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Abstract—Railway track defects in Malaysia pose significant risks of train derailments and accidents, underscoring the urgency for 

early and accurate defect detection and classification. This study presents a novel approach utilizing deep learning models, VGG16 and 

YOLOv5, for detecting and classifying railway track defects, explicitly focusing on corrugation and squat defects. The research's 

uniqueness lies in its application of these specific models and the composition of a dataset collected from extensive field measurements 

and inspections across various railway tracks within the Track Network Maintenance Ampang Line in Malaysia. The results 

demonstrate that these models achieve high precision in defect classification and detection of defects by more than 80%. The proposed 

methodology provides the railway industry with a powerful tool to streamline maintenance planning and prioritize defect remediation 

efficiently. Early defect detection can prevent potential accidents and improve safety and operational efficiency. Future studies can 

expand on these findings by exploring the extension of the proposed techniques to address other types of rail defects. Incorporating a 

diverse range of scenarios and operating conditions in the dataset could further enhance the models' performance and generalization. 

Real-time deployment and integration with existing maintenance systems are crucial for practical adoption. This research has strengths 

but acknowledges limitations. Additional evaluation metrics and a diverse dataset are essential for model performance. Leveraging 

deep learning models offers a reliable solution for railway maintenance, enhancing safety and efficiency. Addressing these limitations 

will drive proactive defect management, ensuring safe and reliable railway networks.  
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I. INTRODUCTION

Advancement in autonomous and engineering technology 
is crucial in detecting and handling defects in railway tracks, 
vehicles, and other infrastructure [1]–[5]. These defects can 
lead to incidents, delays, and other problems, so it is essential 
to have effective frameworks in place to identify and repair 
defects as soon as possible. In Malaysia, the problem with 
railway defect detection is that it is a time-consuming and 
labor-intensive process that requires skilled personnel to 
inspect each section of the track [1] manually, [2]. This makes 
detecting and repairing defects promptly tricky, leading to 
costly service disruptions and potential safety hazards. 

To address this issue, Malaysia's railway operators are 
looking for innovative methods to detect rail surface defects. 
One research study investigated the potential of rolling noise 
to detect rail surface defects on wayside rail tracks in 
Malaysia. The study conducted field investigations and 
measured the noise characteristics response under different 
rail conditions, both with and without defects. The results 
showed that rail conditions affect the peak frequency and 
noise amplitude, with surface defects exhibiting a higher peak 
frequency than defect-free surfaces [1]. 

While the most common track defects in Malaysia were not 
explicitly mentioned in [1], it is essential to note that rail 
surface defects such as corrugation and squats are examples 
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of railway defects that can compromise the safety or 
reliability of the system if not detected and repaired in time. 
Various non-destructive testing (NDT) techniques and 
technologies, including ultrasonic testing, electromagnetic 
testing, eddy current testing, and visual inspection, have been 
explored for rail defect detection [3], [6]. These methods 
enable the detection of different defects on the surface and 
within the rail structure [7].  

Visual inspection can be used to focus further testing by 
other methods and is frequently used as an initial screening 
approach to discover, for example, cracks, corrugations, and 
squat deficiencies [8]. Two categories of railway defects are 
shown in Fig. 1: (a) corrugation and (b) squat. It used to only 
apply to human-accessible portions of structures and is now 
restricted to surface-breaking flaws. On the other hand, the 
prospective scope of visual examination [8], [9], and 
categorization using machine learning approaches such as 
decision trees [8] has been substantially expanded by recent 
endoscope improvements. 
 

 

(a) 

 

(b) 

Fig. 1  Two types of railway defects: (a) corrugation; and (b) squat 

 
This paper conducted a comprehensive analysis to evaluate 

the reliability of state-of-the-art neural network models for 
classifying railway defects. The literature review in Section I 
presents an in-depth examination of previous work in railway 
defect detection systems. Section II outlines the methodology 
employed in this study, including the research design, data 
collection, and analysis techniques used. The results and 
analysis of the models are presented in Section III, followed 
by a discussion of the findings. Finally, Section IV presents 
the conclusion of this study and provides recommendations 
for future research in this area. 

A. Advances In Non-Destructive Testing (NDT) Techniques 

for Rail Surface Defect Detection 

There has been a growing interest in advanced non-
destructive testing (NDT) techniques for detecting rail surface 
defects in recent years. The traditional manual inspection 
method has proven time-consuming, labor-intensive, and 
hazardous for railway workers. Moreover, the subjective 
nature of human detection makes it challenging to obtain 
objective results and identify defective locations accurately. 
These limitations contribute to the inefficiency, 

inconvenience, and potential for human error in the current 
detection method. 

Researchers have explored various non-destructive testing 
techniques that leverage sensor information and intelligent 
algorithms to overcome these challenges. These advanced 
techniques aim to improve the efficiency and accuracy of rail 
surface defect detection. Among the widely employed NDT 
techniques in the railway industry, notable methods include 
ultrasonic inspection [10], [11], electromagnetic-induced 
thermoacoustic inspection [12], eddy current inspection [13], 
and visual inspection [8], [14]. Fig. 2 shows the present 
technology utilized for detecting rail surface defects using (a) 
ultrasonic inspection and (b) machine visual inspection. 

Ultrasonic inspection, as shown in Fig. 2(a), is a technique 
commonly used to detect rail surface defects. This method 
utilizes ultrasonic waves to inspect the rail's internal and 
external conditions. Ultrasonic waves are introduced into the 
rail, and their behavior is monitored to identify any 
irregularities or defects in the rail's structure. Despite its 
effectiveness, ultrasonic inspection has limitations, such as a 
low signal-to-noise ratio, which can lead to missed or 
misclassified defects. Additionally, the complexity and 
variability of rail surface conditions can make it challenging 
to identify and classify defects [10] accurately. Fig. 2(b) 
shows the machine visual inspection that involves the use of 
computer vision and imaging systems to analyze the rail's 
surface and detect defects visually [15]-[18]. This method 
relies on cameras and image processing algorithms to capture 
images of the rail surface and identify irregularities that may 
indicate defects. The development of information technology, 
communication technology, and sensor technology has led to 
the evolution of rail health monitoring technology.  
 

 
(a) 

 

 
(b) 

Fig. 2  The present technology utilized for the detection of rail surface defects 
are: (a) ultrasonic inspection [3]; and (b) machine visual inspection [19] 
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These technologies, which often incorporate machine 
visual inspection techniques, have become significant and 
challenging because they offer real-time detection capabilities 
and can provide risk warning forecasts. Railway inspections 
have been enhanced with the ability to visually identify rail 
defects effortlessly. This initiative, begun by this author [8], 
recognized the potential of vision inspection combined with 
eddy current inspection, also known as a manual visual check. 
Their proposal involved replacing the manual visual check 
technique with an automatic visual inspection using the 
Spectral Image Differencing Procedure (SIDP) and a decision 
tree method. During the one-week experimentation period, 
1024 rails (60 to 120 m in length) were used. Surface rail 
testing was done using three methods: automated visual 
testing (VT), manual visual testing (MVT), and eddy current 
testing (ET). According to [8], approximately 4.1% of the 
rails had surface defects; among them, 4.8% were exclusively 
detected by VT, while 2.4% were only found by the old 
method. The result shows that the VT method is more 
accurate in detecting surface rail defects than MVT and ET. 
VT detected damaged rails at a rate of 4.8%, demonstrating 
that it is more sensitive and capable of detecting faults that 
other approaches may ignore. However, only 2.4% of the 
flaws were exclusively discovered using the outdated 
approach, suggesting that VT is generally superior to the 
outdated method for identifying surface rail defects. Research 
on automatic visual examination has been heavily invested in. 

Researchers are looking for new ways to enhance rail 
surface defect detection accuracy and efficiency through NDT 
techniques. Advances in intelligent algorithms such as deep 
learning [15], [16] and image processing [19] have created 
opportunities for automated classification and detection of rail 
surface defects. When these advanced techniques are used to 
find defects, they could make the process more accurate, 
efficient, and objective, improving the safety and reliability of 
railway transportation systems. 

In pursuing enhancing railway maintenance and addressing 
rail surface defects, the journey began with a captivating 
proposal found in [20]. The study introduced a computer 
vision-based method that utilized feature descriptors and a 
support vector machine (SVM) to classify rail corrugation, 
achieving an impressive 97.6% accuracy in identifying 5645 
corrugated rail samples. This success sparked further 
exploration into the enigmatic world of railway defects, 
leading to the discovery of the Residual Network 50 
(ResNet50) technique with transfer learning [21]. This 
powerful approach allowed deep learning models to draw 
knowledge from related domains, resulting in an 88.6% 
classification accuracy with a dataset of 25,000 loose ballast 
samples. However, challenges arose due to the uncontrolled, 
real-world data collected from diverse continents and weather 
conditions. The journey then unveiled the fascinating realm 
of fastener defects in [22], where the Faster Region-based 
Convolutional Neural Network (Faster-RCNN) with a Bags 
of Visual Words model (BOVW) achieved a remarkable 
97.9% accuracy using 3155 fastener images. Additionally, the 
captivating work of [23] showcased the application of 
YOLOv3 in detecting rail surface defects with an astonishing 
99% accuracy using 195 sample images. As the exploration 
unfolded, an uncharted territory emerged: the mysterious 
squat defect. A significant research gap was revealed, 

inspiring the pursuit of effective methods for identifying and 
predicting squat defects on railway tracks, thereby improving 
railway safety and efficiency. The adventure continues armed 
with newfound knowledge and determination to unlock the 
secrets of railway defects, ensuring safer and more reliable 
rail transportation for the world. 

The integration of computer vision technology has shown 
promising results in detecting rail defects, including 
corrugation and squat [24]. However, fewer reports on rail 
corrugation and squat identification are based on automatic 
visual inspection [24]. Some existing methods, such as the 
one presented in [20], have shown potential for classifying 
and detecting rail corrugation using computer vision 
algorithms. This study aims to analyze the effectiveness of 
computer vision and deep learning techniques, specifically in 
detecting and classifying two critical types of railway track 
defects: corrugation and squat, which can cause significant 
damage and disrupt train operations [25], [26]. The research 
will utilize existing computer vision and deep learning models 
to investigate the classification and detection of these defects. 
While integrating computer vision and machine learning 
techniques has advanced rail inspection, improvements are 
still needed in identifying and analyzing rail corrugation and 
squat, which are vital for rail safety and maintenance. By 
refining these techniques, rail inspection capabilities can be 
enhanced, ensuring the safety and reliability of railway 
transportation. These studies and methods will serve as 
benchmarks for future proposed classification techniques in 
the rail industry. 

II. MATERIAL AND METHODS 

This section presents a novel approach to studying railway 
corrugation and squat defect classification. The research 
utilizes a unique setup and configuration, employing VGG16 
for classification and YOLOv5 for detection. This research 
holds significance as it showcases the state-of-the-art model's 
performance in classifying and detecting these defects using 
a customized dataset. While previous studies [24] and [23] 
utilized a YOLO family model, our approach differs in model 
architecture and dataset composition. This distinction is 
crucial, considering that while the defects remain the same, 
the view angles may vary compared to other rail defect 
datasets. 

A. Experimental Setup 

A specialist conducted extensive field measurements and 
inspections across various railway tracks within the Track 
Network Maintenance Ampang Line in Malaysia to acquire a 
comprehensive and inclusive dataset. This effort aimed to 
ensure that the dataset encompassed a diverse range of 
samples, accurately representing the conditions observed in 
the railway system. Specialized measurement equipment and 
sensors were employed to capture high-resolution images of 
the tracks, focusing on areas prone to corrugation and squat 
defects. Expert specialists thoroughly tagged and annotated 
the acquired images to aid in later training and evaluation 
operations. The dataset contained 5778 images, with 2907 
images representing corrugation defects and 2871 
representing squat defects. The dataset was divided into 
training (70%), validation (20%), and testing (10%) [27]. The 
training has been executed in Google Colaboratory, a cloud-
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based integrated development environment (IDE) provided 
by Google [28]. The runtime has been set to a Graphic 
Processing Unit (GPU) with 12 GB RAM and disk memory 
of 78 GB.  

As a preliminary step before model training, the collected 
images underwent pre-processing procedures to improve their 
quality and enable seamless integration with the VGG16 and 
YOLOv5 architectures. Pre-processing techniques 
encompassed resizing the images to a standardized resolution 
of 224 × 224, normalizing pixel values, and augmenting the 
dataset through transformations like rotation, scaling, and 
flipping. These pre-processing steps were implemented to 
enhance the model's performance and facilitate its 
generalization ability.  

For the classification of railway corrugation and squat 
defects, the renowned VGG16 model was chosen due to its 
efficacy in image classification tasks [29]. The model 
underwent training using the pre-processed dataset, 
incorporating transfer learning techniques. To initialize the 
weights of the VGG16 model, pre-trained weights from a 
large-scale image dataset were utilized. The sentence is 
straightforward but can be improved for better readability and 
clarity. Subsequently, the railway-specific dataset was 
optimized to adapt the weight and the model for the task of 
defect classification for Corrugation and squat. This 
optimization is illustrated starting in line 7 of the pseudocode 
for the VGG16 model.  
Pseudocode for VGG16 model training: 

1 Load and pre-process the dataset 
2 Initialize VGG16 model with pre-trained weights 

(VGG16(weights='imagenet', include_top, input_shape)) 
3 Replace the fully connected layers with new 

classification layers 
4 Optimize and specify the loss function (categorical 

cross-entropy) and optimizer (Adam) 
5 Set the desired number of training epochs (10) 
6 Perform transfer learning by freezing the pre-trained 

weights 
7 Train the model on the railway-specific dataset 
8 Fine-tune the model by unfreezing some layers 

(model.layer) 
9 Continue the training until convergence or desired 

performance is achieved 
10 Prediction on corrugation and squat classification 

(model.predict(test_generator)) 
The YOLOv5 model, recognized for its real-time object 

detection capabilities, was employed to detect defects 
accurately. The model was trained to precisely locate and 
classify corrugation and squat defects within the railway 
images. The YOLOv5 model, like the VGG16 model, 
underwent transfer learning. Pre-trained weights were 
initialized, and the model was subsequently optimized using 
the annotated dataset of corrugation and squat, as depicted in 
line 7 of the YOLOv5 model's pseudocode. 
Pseudocode for YOLOv5 model training: 

1 Load and pre-process the annotated dataset 
2 Initialize YOLOv5 model with pre-trained weights 

(yolov5s.pt) 
3 Optimize and specify the loss function (YOLO loss) and 

optimizer (Adam) 
4 Set the desired number of training epochs 
5 Perform transfer learning by freezing the pre-trained 

weights 

6 Train the model on the annotated dataset (train.py) 
7 Fine-tune the model by unfreezing some layers 

(model.layer) 
8 Continue the training until convergence or desired 

performance is achieved 
9 Detecting corrugation and squat (detect.py) 
The optimization criteria include minimizing the 

categorical cross-entropy loss using the Adam optimizer. A 
learning rate schedule, controlled by the ReduceLROnPlateau 
callback, dynamically adjusts the learning rate during training 
based on the validation loss. Fine-tuning involves selectively 
unfreezing specific layers to adapt the pre-trained model for 
the railway-specific task. 

A rigorous assessment using various metrics was 
conducted to comprehensively evaluate the trained models' 
performance. For the VGG16 model, key metrics such as 
classification accuracy, precision, recall, and F1-score were 
computed. These metrics provided insights into the model's 
ability to classify different defect categories accurately. A 
confusion matrix was also generated to analyze the model's 
performance further and identify misclassifications.  
Pseudocode for VGG16 model evaluation: 

1 Calculate and store  
2 

 
The loss and accuracy of the model on the 
training data (Train evaluation) 

3 
 

The loss and accuracy of the model on the 
validation data (Validation evaluation) 

4 
 

The loss and accuracy of the model on the test 
data (Test evaluation) 

7 Generate a classification report with precision, recall, F1-
score, and support for each class (Classification report) 

8 Make predictions on the test data using the model 
(Predictions) 

9 Extract the predicted labels by choosing the class with the 
highest probability 

10 Obtain the true labels from the test data 
11 Generate a classification report using the true labels and 

predicted labels 
12 Create a confusion matrix to visualize the performance of 

the model across different classes (Confusion matrix) 
13 Generate the confusion matrix using the true labels and 

predicted labels 
The YOLOv5 model's detection-specific metrics were 

employed to evaluate its defect localization and classification 
accuracy. Average precision, mean average precision (mAP), 
and intersection over union (IoU) were utilized to quantify the 
model's effectiveness in accurately detecting and precisely 
localizing defects within the railway images. This 
experimental setup advanced comprehension and capabilities 
in railway defect classification and detection. The integration 
of VGG16 for classification and YOLOv5 for detection 
offered a robust methodology to tackle the challenges 
associated with railway corrugation and squat defects. 
Pseudocode for YOLOv5 model evaluation: 

1 Calculate the Mean Average Precision (mAP) by 
evaluating the model on the test data 

2 Store the evaluation results in the variable results 
3 Retrieve the mAP value from the results using the 

key 'mAP' 
4 Create a confusion matrix to evaluate the model's 

performance 
5 Make predictions using the model on the test data 
6 Extract: the predicted labels from the predictions 
7  The true labels from the test data 
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8 Generate the confusion matrix using the true labels and 
predicted labels 

III. RESULTS AND DISCUSSION 

The study's outcomes using VGG16 for classification 
indicate high accuracy and performance in distinguishing 
between railway corrugation and squat defects. Fig. 3 shows 
samples of predicted test images for (a) classification using 
VGG16 and (b) detection using YOLOv5. 

  

(a) 

  

(b) 

Fig. 3  The predicted test images for (a) classification using VGG16; and (b) 
detection using YOLOv5 

 
Table 1 presents the evaluation results of the VGG16 and 

YOLOv5 models for railway corrugation and squat defects. 
The results showed that both models achieved high levels of 
accuracy and performance. VGG16 achieved a precision of 
0.9 and 0.87 for corrugation and squat defects, respectively. 
The recall values were 0.86 and 0.91, resulting in F1 Scores 
of 0.88 and 0.89, respectively. These scores demonstrate the 
ability of VGG16 to achieve a balanced trade-off between 
precision and recall. 

TABLE I 
EVALUATION RESULTS FOR VGG16 AND YOLOV5 

Model VGG16 YOLOv5 

Corrugation Squat Corrugation Squat 

Precision 0.9 0.87 0.84 0.95 
Recall 0.86 0.91 0.94 0.79 
F1-Score 0.88 0.89 0.88 0.88 
mAP@0.5 - - 0.93 0.96 
mAP@0.5:
0.95 

- - 0.87 0.93 

 

The manuscript presents evaluation results for two 
different models, VGG16 and YOLOv5, used to detect two 
critical railway track defects: corrugation and squat. Table 1 
summarizes the performance metrics for each model in these 
defective classes. The VGG16 model achieved precision 
values of 0.9 for corrugation and 0.87 for squat. On the other 
hand, the YOLOv5 model exhibited precision values of 0.84 
for corrugation and an impressive 0.95 for squat. 
Additionally, mAP@0.5 scores of 0.93 for corrugation and 
0.96 for squat were achieved. The models showed competitive 
performance in detecting rail defects, demonstrating the 
potential of computer vision and deep learning techniques for 
enhancing railway safety and maintenance. 

Precision and recall are often used to assess a model's 
performance in classification tasks. Recall is the percentage 
of correctly predicted positive instances out of all real positive 
instances. In contrast, precision is the percentage of correctly 
predicted positive instances out of all cases projected as 
positive. The recall values of 0.86 and 0.91 for VGG16 in 
distinguishing between corrugation and squat defects indicate 
that the model successfully identified a high percentage of the 
actual positive instances for both classes. This means that 
VGG16 has a relatively low false-negative rate, implying that 
it rarely misses positive instances of either corrugation or 
squat defects. This can be seen in Fig. 4 (a), which shows 
corrugation has a 0.09 probability of being classified as squat, 
while squat has a 0.11 probability of being classified as 
corrugation. 
 

 

(a) 

 

(b) 

Fig. 4  Confusion matrix for (a) classification using VGG16 and (b) detection 
using YOLOv5 

920



The F1-score is a metric that combines precision and recall 
into a single value and measures a model's overall accuracy. 
It is beneficial when there is an imbalance between the 
number of positive and negative instances in the dataset. The 
F1-score is calculated as the harmonic mean of precision and 
recall, giving equal weight to both metrics. In this case, the 
F1-scores of 0.88 and 0.89 for VGG16 indicate a balanced 
trade-off between precision and recall for both corrugation 
and squat classes. These scores suggest that VGG16 achieved 
a good balance between correctly identifying positive 
instances (precision) and capturing a high percentage of actual 
positive instances (recall). It demonstrates that VGG16 
effectively achieves high accuracy and high recall 
simultaneously, which is crucial for accurate defect 
classification. 

For YOLOv5, the precision and recall for corrugation were 
0.84 and 0.94, respectively, with an F1-score of 0.88. The 
mAP at IoU threshold 0.5 (mAP@0.5) for corrugation was 
0.93, indicating its capability to localize the defect accurately. 
In object detection tasks, mAP is a widely used evaluation 
metric to assess a model's performance. It measures how well 
a model localizes and classifies objects in an image, 
considering different thresholds of Intersection over Union 
(IoU) between predicted and ground truth bounding boxes. 

mAP@0.5:0.95 is a variation of mAP that calculates the 
average precision across a broader range of IoU thresholds, 
specifically from 0.5 to 0.95 with an increment of 0.05. This 
provides a more comprehensive evaluation of the model's 
performance across various levels of overlap between 
predicted and ground-truth bounding boxes. The 
mAP@0.5:0.95 value of 0.87 for YOLOv5 demonstrates the 
robustness of the model in accurately localizing and 
classifying objects. This indicates that YOLOv5 consistently 
performs well across a range of IoU thresholds, from 
moderate to high overlaps. A higher mAP@0.5:0.95 value 
suggests that the model maintains its accuracy and 
effectiveness in detecting objects even with stricter criteria for 
matching predicted and ground truth bounding boxes. 
Furthermore, in the squat class, YOLOv5 achieved a precision 
of 0.95 and a recall of 0.79. A precision of 0.95 indicates that 
most of the predicted bounding boxes for squat defects are 
accurate. A recall of 0.79 suggests that YOLOv5 successfully 
identified 79% of the actual squat defects in the dataset. 

The F1-score of 0.88 for the squat class is a harmonic 
means of precision and recall. It provides a single metric 
summarizing the model's accuracy in identifying squat 
defects, considering precision and recall values. An F1-score 
of 0.88 suggests a good balance between precision and recall, 
indicating that YOLOv5 achieves accurate squat defect 
detection while minimizing false positives and false 
negatives. These metrics demonstrate the model's capability 
to detect squat defects effectively and consistently with high 
precision and provide reliable localization results. In line with 
this, it is evident from Figure 4 (b) that the classification 
performance is favorable, as the chances of misclassifying 
corrugation as squat are only 0.04, while the chances of 
misclassifying squat as corrugation are 0.18. 

The mAP@0.5:0.95, which provides a broader range of 
IoU thresholds, was calculated as 0.87, demonstrating the 
robustness of the YOLOv5 model. Regarding the squat class, 
YOLOv5 achieved a precision of 0.95, a recall of 0.79, and an 

F1-score of 0.88. The mAP@0.5 and mAP@0.5:0.95 for 
squat were calculated as 0.96 and 0.93, respectively, 
indicating the model's ability to detect squat defects with high 
precision accurately. These results highlight the model's 
accurate detection capability for squat defects, as 
demonstrated in Fig. 3(b), where the detection accuracy for 
squat reached 99%. Notably, this performance is comparable 
to the result reported in [23], where the model achieved a 99% 
detection accuracy for rail surface defects. 

The significance of the study lies in providing valuable 
insights into the performance of VGG16 and YOLOv5 
models for defect classification in the railway industry. By 
achieving competitive results in distinguishing between 
corrugation and squat defects, the models offer potential 
benefits for railway maintenance planning and defect 
identification [30]. Using computer vision and deep learning 
techniques in rail defect detection advances the field, 
enhancing railway safety and maintenance procedures. These 
findings contribute to the existing body of research on 
automated rail inspection methods, offering essential 
implications for the ongoing efforts to improve railway 
transportation systems' safety and reliability. 

IV. CONCLUSION 

This research study represents a significant contribution to 
the field by concentrating on identifying and localizing 
railway corrugation and squat defects by integrating VGG16 
for classification and YOLOv5 for detection. The 
implemented models have exhibited commendable 
performance and achieved high precision, which are called all 
values. Noteworthy is the research's emphasis on a 
comprehensive approach that targets explicitly distinct 
defects, differentiating it from prior studies. The significance 
of this lies in using advanced computer vision and deep 
learning techniques to identify defects and significantly 
improve maintenance planning and defect management 
strategies within the railway sector. This research is a 
benchmark for future endeavors in applying cutting-edge 
technologies to enhance railway infrastructure maintenance. 

In future research, it would be beneficial to investigate the 
applicability of these techniques to detect other types of rail 
defects and enhance the model's performance by utilizing 
larger datasets. Additionally, exploring the potential of this 
method to classify the depth and severity of defects and 
distinguishing between minor and major cases could further 
improve the effectiveness of this work. It is essential to note 
the limitations of this study, including the absence of specific 
evaluation metrics and the need for more diverse data. 
Moreover, addressing practical challenges such as real-time 
deployment and integration with existing systems is crucial 
for implementing these findings in the railway industry, 
enabling maintenance staff to prioritize their tasks effectively. 
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