
INTERNATIONAL JOURNAL
ON INFORMATICS VISUALIZATION

journal homepage : www.joiv.org/index.php/joiv

INTERNATIONAL
JOURNAL ON

INFORMATICS
VISUALIZATION

Dynamic Key Generation Using GWO for IoT System
Balsam A. Hameedi a,*, Muntaha A. Hatem b, Jamal N. Hasoon c

a Palestine High School for Excellence, Ministry of Education-Iraq, Baghdad, Iraq
b Department of Missions and Cultural Relations, Ministry of Higher Education and Scientific Research-Iraq, Baghdad, Iraq

c Department of Computer Sciences, Faculty of Science, Mustansiriyah University, Falastin St, Baghdad, 10052, Iraq

Corresponding author: *Balsam119@res-rus2.edu.iq

Abstract—One well-known technological advancement that significantly impacts many things is the Internet of Things (IoT). These
include connectivity, work, healthcare, and the economy. IoT can improve life in many situations, including classrooms and smart
cities, through work automation, increased output, and decreased worry. However, cyberattacks and other risks significantly impact
intelligent Internet of Things applications. Key generation is essential in information security and the various applications that use a
distributed system, networks, or Internet of Things (IoT) systems. Several algorithms have been developed to protect IoT applications
from malicious attacks; since IoT devices usually have small memory resources and limited computing and power resources,
traditional key generation methods are inappropriate because they require high computational power and memory usage. This paper
proposes a method of Dynamic Key Generation Method (DKGM) to overcome the difficulty using a specific chaotic map called the
Zaslavskii Map and a swarm intelligent algorithm for optimization called Grey Wolf Optimizer (GWO). DKGM's ability to generate
several groups-seed numbers using the Zaslavskii map depends on various initial parameters. GWO selects strong generated numbers
depending on the randomness test as a fitness function. Three wolfs GWα, GWβ, and GWΩ, are used to simulate the behavior of a
pack of grey wolves when attacking prey. The speed and position of each wolf are updated depending on the best three wolves.
Finally, use the sets GWα in the round, GWβ in the subkey, and GWΩ in shifting operations of the Chacha20 hash function. The
dynamic procedure was used to improve the high-security analysis of the DKGM approach over earlier methods. Simulations show
that the suggested method is preferable for IoT applications.

Keywords—Zaslavskii map; Grey Wolf Optimizer (GWO); chacha20 hash function; NIST test.

Manuscript received 8 Oct. 2023; revised 12 Dec. 2023; accepted 14 Feb. 2024. Date of publication 31 May 2024.

International Journal on Informatics Visualization is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The term IoT is applied in various contexts throughout the

world. Among the goals are minimizing human effort,

increasing efficiency, swiftly comprehending client behavior,

speeding up, increasing business value (decision support

system), etc. However, confidentiality worries about

software vulnerabilities and hacking may lead to many users
avoiding IoT devices [1]. IoT device adoption, however,

may be avoided by many users due to rising worries about

software bugs and hacking [2]. A lightweight cipher has

been a preferable choice for intelligent and sensor-based

applications [1] due to the restricted devices utilized in the

IoT (processing, memory, and power) [3]. Any algorithm for

cryptography must include pseudorandom number

generators. They are used in several processes, including

one-time passwords (OTP), hashing, encryption, seed

vectors, and digital signatures [4]. These pseudorandom

number generators are deterministic, meaning that the output

is determined by the starting seed sequence and the

generator's layout [5]. Chaos may generate divergent and

disorderly sequences that are random and predict tables

while being too sensitive to begin circumstances [6]. The

advancement of the dynamics system was represented by

chaos theory which found widespread application [7]. One

of the most well-known applications in this regard is

incorporating chaos theory into optimization algorithms [7].

Several meta-heuristic optimization strategies have been

integrated with success [8]. The GWO algorithm is a swarm-
intelligent algorithm motivated by the distinct hunting

technique of grey wolves. It is one of the metaheuristics that

may help to prevent the stagnation of local optima [9]. It also

has a high capacity to converge toward the optima. GWO, in

general, lends itself well to exploitation. It cannot, however,

reliably execute global search. As a result, in certain

circumstances, GWO fails to discover the best global

819

JOIV : Int. J. Inform. Visualization, 8(2) - May 2024 819-825

solution. The fundamental GWO search approach is based

on random motion to solve the common artificial

intelligence issue [10] effectively.

This paper proposes a new dynamic key generation

method called DKGM based on the Gray Wolf Optimizer

(GWO) with a pseudorandom sequence generated using the

Zaslavskii chaotic map. DKGM proposed the fitness

function in the GWO algorithm to evaluate and select

random numbers from the chaotic function and arrange them

in three groups, which are used respectively in rounds,
subkeys, and shifting operations of the ChaCha20 hash

algorithm.

The paper's outline is as follows: Section 2 summarizes

the most critical works on generating secret keys and their

application in the IoT, based on chaotic functions. Sections 3,

4, and 5 illustrated the details of the Zaslavskii chaotic map,

the GWO, and the Chacha20 lightweight hash algorithm.

The flowchart and algorithm of the proposed DKGM are

presented in Section 6. The results and experiment of the

proposed algorithm are illustrated in Section 7. Finally, the

conclusions of the work are shown in Section 8.
Many academics are curious about how secure IoT

devices can communicate data with one another, and they

have devised various methods. One of these solutions is

chaotic maps. Naif et al. [11] developed an IoT-safe system

combining a proposed 4D chaotic system with a modified

lightweight Advanced Encryption Standard (AES). It has

two primary functions: encryption (through chaos-modified

lightweight AES) and authentication using hash methods

(chaos-SHA3-256 bits). The results demonstrate that the

suggested system's calculation time was reduced (by 145%),

and it passed the NIST test package.
Guma'a et al. [3] propose modifying the NTRU public key

cryptosystem to be safe against lattice-based attacks by using

the LLL (Lenstra-Lentra-Lovász) algorithm, as well as a way

for dynamically generating a new key sequence. According

to the results, the suggested solution reduced the NTRU

algorithm implementation time by around 0.2 seconds.

Vohra et al. [12] proposed a novel cryptography technique

for encrypting and decrypting information utilizing the

origin of an evolutionary algorithm GA. Seed numbers are

generated and evaluated as a key in the GA operation for the

forward cryptography process formed by a specific function

in a chaotic map. This technique yields excellent, desirable
cryptographic features since a change in the key produces

undesirable consequences on the receiver side.

In Rahman et al. [13], a particular security technique was

proposed to enhance security and preserve the integrity of

much data transmitted within an IoT system. The authors

suggest this technique be applied to an IoT cluster head. It is

inspired by enhancing the AES generation technique that

uses a three-dimensional Key Generation Mechanism

(3DKGM) to elevate the complexity of the AES algorithm.

The results showed that the method could only guarantee

high data protection against linear and differential attacks.
The technique also strengthened data encryption and reduced

the encryption time.

Ali [14] proposed and tested a keystream generator based

on 3D chaotic maps and "Particle swarm optimization" to

generate a random number generator. Ismael and Maolood

[15] concentrate on the proposed key for encrypting the data

contained in the database using AI approaches and the

equation that represented the “Bezier curves” used in the

medical platform as an adaptive key. The Particle Swarm

Optimization (PSO) technique works with a few networked

devices, and the created keys are produced using the logistic

map function, which passes NIST tests.

Zalinski Chaotic Map is presented by Zaslavsky [16], a

discrete-time dynamical system. The chaotic behavior of the

2-D Zaslavsky map may create random real numbers. The

pseudorandom numbers, on the other hand, may be
generated using an iterative approach. Coupled Eq. (1) [17]

is used to define the 2-D map:

(1)

Initial values are , and , and , , and are the regulating

parameters used to monitor the predicted chaotic behavior,

while e is the exponentiation [17], [18]. When the

parameters r = 3.0, v = 400/3, and ε = 0.3 are set of the

parameters, this map shows chaotic behavior [19].

The swarm intelligence algorithm GWO presented by

Mirjalilli, first invented in 2014 [20], simulates grey wolves'
distinct hunting and prey-finding behaviors. Grey wolves

have a four-level social structure that GWO has adopted,

with α wolves at the first level, β at the second, δ at the third,

and ω wolves at the last. The grey wolf pack is led and

directed by its leader, the wolves [21]. It is also responsible

for maintaining order, managing the entire hunting process,

and deciding what to hunt, when to rest, and when to wake

the pack. The top contender for the α position, the β wolf,

provides the α leader with input from other wolves. The

wolves of the fourth level are subservient to the wolves of

the third level or δ wolves. The Omega wolves, the last rank,
are in charge of preserving the integrity and safety of the

wolf pack [22]. Equation (2) is used to determine the

distances, Dα, Dβ, and Dδ, between each of the remaining

wolves and the wolves α, β, and δ.

The effect of α, β, and δ wolves on the prey [7] can be

calculated using Eq. (3).

 (2)

 (3)

 (4)

(5)

The algorithm’s control parameters A and C are

calculated using Eq. (4). The random vectors in this case are

r1 and r2 they fall between [0, 1]. Wolves can travel through

these vectors to any location between their prey and

themselves. Vector “a” controls the activity of the GWO

algorithm and is used to calculate “A,” which decreases

linearly in periods [2,0] through iteration [23]. C used to

append weight on the prey, making it difficult for the wolves

to find it. Finally, using Equation (5), all other wolves

update their positions [24].

820

The Chacha stream cipher family is a high-throughput

stream cipher designed for software platforms. In this part,

we characterize ChaCha20, as defined by RFC7539, as a

conservative security instantiation [22], [23]. The

ChaCha20's total input size is 512 bits, as illustrated in Fig.

(1). These bits serve as seeds; each one contains thirty-two

bits, which are made up of [24,25]:

 A 256-bit function as the entire key size (k1... k8).

 The entire amount of the nonce (n1, n2) and constants

[c1... c4] is 192 bits.
 The entire size of the block message counter is 64 bits

(b1, b2).

c1 c2 c3 c4 x0 x1 x2 x3

k1 k2 k3 k4 x4 x5 x6 x7

k5 k6 k7 k8 x8 x9 x10 x11

b1 b2 n1 n2 x12 x13 x14 x15

Fig. 1 Input of ChaCha20 [24]

Consequently, three methods combine the ChaCha20

input with the original data for ChaCha20 encryption to

create a sequence of 512 bits representing the keystream

through an XOR operation [26]. One lightweight approach is
addition, which involves adding two 32-bit numbers.

Another is exclusive OR, which consists of XORing two 32-

bit numbers [27]. The third lightweight way is rotation,

which involves supervising the rotation of 32-bit integers by

the e bit [y <<e], where e functions as a constant number.

[28]. The three elementary procedures are reduced to two

dual functions. The central component of the dual function,

the Quarter Round Function (QRF), is responsible for

updating the state matrix after every round. QRF is applied

to the columns of the state matrix before moving on to its

diagonals, as shown in Fig. 2.

Column Form Diagonal Form

QR (x0, x4, x8, x12) QR (x0, x5, x10, x15)
QR (x1, x5, x9, x13) QR (x1, x6, x11, x12)
QR (x2, x6, x10, x14) QR (x2, x7, x8, x13)
QR (x3, x7, x11, x15) QR (x3, x4, x9, x14)

Fig. 2 Quarter-round function of ChaCha20 [24]

QRF takes four 32-bit inputs and modifies the outputs

depending on the three lightweight techniques stated in Eq.

(6,7,8, and 9) [29]. An additional operation between the

most recently modified matrix and the input's initial seed

constitutes the final stage of ChaCha20 encryption algorithm

[30].

 (6)

 (7)

 (8)

 (9)

II. MATERIALS AND METHODS

The proposed method is used in IoT applications that need

to generate a vital key for immunity purposes. The process is

represented by using the Zaslavskii map to generate numbers

by controlling the initial values used in equations to create

numbers. Different numbers are generated, and the most

random set of numbers is selected by applying GWO after

several iterations. A shifting operation is performed for these

numbers before they are used in the Chacha function [29],
and the result is used as keys in multiple applications that

require crucial generation, as explained in Fig. 3.

Fig. 3 General Framework of Proposed Method

A. Applying Zaslavskii Map

The second-order equations of the Zaslavskii map are

applied, which need initial values and control values, and

these values control the series of numbers generated, which

are numbers of a real type that are later processed and

converted into binary numbers that are examined [30], as

shown in Table 1.

TABLE I

GENERATED NUMBERS USING ZASLAVSKII MAP

First dimension Second dimension # First dimension Second dimension
1 0.908898478 -0.072964052 7 0.553737282 0.11935367
2 0.622973332 0.55893907 8 0.30046067 -0.6223176
3 0.544474361 -0.408892309 9 0.315076185 -0.2951879
4 0.222860721 -0.705765605 10 0.318391236 -0.3089872

5 0.495027491 0.019314246 11 0.309634718 -0.3237281
6 0.199646495 -0.67373228 12 0.32729623 -0.2914683

These values from the previous TABLE are converted to

decimal values by getting the digits after floating point in

fixed numbers for all values (10, 11, 12, 15, or more digits),

as explained in Table 2.

821

TABLE II

DECIMAL VALUES OF GENERATED NUMBERS

First dimension Second dimension
1 908898477721977 72964052410067
2 622973332344945 558939069814865
3 544474360695031 408892309107034
4 222860721491073 705765604862273
5 495027490802712 19314245746619
6 199646494751517 673732279569791
7 553737281641506 119353677117366

8 300460669988326 622317580951473
9 315076184992073 295187920912175
10 318391235860893 308987195407013
11 309634718342016 323728084256895

As explained in Table 3, decimal values are converted to

hexadecimal values. These numbers satisfy the requirements

for generated keys used in the security requirements.

TABLE III

THE HEXADECIMAL FORM OF GENERATED NUMBERS

First dimension Second dimension
1 33AA36AE6C979 0425C446CDED3
2 23697482DD071 1FC5A24B51851
3 1EF3250DBC8F7 173E2A8D5F15A

4 0CAB0CE238C81 281E3DC2C2941
5 1C23991BE4C18 01190F2C1BFBB
6 0B593D2667B1D 264C185328D7F
7 1F79F01F89C22 06C8D3186F7B6
8 111447380EDE6 235FE9A599FB1
9 11E8F64156949 10C78CB2AFF2F
10 121933C83599D 11905B005BAA5
11 1199C73659B80 1266DD177487F

12 129AC97844F4C 10916C53C662F

B. Applying GWO Algorithm

At this stage, a set of initial values is used to create a set

of sequences using the Zaslavskii map. These numbers are

real, and the characteristics of them are chaotic phenomena.

All these sequences are converted into decimal form,

converted to binary form, and differentiated between them

through the target function, which counts the number of

zeros relative to the number of ones. When the two values

are roughly equal, the best result is obtained. The best three

sequences are selected and considered as α, β, and δ Gray-

Wolfe, and all existing values are updated depending on
these values. The evaluation of all sequences is measured via

the fitness function by converting the generated numbers

into binary numbers and measuring the number of zeros, the

number of ones, and the series containing the best

converging values. The GWO algorithm is represented by

selecting the best three solutions as Gα, Gβ, and Gδ are done

through the fitness function and the update process is done

through the set of equations, and a set of numbers is

generated against each set, and the fitness function of the

new set is found if it is better to be adopted and if it is worse,

it is neglected and the best solution is adopted after a set of

iterations. In each iteration, a new gray-Wolfe is obtained
that is compared with the previous one, and the Greedy

selection is applied to select the best from the current and

last solution.

Fig. 4 GWO Flow Chart of Proposed Method

C. Shifting Operation

When generated numbers are entered into the Chacha

algorithm, the shifting operations used in the results are

shifted. This process of shifting is of a different amount each

time to increase complexity and for the final numbers to

become different in the case of obtaining the same generated

sequences, and this process uses one of the dimensions used

in moderate key generation

D. Chacha Function

The hash functions in the Chacha function are used as the
final stage in the generation process as it needs a set of

inputs and performs a set of special operations for a specific

number of cycles, and the last result is generated numbers

that can be used in encryption processes and applications

that need numbers as keys.

Fig. 5 Chacha Hash Function in Proposed Method

Best

sequence of

number

result from

GWO

Shifting

Operation

 Chacha

Algorithm

Column

round

(Quarter

Round)

Row round

(Quarter

Round)

A set of

keys for

IoT
Little

Indian

822

The ChaCha cipher is a stream cipher designed to be

secure, fast, and simple to implement. It is a variant of the

Salsa20 cipher, which was itself derived from the original

ChaCha cipher. The ChaCha cipher uses a block size of 64

bytes, which is divided into 16 32-bit words. The key and

nonce are also divided into 32-bit words and are used to

initialize the state of the cipher, as shown in Table 4.

TABLE IV

THE INITIAL STATE OF CHACHA

Constant Constant Constant Constant
Key Key key Key
Key Key key Key
input input input Input

The cipher consists of 20 rounds of operations, which are

performed on the state using three main processes: addition,

XOR, and rotation. In each round, the state is first updated

by adding the keywords and constants to the state. Next, the

state is XORed with the input block. Finally, the state is

rotated by a certain number of bits, and the results are added

to the keywords. This process is then repeated for a total of

20 rounds. The ChaCha cipher is a strong and secure stream

cipher, and it is widely used in various applications,

including encryption of internet traffic, secure

communication, and more.

OR(X0,X4,X8,X12)
OR(X1,X5,X9,X13)
OR(X2,X6,X10,X14)
OR(X3,X7,X11,X15)

OR(X0,X5,10,X15)
OR(X1,X6,X11,X12)
OR(X2,X7,X8,X13)
OR(X3,X4,X9,X14)

a=a+b, d=(d a) 16

c=c+d, b=(b c) 12

a=a+b, d=(d a) 8

c=c+d, b=(b c) 7

Fig. 6 Quarter Round Function and Processing Function in Proposed

Method

III. RESULT AND DISCUSSION

The proposed method is evaluated with multiple tests to

ensure its efficiency and applicability. The Zaslavskii Map is

a two-dimensional function that generates two seemingly

random sequences of floating numbers, as shown in Fig. 7.

Fig. 7 The Visualization of a Two-Dimensional Zaslavskii Map

The numbers generated by the Zaslavskii map are

processed and converted into a series of bit-streams. These
bit streams are subjected to NIST tests to ensure their

randomness. The total results of the NIST test are explained

in Table 5.

TABLE V

THE HEXADECIMAL FORM OF GENERATED NUMBERS

The NIST test (test keys are the keys used in each

experiment). A collection of statistical tests for assessing
variables include the run test, serial test, random excursion

variant test, random excursion test, frequency mono bit test,

non-overlapping template matching test, universal Maurer's

statistical test, the longest run of ones in a block test, linear

complexity test, frequency test within a block test, discrete

Fourier transform test, and cumulative sums test.
These tests aim to verify that the key generation technique

is safe from various attacks. The randomness of the critical

generation process, which is essential for preserving the

security of the generated key, may be evaluated using the

findings of the NIST testing. Because different statistical
tests may identify various types of biases or patterns in the

generated numbers, multiple tests are frequently employed to

evaluate the quality of a random number generator. The final

sequences produced by the suggested method are examined

by determining the correlation between each to clarify any

weak correlations in Table 6.

Test
number

P-Value
(minimum)

P-Value
(Mean)

P-value
(maximum)

Status

1 0.00460 0.01297 0.01697 Pass
2 0.00015 0.00315 0.00214 Pass
3 0.01672 0.05486 0.01856 Pass
4 0.05953 0.04725 0.11200 Pass
5 0.01220 0.04363 0.17485 Pass
6 0.00002 0.00016 0.00052 Pass
7 0.00000 0.00001 0.00000 Pass
8 0.00006 0.00008 0.00009 Pass

9 0.00175 0.00146 0.00040 Pass
10 0.00021 0.00356 0.00949 Pass
11 0.01820 0.11482 0.03854 Pass
12 0.00042 0.00046 0.00099 Pass

823

TABLE VI

THE CORRELATION TEST OF GENERATED NUMBERS

Seq# 1 2 3 4 5 6 7 8 9 10
1 0.001 0.121 0.189 0.126 0.102 0.056 0.184 0.078 -0.019 0.161
2 0.091 0.01 0.105 0.086 0.121 0.261 0.137 0.117 0.011 0.192

3 0.185 0.137 0.001 0.054 0.143 0.036 0.095 0.114 0.032 0.262
4 0.008 0.151 0.066 0.01 0.201 0.187 0.171 0.134 0.208 0.002
5 0.049 0.142 0.084 0.215 0.001 0.004 0.021 0.146 0.091 0.006
6 0.117 0.232 0.061 0.104 0.072 0.001 0.161 -0.034 0.053 0.081
7 0.219 -0.012 0.239 0.201 0.098 0.161 0.001 0.104 0.151 0.013
8 0.079 0.059 0.262 0.131 0.201 0.108 0.091 0.001 0.139 0.161
9 0.107 -0.013 0.049 0.141 0.109 0.141 0.023 0.097 0.001 0.152
10 0.181 0.078 0.223 0.101 0.069 0.195 0.006 0.109 0.203 0.001

Independent output bits are a technique used to evaluate

the security of the generated sequences. This is a

fundamental component of many cryptographic algorithms

as it can help identify weaknesses that could potentially be

exploited by attackers. It is just one of many techniques that

can be used to evaluate the security of cryptographic

algorithms, and it is essential to use various techniques to

assess the security of any given algorithm thoroughly.

Table 7 shows how the suggested algorithm compares

against some of the works described in the previous related

works based on various criteria, such as the random number

generation algorithm, the encryption method, and the

standards employed. It also shows how the proposed

algorithm improves security and performance when used in

Internet of Things use cases.

TABLE VII

COMPARED THE PROPOSED ALGORITHM WITH SOME RELATED WORKS

Reference Title Methodology disadvantage
Naif et al. [11] “Internet of Things security using the

new chaotic system and lightweight
AES”

a secure system evaluated by NIST standard
requirements and used the modified lightweight
Advanced Encryption Standard (AES) in
conjunction with the (4D) chaos system Lyapunov.

Not suitable for big data

Guma'a et al.
[3]

“Dynamic key generation for the Internet
of Things”

modifications to the NTRU public key
cryptosystem

High computation

Vohra et al.
[12]

“An efficient chaos-based optimization
algorithm approach for cryptography”

Dynamic generation pseudorandom number used
2d Hénon chaotic map and genetic algorithm for
cryptography data

High computation

Rahman et al.
[13]

“Chaos and logistic map-based key
generation technique for AES-driven IoT
security”

3 D-Dynamic key generation method (3DKGM)
based on logistic chaotic and Linear Feedback
Shift Register for encoding data using LZ78
Algorithm and tested by NIST standard criteria

3DKGM is unable to
generate a key of length
greater than 600 bytes

Ali [14] Random Number Generator based on
Hybrid Algorithm between Particle

Swarm Optimization (PSO) Algorithm
and 3D-Chaotic System and its
Application

Proposed 3D-LMPSO method for Generation key
stream based on using a non-linear 3D chaotic map

and PSO algorithm and tested by five standard
criteria

Time encryption is not
known

Ismael and
Maolood [15]

Proposed Secure Key for Healthcare
Platform

Using Bezier Curve, Logistic Map Chaotic, and
PSO to generate an encrypted key and test the
proposed method using five NIST tests

It has not been treating
different types of
attacks

Our proposed
algorithm

Dynamic Key Generation using GWO
for IoT System

Proposes a dynamic key generation method
(DKGM) using the Zaslavskii map and the Grey

Wolf Optimizer (GWO) and a testing method
using 11 NIST tests

-

IV. CONCLUSION

Information security is becoming increasingly crucial with

the abundance of valuable information available today.
Organizations are aware of the true meaning of information

security and why every organization should begin

implementing it. It is always related to the key generation

required to be high randomness. The traditional key

generation methods didn’t satisfy the security. To overcome

the challenge, this work presented a GWO, Zaslavskii Map,

and Chacha hash function as a dynamic key generation

method. DKGM generates multiple groups-seed numbers

depending on different initial values. GWO is a tool for

choosing robust produced numbers. The proposed method

uses the Zaslavskii map to generate many random numbers

and then uses the Grey Wolf Optimizer (GWO) to select the
optimal groups of numbers from this set. The chosen groups

are then used in the Chacha20 hash function in terms of

rounds, subkeys, and shifting operations to generate the final

key. The use of the dynamic process is intended to enhance

the security of the proposed method compared to existing

methods. The best solution in the final step is obtaining the

final key. The resulting key is tested using the NIST test and

passes all tests that provide suitable keys for various

applications in IoT systems. The correlation test is applied to

the sequences of generated numbers to find dependencies.

824

The test simulation results suggest that the proposed method

is effective and suitable for use in IoT applications and could

be combined with several lightweight encryption methods to

enhance the system's performance.

REFERENCES

[1] Z. Rahman, X. Yi, M. Billah, M. Sumi, and A. Anwar, "Enhancing

AES Using Chaos and Logistic Map-Based Key Generation

Technique for Securing IoT-Based Smart Home," Electronics,

Vol.11, no.7, pp. 1083,2022.

[2] Wax, J. Zhang, S. Huang, C. Luo, and W. Li, “Key generation for

Internet of Things: a contemporary survey," ACM Computing

Surveys (CSUR), vol.54, no.1, pp. 1-37,2021.

[3] O. S. Guma’a, Q.M. Hussein, and Z. T. Mustafa," Dynamic keys

generation for Internet of things," TELKOMNIKA Indonesian

Journal of Electrical Engineering, vol.18, no.2, pp.4897-4909,2019

[4] R. B Naik and U. Singh, "A Review on Applications of Chaotic

Maps in Pseudorandom Number Generators and Encryption,” Annals

of Data Science, pp.1-26,2022.

[5] M. T. Taha and J.M. Al-Tuwaijari,"Improvement of Chacha20

Algorithm based on Tent and Chebyshev Chaotic Maps," Iraqi

Journal of Science, pp.2029-2039,2021.

[6] U. Zia, M. McCartney, B. Scotney, J. Martinez, and A. Sajjad,"A

novel pseudorandom number generator for IoT based on a coupled

map lattice system using the generalized symmetric map," SN

Applied Sciences, vol.4, no.2,1-17,2022.

[7] M. Kohli and S. Arora," Chaotic grey wolf optimization algorithm

for constrained optimization problems," Journal of Computational

Design and Engineering, vol.5, no.4, pp. 458-472,2018.

[8] A.R. Kashani, M. Gandomi, C.V. Camp, and A.H. Gandomi,”

Optimum design of shallow foundation using evolutionary

algorithms," Soft Computing, vol.24, pp.6809-6833,2020.

[9] D.Yang, G. Li, and G. Cheng,"On the efficiency of chaos

optimization algorithms for global optimization Chaos, " Solitons &

Fractals, vol.34, no.4, pp.1366-1375,2007.

[10] G. Kaur and S. Arora, "Chaotic whale optimization algorithm,"

Journal of Computational Design and Engineering, vol. 5, no. 3,

pp.275-284,2018.

[11] J. R. Naif, G.H. Abdul-majeed, and A.K.& Farhan, "Internet of

things security using the new chaotic system and lightweight AES, "

Journal of Al-Qadisiyah for computer science and mathematics,

vol.11, no.2, pp. 45-52,2019.

[12] R. Vohra and B. Patel, "An efficient chaos-based optimization

algorithm approach for cryptography," Communication Network

Security, vol. 1, no.4, pp.75-79,2012.

[13] Z. Rahman, X. Yi, I. Khalil, and M. Sumi, "Chaos and logistic map-

based key generation technique for AES-driven IoT security," In

International Conference on Heterogeneous Networking for Quality,

Reliability, Security and Robustness (pp. 177-193). Springer,

Cham,2021.

[14] R. A. Ali ,"Random Number Generator based on Hybrid Algorithm

between Particle Swarm Optimization (PSO) Algorithm and 3D-

Chaotic System and its Application," Iraqi Journal of Information

Technology. V, vl.8, no.3, 2018.

[15] M.H. Ismael and A.T. Maolood, "Proposed Secure Key for

Healthcare Platform," Iraqi Journal of Computers, Communications,

Control and Systems Engineering, vol.22, no.1,2022.

[16] M. Khan and T. Shah "A novel construction of substitution box with

Zaslavskii chaotic map and symmetric group," Journal of Intelligent

& Fuzzy Systems, vol. 28, no.4, pp. 1509-1517,2015.

[17] R. Hamza and F. Titouna,"A novel sensitive image encryption

algorithm based on the Zaslavsky chaotic map," Information Security

Journal: A Global Perspective, vol.25.no.4-6, pp. 162-179,2016.

[18] N. Balaska, Z. Ahmida, A. Belmeguenai, and S. Boumerdassi,

"Image encryption using a combination of Grain‐128a algorithm and

Zaslavsky chaotic map," IET Image Processing, vol. 14, no.6,

pp.1120-1131,2020.

[19] S. Arunkumar and M. Krishnan, "Enhanced Audio Encryption using

2-D Zaslavsky Chaotic Map," In 2022 International Conference on

Computer Communication and Informatics (ICCCI) (pp. 1-4).

IEEE,2022.

[20] Abdel-Basset, Mohamed, et al. "A new fusion of grey wolf optimizer

algorithm with a two-phase mutation for feature selection." Expert

Systems with Applications 139 (2020): 112824.

[21] H. Faris, I., Aljarah, M.A. Al-Betar, and S. Mirjalili,"Grey wolf

optimizer: a review of recent variants and applications, "Neural

computing and applications, vol.30, no.2, pp.413-435,2018.

[22] N.M. Hatta, A. M., Zain, R. Sallehuddin, Z. Shayfull, and Y. Yusoff,

" Recent studies on optimization method of Grey Wolf Optimiser

(GWO): a review (2014–2017), "Artificial Intelligence Review, vol.

52, no.4, pp.2651-2683, 2019.

[23] Meidani, Kazem, et al. "Adaptive grey wolf optimizer." Neural

Computing and Applications 34.10 (2022): 7711-7731.

[24] Al-Tashi, Qasem, et al. "A review of grey wolf optimizer-based

feature selection methods for classification." Evolutionary Machine

Learning Techniques: Algorithms and Applications (2020): 273-286.

[25] H. H. Alyas and A.A. Abdullah, "Enhancement the ChaCha20

Encryption Algorithm Based on Chaotic Maps," In Next Generation

of Internet of Things (pp. 91-107). Springer, Singapore,2021.

[26] Nadimi-Shahraki, Mohammad H., Shokooh Taghian, and Seyedali

Mirjalili. "An improved grey wolf optimizer for solving engineering

problems." Expert Systems with Applications 166 (2021): 113917.

[27] Degabriele, Jean Paul, et al. "The security of chacha20-poly1305 in

the multi-user setting." Proceedings of the 2021 ACM SIGSAC

Conference on Computer and Communications Security. 2021.

[28] J. N. Hasoon, B.A. Khalaf, R.S. Hameed, S.A. Mostafa, and A. H.

Fadil, "A Lightweight Stream Ciphering Model Based on Chebyshev

Chaotic Maps and One Dimensional Logistic," In International

Conference on Advances in Cyber Security (pp. 35-46). Springer,

Singapore,2021.

[29] M. S. Mahdi, N.F. Hassan, and G.H. Abdul-Majeed, " An improved

chacha algorithm for securing data on IoT devices," SN Applied

Sciences, vol.3, no.4, pp.1-9,2021.

[30] P. Yadav, I. Gupta, and S.K. Murthy, "Study and analysis of

eSTREAM cipher Salsa and ChaCha," In 2016 IEEE International

Conference on Engineering and Technology (ICETECH) (pp. 90-94),

2016.

825

