
technique that entails trained observers systematically 
recording and categorizing specific instances of impulsive 
motor behaviors in structured or naturalistic settings. These 
coding systems typically consist of detailed operational 
definitions and guidelines for identifying and coding different 
types of impulsive movements, such as fidgeting, restless 
movements, or sudden changes in body position [18]. 

Qualitative methods have played a significant role in 
deepening our understanding of motoric impulsivity; 
however, they have some limitations. For instance, these 

assessments can be susceptible to observer bias, in addition to 
being dependent on the experience and training of the 
observer. Moreover, the process of capturing and quantifying 
intricate and rapidly changing movement patterns is 
inherently complicated and can lead to inconsistencies [19]. 
Qualitative techniques typically involve extended and 
resource-intensive observation periods, which may limit their 
scalability and practicality in real-world scenarios. 

Among the two methods mentioned, neither the 
quantitative nor the qualitative approach presents an ideal 
solution for identifying motor impulsivity. In both cases, there 
is a trade-off. However, recent advancements in computer 
vision and deep-learning methodologies present promising 
opportunities to address this gap. These technologies are used 
to process and analyze intricate visual data, including human 
movements [20], [21]. By analyzing movement patterns and 
dynamics in video recordings, computer models can capture 
various movement attributes, such as the estimated position 
of keypoints of body parts, and calculate velocity, 
acceleration, and changes in direction. This information can 
then be used to classify movements into different levels of 
motoric impulsivity, potentially offering more consistent and 
objective assessments than those relying solely on human 
observation. 

Although computer vision techniques have demonstrated 
potential for movement analysis [22], their application in 
quantifying and classifying motoric impulsivity remains 
relatively unexplored. Current automated movement analysis 
approaches often struggle with the intricate nature of 
movement patterns and unique characteristics of individual 
movements, making it challenging to develop consistent 
analysis systems. Although previous studies have applied 
automated techniques to movement analysis in specific 
domains, such as assessing neurodevelopmental disorders in 
infants [23], forensic analysis [24], and psychology-based eye 
movement studies [25], crucial aspects of movement data, 
including velocity and acceleration, have not been thoroughly 
investigated in the context of motoric impulsivity assessment. 

To bridge this research gap, this study presents a video-
based model for predicting motoric impulsivity that employs 
the MediaPipe pose estimator and Bi-Directional Long Short-
Term Memory (Bi-LSTM) [26] architecture. The model aims 
to objectively analyze children's motoric impulsivity by 
extracting keypoints from real-time movements in videos, 
then calculating their movement metrics, thereby overcoming 
the limitations of current qualitative assessments, and 
utilizing computer vision technology to differentiate between 
impulsive and regular movements. 

Bi-LSTM networks, which integrate two types of 
Recurrent Neural Networks (RNNs), have been effectively 
utilized in various applications, such as gesture recognition 
[27], video detection [28], and behavior detection [29], [30], 
[31], [32]. The capacity of these networks to capture temporal 
dependencies and relationships in sequential data makes them 
particularly suitable for precise prediction and classification 
[33]. Consequently, they have the potential to enhance the 
motoric impulsivity classification. 

This study aimed to develop a comprehensive, 
standardized methodology for analyzing motoric impulsivity, 
involving the following:  
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Fig. 1  The proposed methodology aims to classify motor-impulsive actions in videos. 

 
a. Developing and evaluating a computer vision-based 

framework for accurately detecting and classifying 
motoric impulsivity levels from video data using the 
MediaPipe pose estimation model and Bi-LSTM 
architecture. 

b. Investigating the impact of incorporating various 
movement features, such as velocity, acceleration, and 
directional changes, on the model's ability to 
distinguish impulsive movements from regular ones. 

c. Assessing robustness and generalizability of the 
proposed approach by evaluating its performance for 
various movement quantification and subject 
characteristics. 

d. Comparing the performance of the developed model to 
existing quantitative techniques, highlighting its 
potential advantages and limitations.  

II. MATERIAL AND METHOD 
Accurate assessment and quantification of impulsive 

movements pose significant challenges due to their complex 
and dynamic nature as well as the limitations of existing 
approaches. To address these challenges, we propose a novel 
framework that utilizes deep-learning techniques for precise 
movement analysis and classification. The following sections 
delve into the details of each stage, highlighting the 
innovative techniques and algorithms employed in our 
approach, which involves data collection, data preprocessing, 
feature extraction, model training, classification, and 
evaluation, as shown in Figure 1. 

A. Data Collection 
Two datasets are used in this study. The initial dataset 

comprised 66 videos obtained from YouTube, which 
showcased behaviors classified as motoric impulsiveness, 
such as repetitive, sudden, unnatural, and sporadic 
movements. These videos were obtained through the 
YouTube Data API by searching for ten pertinent keywords 
(motoric impulsiveness, disruptive behavior, snapping 
fingers, self-injury, scratching, tantrums, climbing, and 
twitching) and selecting the top six videos returned for each 
keyword. The dataset was expanded through a collection of 
twenty-five private videos from three children who had been 
diagnosed with ADHD-HI and displayed impulsive 
movements. The videos had to meet specific criteria, 
including a minimum duration of 10 seconds and the presence 
of observable motoric impulsive behavior. The data 
characteristics are presented in Table 1. 

TABLE I 
DATA COLLECTION CHARACTERISTICS 

Type Action 
ID 

Videos 
Duration Snapshot 

Private Impulsive 
Motoric 

01-PIM 21s 

 
Private Impulsive 

Motoric 
02-PIM 16s 

 
10-PIM 10s 

 
11-PIM 32s 

 
Private Non-Impulsive 01-PNI 14s 

 
02-PNI 27s 

 
12-PNI 40s 

 
13-PNI 22s 

 
YouTube Impulsive 

Motoric 
01-YIM 15s 

 
02-YIM 21s 

 
24-YIM 10s 

 
25-YIM 13s 
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Type Action 
ID 

Videos 
Duration Snapshot 

YouTube Non-Impulsive 01-YNI 28s 

 
02-YNI 37s 

 
40-YNI 19s 

 
41-YNI 22s 

 

A total of 91 video clips were collected, and almost 40% 
showed individuals with psychological disorders exhibiting 
repetitive behaviors, unusual movements, or excessive 
activity. Each video was carefully annotated with metadata 
such as location context, perceived environmental stimuli, 
and duration of impulsivity. This thorough annotation process 
was conducted by the first author and a team of twelve 
kindergarten teachers and 6 elementary school teachers, aged 
between 20 and 39 years. Each video was annotated by the 
first author and at least two teachers. The process depicted in 
Figure 2 encompasses the entire video processing journey, 
culminating in the acquisition of numerical data that are 
subsequently fed into Bi-LSTM. 

 
Fig. 2  Step-length methodology for data generation: Video processing produces x,y, and z-coordinates at each key point of the body. The coordinates are divided 
into organic and synthetic, and both are then processed respectively producing a complete dataset to be fed to Bi-LSTM. 

 

B. Data Preprocessing 
Of all 91 video sources, 37 videos displayed potential 

impulsive movements, and 54 videos displayed controlled 
movements. To prepare the dataset, all videos were cropped 
to leave the subject in the video, magnified to focus on the 
subject, and centered on the subject. All these processes were 
performed using Microsoft ClipChamp. Following the 
cropping process, the video has been transformed into a 
square format with a frame size of 540 x 540 pixels in 
dimensions. These steps result in a decrease in video quality 
and pixelation, as shown in Figure 3.  

 

 

Fig. 3  Frames before preprocessing on the left and after preprocessing on the 
right. 

 
To expand the dataset, a data augmentation process was 

implemented by reversing all videos while preserving their 
labels, ultimately doubling the dataset to 182 videos. The 
reversing process refers to flipping the image along one of its 
axes; this process was performed horizontally. 

 

C. Data Quantification 
MediaPipe uses the TensorFlow Lite library for building 

the model. It combines multiple models and offers a model-
maker feature for transfer learning similar to TensorFlow. Our 
research used the MediaPipe Pose Landmarker to identify 
human body landmarks in the videos. The model processes a 
video feed to produce body-pose landmarks in three-
dimensional space coordinates. Figure 4 illustrates the 
keypoint numbering on the human body.  

 
Fig. 4  The landmark pose model identified 33 crucial body keypoints, 
marking the approximate positions of various parts of the body [34] 
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This research examines the application of certain keypoints 
from MediaPipe to assess the movements. Specifically, we 
utilized only 14 out of the total 33 keypoints available in 
MediaPipe for this analysis. They are the left and right ears as 
auricle keypoints (AuK), the legs as locomotor keypoints (LK), 
and the hands as prehensile keypoints (PK). Several anchor 
keypoints (AK) were included as reference points for relative 
movement. The keypoints used in this study are listed in Table 2. 

TABLE II 
UTILIZED KEYPOINTS 

Type #KP Name 

Auricle (AuK) 7 L Ear 
Auricle (AuK) 8 R Ear 
Anchor Superior (ASK) 11 L Shoulder 
Anchor Superior (ASK) 12 R Shoulder 
Anchor Inferior (AIK) 23 L Collarbone 
Anchor Inferior (AIK) 24 R Collarbone 
Prehensile Proximal (PPK) 13 L Elbow 
Prehensile Proximal (PPK) 14 R Elbow 
Prehensile Distal (PDK) 15 L Wrist 
Prehensile Distal (PDK) 16 R Wrist 
Locomotor Proximal (LPK) 25 L Knee 
Locomotor Proximal (LPK) 26 R Knee 
Locomotor Distal (LDK) 27 L Ankle 
Locomotor Distal (LDK) 28 R Ankle 
 
During skeleton keypoint generation, MedaPipe frequently 

experiences intermittent location interference, which hinders 
their ability to identify objects accurately. We then used 
Kalman filters to overcome this limitation [35]. A total of 182 

videos from the preprocessing stage were input into 
MediaPipe. Figure 5 shows the interim results of this process. 
 

 
Fig. 5  Skeleton keypoints were overlaid on video clips processed by 
MediaPipe and then quantized. 

 
The Kalman filter recursively estimates and predicts the 

system state based on noisy measurements, by initializing the 
initial keypoint position, predicting the next state for each 
frame, and correcting it using the observed keypoint. This 
process enables smooth keypoint tracking. For each video, we 
applied the following criteria to calculate the movement 
aspects, as illustrated in Figure 6. 

a. Head lateral flexion: local minimum distance between 
the ear and shoulder keypoints (AuK-ASK). 

b. Prehensile flexion-abduction: local maxima of the 
distance between the keypoints of the hand and 
shoulder (PDK-ASK/PPK-ASK). 

c. Locomotor flexion-abduction: local maxima of the 
distance between the foot and hip keypoints (LDK-
AIK/LPK-AIK). 

d. The ground truth was manually set by frame-by-frame 
inspection. 

 

 
Fig. 6  Three main criteria were used to calculate the movement aspects 

 

MediaPipe recorded the keypoint data as comma-separated 
values (.csv) files. We separated the data into two types, based 
on the generation process. First, the organic features that 
contain the position of each keypoint per unit time are 
presented as three-dimensional [x,y,z] coordinates for the 
keypoints AuK, PPK, PDK, LPK, and LDK, calculated 
against the [0,0] frame point. These 3D data are automatically 
processed by MediaPipe's algorithms, which estimate 3D 
coordinates from 2D inputs using geometric principles, 
machine learning, and statistical methods. Second, synthetic 
keypoint data were derived by calculating the velocity, angle, 
acceleration, motion trajectory, head lateral flexion distance, 
prehensile flexion abduction, and locomotor flexion 
abduction from organic keypoint data. 

D. Data Analysis and Evaluation 

1)   Movement Velocity Calculation: Movement velocity is 
a critical metric that can be used to differentiate between 
impulsive and controlled movement. In general, higher 
velocities tend to be indicative of impulsive behavior. 
Calculating the velocity of a keypoint's movement involves 
determining its initial and final positions, and the time it takes 
to move between them. Assuming that the initial position of 
the keypoint is (��, ��, ��) and the final position is (��, ��, ��), 
the displacement on each axis can be calculated using Δ� =
 �� −  �� on the x axis, Δ� =  �� −  �� on the y axis, and Δ� =
 �� −  �� on the z axis. The displacement distance can be 
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calculated using the Pythagorean equation, which determines 
the displacement-vector length. 


 = �Δ�� + Δ�� + Δ�� (1) 

The following formula can be used to determine the velocity: 

� =  


�

=  
�Δ�� + Δ�� + Δ��

�
 (2) 

2)   Movement Direction Calculation: The calculation of 
movement direction is of considerable importance, as it can 
offer valuable insights into the direction and orientation of 
movements, which may suggest specific impulsive behaviors 
or patterns. To determine the direction of the displacement, it 
is essential to compute the displacement vector and validate 
its direction. The displacement vector, which connects the 
initial position of the keypoint to its final position, is 
calculated using the following formula: 


 =  Δ�� +  Δy� +  Δ�� (3) 

The unit vectors of the x, y, and z axes are denoted by �, �, �. 
The direction of the displacement vector can be calculated 
using its magnitude and the dot product. The angle between 
the vector and the x, y, and z axes can be determined by 
dividing the arccosine of the dot product by vector size. 

�� = cos�� Δ�

��� + �� +  ��
 (4) 

�� = cos�� Δy

��� + �� + ��
 (5) 

�� = cos�� Δ�

��� + �� +  ��
 (6) 

3)   Movement Acceleration Calculation: Determining the 
acceleration of a keypoint's movement in a three-dimensional 
space involves calculating the change in the vector velocity 
over a specific time frame. Acceleration monitoring can 
reveal sudden and jerky movements that are often indicative 
of impulsive behavior. By measuring the change in velocity 
per unit time, the initial and final velocities of the keypoint 
movement were determined prior to the calculation. 
Assuming that the initial velocity of the keypoint is �� =
 ���� + ���� +  ���� and the final velocity is �� =  ���� +
���� + ���� with ���  , ��� , ��� , ��� , ��� , ��� are the 
components of the velocity on each axis. The change in the 
velocity was calculated by subtracting the initial velocity from 
the final velocity for each component. On the x-axis the 
formula applied Δ�� =  ��� −  ��� whereas on the y-axis the 
formula applied Δ�� =  ��� −  ��� and on the z-axis Δ�� =
 ��� −  ���. The acceleration of motion is the change in the 
total velocity divided by the total time. This was calculated 
using the following equation: 

� =  
 ���

 ��
 � +  

 ���

 ��
 � + 

���

 ��
 � (7) 

4)   Data Analysis: Our model was implemented by 
allocating the processed dataset into three segments: 60% for 
training, 20% for validation, and 20% for testing. Table 3 
shows the hyperparameter configurations used in building the 
Bi-LSTM architecture, and the optimal settings determined 

through performance evaluation based on the validation 
dataset. These hyperparameters were used to train the model 
with the best performance during the experiment.  A 
confusion matrix is used to evaluate the performance of the 
algorithm by comparing the predicted and actual class 
instances. True Positive, True Negative, False Positive, and 
False Negative values were determined. Our research 
employed metrics, such as Accuracy, Sensitivity (recall), 
Precision, and AUC, to assess the algorithm. This metric was 
calculated as follows: 

 !!"#��$%& =  
('( + '))

('( + *( + ') + *))
 (8) 

(#+!$,$%& =  
('()

('( + *()
 (9) 

-+!�.. =  
('()

('( + *))
 (10) 

TABLE III 
BI-LSTM HYPERPARAMETER CONFIGURATION 

Hyperparameter Value 

Activation function Sigmoid 
Loss function Binary Cross entropy 
Optimizer ADAM 
Learning rate 0.01 
Epsilon 1.e-07 
Learning Rate decay 0.01 
Epochs 10, 30, 50 
Dropout 0.5 
Batch Size 64 
Nodes per Layer 100 

III. RESULTS AND DISCUSSION 
Our innovative computer vision-based framework 

demonstrates significant advancements over the existing 
methods for quantifying and classifying motoric impulsivity. 
We assessed the effectiveness of our approach using a 
comprehensive dataset comprising videos from various 
sources, including online platforms and specially recorded 
sessions. The dataset was carefully curated to capture a wide 
range of impulsive movements exhibited by children in 
various settings, ensuring a thorough evaluation of our 
model's performance.  

A. Movement Detection and Quantification Results 

1)   Head Lateral Flexion: Head lateral flexion, also 
known as head side-to-side movement, involves bending the 
head towards the left or right shoulder. This movement is 
often associated with impulsive behaviors such as fidgeting or 
restlessness and can be a valuable indicator of motoric 
impulsivity. By assessing head lateral flexion using frame-by-
frame video analysis and tracking specific ear landmarks, we 
can quantify the degree and frequency of these movements. 
This metric is practically significant, as excessive or repetitive 
head lateral flexion can disrupt focus, interfere with activities, 
and potentially indicate underlying conditions, such as ADHD 
or anxiety disorders. Table 4 lists the quantified results for the 
head lateral flexion sections of twenty-five private videos. 

2)   Prehensile flexion-abduction: Prehensile flexion-
abduction refers to a complex wrist movement often used in 

280



grasping objects. Tracking this metric is important because 
abnormal or excessive wrist movements can be indicative of 
impulsive behaviors, such as fidgeting, repetitive motions, or 
self-stimulatory behaviors. By carefully monitoring the wrist 
joint angle and establishing a neutral zero position, we can 
quantify the degree and range of prehensile flexion-abduction 
movements. This information is relevant for identifying potential 
impulsive behaviors related to hand and arm movements that can 
interfere with daily activities, social interactions, or learning 
environments. Table 5 shows the results of quantifying 
movements in the prehensile flexion-abduction section. 

3)   Locomotor flexion-abduction: Locomotor flexion-
abduction refers to complex flexion and abduction 
movements of the lower extremity joints during activities 
such as walking or running. Quantifying these movements is 
crucial because they can reveal gait patterns, coordination 
difficulties, or excessive movements associated with 
impulsivity. By tracking anatomical landmarks and 
calculating joint angles over time, the overall range of motion 
and coordination of leg and foot movements can be assessed. 
Table 6 shows the results of quantifying movements in the 
locomotor flexion-abduction section.  

TABLE IV 
THE MOVEMENT QUANTIFICATION OF HEAD LATERAL FLEXION SYNTHETIC DATA 

Video /0 AuK-ASK  10 AuK  20 AuK  30 AuK  

 L R L R L R L R 

# 1 0.0034 0.0083 26.48 55.29 0.016 0.108 0.021 0.089 
# 2 0.0028 0.0067 24.95 48.85 0.022 0.083 0.023 0.070 
# 3 0.0035 0.0070 40.45 65.38 0.014 0.096 0.012 0.070 
# 4 0.0028 0.0116 22.15 68.72 0.019 0.238 0.021 0.190 
# 5 0.0046 0.0089 8.36 32.87 0.038 0.086 0.112 0.129 
# 6 0.0064 0.0113 14.53 44.79 0.038 0.097 0.049 0.098 
# 7 0.0096 0.0164 18.86 33.16 0.056 0.111 0.090 0.134 
# 8 0.0018 0.0055 38.59 59.94 0.011 0.075 0.011 0.063 
# 9 0.0024 0.0077 39.70 61.04 0.016 0.097 0.017 0.073 
# 10 0.0022 0.0071 71.27 67.21 0.027 0.121 0.016 0.086 
# 11 0.0031 0.0194 21.03 53.53 0.028 0.325 0.019 0.264 
# 12 0.0035 0.0095 33.18 58.86 0.019 0.139 0.029 0.112 
# 13 0.0050 0.0105 26.08 49.19 0.026 0.139 0.038 0.113 
# 14 0.0018 0.0035 29.76 60.73 0.022 0.067 0.016 0.051 
# 15 0.0022 0.0060 11.61 50.40 0.019 0.064 0.016 0.055 
# 16 0.0060 0.0113 18.69 46.79 0.028 0.132 0.043 0.113 
# 17 0.0012 0.0030 62.68 54.43 0.009 0.024 0.011 0.026 
# 18 0.0041 0.0102 19.09 51.13 0.031 0.127 0.047 0.112 
# 19 0.0058 0.0085 33.07 50.87 0.024 0.076 0.022 0.065 
# 20 0.0053 0.0112 36.60 47.34 0.043 0.164 0.035 0.119 
# 21 0.0030 0.0091 28.15 58.21 0.026 0.127 0.031 0.107 
# 22 0.0058 0.0246 26.49 61.53 0.039 0.382 0.039 0.290 
# 23 0.0038 0.0115 24.29 57.21 0.025 0.173 0.031 0.148 
# 24 0.0036 0.0070 38.73 56.38 0.014 0.058 0.032 0.060 
# 25 0.0021 0.0054 58.44 68.38 0.012 0.078 0.012 0.060 

TABLE V 
THE MOVEMENT QUANTIFICATION OF PREHENSILE FLEXION-ABDUCTION SYNTHETIC DATA 

Video 
/0 PPK-ASK  10 PPK  20 PPK  30 PPK  /0 PDK-ASK  10 PDK  20 PDK  30 PDK  

L R L R L R L R L R L R L R L R 
# 1 0.0051 0.0115 49.80 55.37 0.043 0.115 0.042 0.096 0.5011 0.0230 1.01 59.39 0.059 0.168 0.055 0.138 
# 2 0.0042 0.0092 38.02 54.50 0.038 0.090 0.035 0.072 0.3761 0.0177 1.20 58.19 0.056 0.125 0.045 0.098 
# 3 0.0026 0.0126 62.98 67.36 0.025 0.115 0.017 0.085 0.6295 0.0280 0.33 69.26 0.018 0.212 0.012 0.152 
# 4 0.0052 0.0110 34.07 69.79 0.034 0.196 0.036 0.154 0.6749 0.0209 0.62 67.68 0.050 0.229 0.039 0.180 
# 5 0.0083 0.0146 16.16 41.72 0.050 0.083 0.086 0.089 0.5139 0.0277 0.79 53.69 0.065 0.152 0.067 0.128 
# 6 0.0081 0.0165 29.87 47.99 0.065 0.121 0.065 0.107 0.5695 0.0339 1.57 45.65 0.100 0.199 0.080 0.179 
# 7 0.0117 0.0169 15.43 38.65 0.070 0.123 0.066 0.119 0.3905 0.0281 2.00 42.34 0.098 0.142 0.073 0.142 
# 8 0.0023 0.0079 51.73 62.04 0.021 0.073 0.015 0.064 0.6145 0.0172 0.42 60.41 0.030 0.111 0.023 0.094 
# 9 0.0030 0.0098 51.26 64.15 0.024 0.097 0.018 0.076 0.5580 0.0199 0.81 63.65 0.044 0.127 0.036 0.110 
# 10 0.0024 0.0112 68.48 73.87 0.032 0.135 0.021 0.095 0.3560 0.0200 0.52 72.53 0.022 0.183 0.017 0.131 
# 11 0.0047 0.0318 25.23 49.53 0.043 0.197 0.030 0.180 0.5340 0.0533 0.80 53.52 0.054 0.340 0.034 0.286 
# 12 0.0055 0.0155 53.64 64.22 0.034 0.149 0.035 0.120 0.4842 0.0316 0.65 67.75 0.034 0.238 0.035 0.189 
# 13 0.0065 0.0149 40.12 49.48 0.040 0.114 0.042 0.103 0.4939 0.0316 0.97 54.63 0.051 0.205 0.049 0.176 
# 14 0.0030 0.0069 47.52 68.26 0.025 0.072 0.017 0.054 0.4917 0.0147 0.46 74.33 0.029 0.117 0.018 0.086 
# 15 0.0023 0.0062 30.19 46.92 0.022 0.056 0.012 0.049 0.4609 0.0138 0.49 54.57 0.027 0.094 0.015 0.081 
# 16 0.0066 0.0141 37.92 50.27 0.063 0.131 0.064 0.116 0.5339 0.0317 1.58 58.49 0.079 0.215 0.076 0.177 
# 17 0.0022 0.0055 73.03 54.60 0.012 0.035 0.013 0.036 0.3905 0.0107 0.32 54.62 0.016 0.061 0.014 0.059 
# 18 0.0066 0.0179 35.28 61.42 0.042 0.154 0.048 0.131 0.7107 0.0359 0.87 64.50 0.074 0.235 0.069 0.194 
# 19 0.0109 0.0195 50.11 56.99 0.093 0.165 0.070 0.136 0.7985 0.0428 0.98 64.64 0.082 0.301 0.066 0.238 
# 20 0.0066 0.0252 56.66 56.32 0.067 0.180 0.045 0.140 0.5183 0.0590 1.48 63.69 0.085 0.386 0.063 0.285 
# 21 0.0045 0.0143 43.66 56.11 0.034 0.109 0.033 0.093 0.5168 0.0286 0.91 63.25 0.052 0.180 0.043 0.146 
# 22 0.0095 0.0219 36.76 64.21 0.061 0.269 0.055 0.203 0.3684 0.0384 2.31 70.01 0.092 0.337 0.083 0.246 
# 23 0.0053 0.0121 43.07 54.78 0.041 0.136 0.044 0.121 0.4741 0.0214 1.11 56.17 0.063 0.170 0.058 0.145 
# 24 0.0059 0.0145 43.22 62.93 0.036 0.112 0.049 0.100 0.4053 0.0305 4.32 63.68 0.055 0.185 0.056 0.159 
# 25 0.0038 0.0105 57.12 66.64 0.026 0.081 0.023 0.065 0.4606 0.0231 0.81 71.28 0.047 0.151 0.043 0.116 
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TABLE VI 
THE MOVEMENT QUANTIFICATION OF LOCOMOTOR FLEXION-ABDUCTION SYNTHETIC DATA 

Video 
/0 LPK-AIK 10 LPK 20 LPK 30 LPK /0 LDK-AIK 10 LDK 20 LDK 30 LDK 

L R L R L R L R L R L R L R L R 

# 1 0.0081 0.0233 43.72 55.71 0.049 0.100 0.042 0.086 0.0303 0.0354 59.42 58.37 0.177 0.170 0.144 0.146 
# 2 0.0073 0.0204 35.64 63.30 0.034 0.096 0.032 0.072 0.0258 0.0307 65.20 69.65 0.151 0.166 0.114 0.121 
# 3 0.0035 0.0233 56.19 65.98 0.024 0.103 0.015 0.076 0.0367 0.0412 69.24 69.02 0.249 0.229 0.176 0.163 
# 4 0.0077 0.0393 36.34 45.06 0.035 0.084 0.034 0.076 0.0434 0.0574 64.33 63.54 0.242 0.198 0.199 0.162 
# 5 0.0122 0.0266 20.06 42.78 0.051 0.079 0.063 0.083 0.0533 0.0443 54.60 53.94 0.226 0.171 0.196 0.146 
# 6 0.0083 0.0338 35.52 44.99 0.050 0.119 0.052 0.121 0.0439 0.0539 56.83 53.33 0.235 0.231 0.205 0.214 
# 7 0.0152 0.0373 15.43 47.08 0.077 0.163 0.083 0.133 0.0448 0.0542 51.22 52.06 0.231 0.244 0.163 0.195 
# 8 0.0071 0.0407 58.40 71.32 0.043 0.238 0.034 0.180 0.0604 0.0651 77.26 73.48 0.414 0.400 0.300 0.295 
# 9 0.0039 0.0244 55.89 63.41 0.027 0.112 0.018 0.089 0.0358 0.0361 72.94 63.05 0.228 0.176 0.171 0.133 

# 10 0.0069 0.0283 76.58 67.51 0.038 0.147 0.024 0.100 0.0339 0.0374 74.56 74.63 0.250 0.202 0.169 0.138 
# 11 0.0049 0.0728 33.64 54.38 0.039 0.374 0.023 0.281 0.1090 0.1226 53.70 59.13 0.654 0.673 0.500 0.499 
# 12 0.0088 0.0369 43.91 66.82 0.037 0.177 0.036 0.138 0.0470 0.0579 70.21 70.07 0.288 0.310 0.225 0.235 
# 13 0.0101 0.0428 46.69 63.10 0.049 0.221 0.044 0.175 0.0624 0.0664 67.25 66.44 0.411 0.387 0.304 0.283 
# 14 0.0035 0.0120 46.56 65.42 0.022 0.050 0.011 0.038 0.0165 0.0186 58.14 70.41 0.097 0.087 0.071 0.065 
# 15 0.0034 0.0236 43.55 60.82 0.025 0.150 0.015 0.108 0.0360 0.0388 66.12 68.00 0.245 0.240 0.171 0.174 
# 16 0.0102 0.0328 32.48 51.85 0.056 0.158 0.059 0.134 0.0493 0.0538 59.86 58.90 0.292 0.290 0.239 0.235 
# 17 0.0027 0.0072 78.44 56.82 0.011 0.030 0.012 0.028 0.0121 0.0141 65.33 64.26 0.066 0.073 0.057 0.060 
# 18 0.0106 0.0337 37.69 60.38 0.049 0.165 0.050 0.136 0.0487 0.0553 63.59 66.07 0.290 0.302 0.230 0.233 
# 19 0.0071 0.0266 58.30 64.77 0.033 0.123 0.020 0.096 0.0500 0.0464 69.38 65.12 0.311 0.250 0.233 0.191 
# 20 0.0110 0.0391 37.10 56.16 0.060 0.146 0.046 0.119 0.0465 0.0603 56.60 59.95 0.262 0.275 0.202 0.217 
# 21 0.0071 0.0386 35.11 65.67 0.038 0.210 0.039 0.159 0.0592 0.0634 71.95 72.71 0.386 0.393 0.282 0.275 
# 22 0.0139 0.0598 44.32 62.12 0.066 0.172 0.054 0.126 0.0507 0.0894 68.18 75.57 0.305 0.362 0.234 0.260 
# 23 0.0090 0.0348 45.55 55.89 0.044 0.132 0.044 0.112 0.0448 0.0568 66.96 65.12 0.275 0.265 0.214 0.208 
# 24 0.0055 0.0208 52.11 59.47 0.025 0.078 0.034 0.072 0.0228 0.0288 62.00 62.33 0.121 0.125 0.105 0.109 
# 25 0.0062 0.0258 56.24 68.40 0.035 0.122 0.030 0.098 0.0372 0.0450 76.14 76.49 0.247 0.253 0.182 0.190 
 

   

   
Fig. 7  The 3D environment displays the movement patterns of AuK, PPK, and LPK. On the upside are impulsive-motoric subjects, while the downside displays 
non-impulsive subjects.

We transformed the raw data into a 3D visual 
representation starting with 25 videos, each containing 
distinct numerical features. Figure 7 shows the two samples 
selected for visualization. By placing these contrasting 
datasets side by side on a 3D landscape, we gain a 
comprehensive view of their dual nature, highlighting the 

differences between motor impulsiveness and non-
impulsiveness. 

B. Overall Performance 
We conducted a thorough evaluation of our proposed 

model using each of the quantification sub-datasets presented 
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above. The optimal configuration of the model is listed in 
Table 3. Our model exhibited impressive performance on the 
test dataset, achieving an accuracy of 98.21%. This metric 
reflects the general effectiveness of the model in classifying 
the sample and assesses the proportion of correct predictions 
relative to the total number of observations, as shown in 
Figure 8. 

Figure 9. displays the AUC value of our classification 
model, which was 0.978. This result indicates that our model 
performed significantly better than random chance, as 
indicated by the dashed diagonal line on the curve. In 
addition, our model demonstrated the ability to classify 
instances correctly. The AUC value of 0.978 was excellent, 
indicating a high level of accuracy and reliability in 
classification predictions. 

The performance of our classification model is depicted by 
the precision-recall curve in Figure 10, illustrating its 

capabilities at various decision thresholds. Precision refers to 
the ratio of true positives to the sum of true positives and false 
positives, indicating the accuracy of positive predictions. 
Recall represents the ratio of true positives to the sum of true 
positives and false negatives, emphasizing the model's ability 
to identify all positive events. 

The precision-recall curve shows the interaction between 
precision and recall when the decision threshold is varied. 
Models with perfect precision and recall are marked in the 
upper-right corner. Our curve demonstrated excellent results 
with satisfactory recall when precision was high. The area 
under the curve (AUC-PR) of 0.99 indicates a good balance 
between precision and recall, implying that the model 
effectively makes positive predictions while capturing actual 
positive events. 

   
Fig. 8  Accuracy curves between training and validation for 10, 30, and 50-epochs 

 

 
Fig. 9  RoC curves using threshold 0.5 on the datasets 

 

 
Fig. 10  Precision-recall curves for training and testing for 50-epochs. 

TABLE VII 
ACCURACY COMPARISON WITH PREVIOUS STUDY 

Reference Method Used Description of the Experiment Accuracy 

[30] 
R-CNN, 
MediaPipe, 
LSTM 

Using deep learning techniques to detect and classify the behavior of manufacturing 
workers based on their poses and interactions with objects in the environment. This was 
done to identify normal and anomalous behavior, with the goal of improving safety and 
productivity in manufacturing settings. 

94% 

[36] 
CNN, SP-
CNN 

The experiments aimed to evaluate the performance of the proposed SP-CNN approach in 
real-time performance, security, and abnormal behavior detection using a Jetson TX2 
device and a cloud server. The performance of SP-CNN was evaluated based on its real-
time performance, security, and detection accuracy using a K-nearest neighbor (KNN) 
classifier. 

Walk 
behavior: 
96.46% 
Fall 
behavior: 
98.61% 
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Reference Method Used Description of the Experiment Accuracy 

Our 
Research 

MediaPipe Bi-
LSTM 

Assessing motor impulsivity in children’s computer vision and deep learning. The model, 
incorporating MediaPipe and a Bi-LSTM architecture. This highlights the effectiveness of 
combining these technologies for precise motor impulsivity analysis, valuable for 
enhancing safety measures. 

98, 21% 

The confusion matrix revealed that the model rarely 
mislabeled non-impulsive movements as impulsive (recall 
99.07%) while capturing impulsive movements (sensitivity 
97.46%). This demonstrates its ability to differentiate between 
true impulsive movements and regular movements. 
Collectively, the performance metrics, including accuracy, 
precision, recall, and F1 scores, indicate a robust, high-
performance model for accurately categorizing instances across 
different classes. In the proposed work, significant progress 
was achieved compared with similar architectures, as shown in 
Table 7. This table highlights the differences between the 
proposed design and those presented in [30] and [36]. 

However, our study had certain limitations that need to be 
addressed. Accurately interpreting motoric impulsivity 
requires consideration of the environmental context in which 
the activity or movement occurs. Relying solely on predefined 
definitions may not capture the appropriateness of observed 
movements within a given context. In addition, the current 
implementation of MediaPipe is limited to singular subjects 
and cannot be simultaneously applied to multiple subjects. 

To enhance the generalizability and robustness of our 
approach, future research should focus on integrating 
environmental context information into the analysis pipeline, 
potentially through scene understanding or situational 
awareness modeling. This would provide a more 
comprehensive understanding of the contextual factors 
influencing the observed behaviors. Furthermore, extending 
the pose estimation and analysis capabilities to handle 
multiple subjects simultaneously would broaden the 
applicability of our method to various real-world scenarios, 
such as classrooms, playgrounds, or group therapy sessions. 

Additionally, exploring the integration of multimodal data 
sources, such as physiological signals or environmental 
factors, could provide a more holistic understanding of 
motoric impulsivity and its triggers, leading to personalized 
and effective interventions. 

IV. CONCLUSION 
Our study demonstrates the efficacy of computer vision 

and deep learning techniques in accurately identifying and 
quantifying motoric impulsivity in children. By employing 
MediaPipe pose estimation and the Bi-LSTM architecture, we 
achieved an accuracy rate of 98.21% in distinguishing 
impulsive movements from regular ones, leveraging features 
such as abrupt changes in body position, erratic 
velocity/acceleration, and recurring motions. These findings 
highlight the potential of automated systems to provide 
objective and precise assessments of motoric impulsivity, 
thereby overcoming the limitations of the subjective 
methodologies. 

The real-world application of the proposed approach has 
practical implications, such as designing classrooms that 
minimize distractions, promoting focus, and implementing 
safety measures in playgrounds to reduce accidents caused by 
motoric impulsivity. Our method can also help to create 

supportive home environments by identifying triggers for 
impulsive behaviors and suggesting modifications, thus 
enabling caregivers to foster a nurturing environment that 
supports their children's well-being and development. 

Our work not only focuses on environmental design but 
also paves the way for a paradigm shift in pediatric 
psychology and developmental neuroscience, enabling data-
driven precision and personalized interventions for childhood 
impulsivity. While our study yielded promising results, it is 
crucial to acknowledge its limitations, such as the limited 
sample size and focus on preteens. Future research should 
explore larger and more diverse datasets and investigate the 
generalizability of this approach to different age groups and 
disorders.  

NOMENCLATURE 

d5 mean of distance kpx 
θ5 mean of angle rad 
v5 mean of velocity kpx/s 
a5 mean of acceleration kpx/s2 
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