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Abstract— This research delves into the effectiveness of Artificial Neural Networks with Multilayer Perceptron (ANN-MLP) and 

Nonlinear AutoRegressive with eXogenous inputs (NARX) models in predicting short-term rainfall-runoff patterns in the Batu Pahat 

River Basin. This study aims to predict river water levels using historical rainfall and river level data for future intervals of 1, 3, and 6 

hours. Data preprocessing techniques, including the management of missing values, identification of outliers, and reduction of noise, 

were applied to enhance the accuracy and dependability of the models. This study assessed the performance of the models for ANN-

MLP and NARX by comparing their effectiveness across various forecast timeframes and evaluating their performance in different 

scenarios. The findings of the study revealed that the ANN-MLP model showed robust performance in short-term prediction. On the 

contrary, the NARX model exhibited higher accuracy, particularly in capturing intricate temporal relationships and external impacts 

on river behavior. The ANN-MLP produces 99% accuracy for 1-hour prediction, and NARX yields 98% accuracy with 0.3245 Root 

Mean Squared Error and 0.1967 Mean Absolute Error. This study makes a valuable contribution to hydrological forecasting by 

presenting a rigorous and precise modeling methodology.  
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I. INTRODUCTION

This research introduces a mathematical approach to 

determine the appropriate parameters for machine learning 

applications in training models utilizing historical data on 
rainfall and river water levels. The method under 

consideration is founded upon the principle of rainfall-runoff, 

which pertains to the quantification of water discharge 

originating from a hydrological catchment within a Batu 

Pahat River basin. Recently, artificial intelligence with 

machine learning offers a promising alternative to traditional 

rainfall-runoff modeling. It adapts to complex hydrological 

patterns more effectively through data-driven approaches and 

improves accuracy. This dynamic methodology enhances the 

understanding and prediction of runoff, proving advantageous 

in water resource management and flood forecasting. The 

artificial intelligence system acquired data to forecast future 
water levels. Subsequently, it presents comprehensive 

information encompassing rainfall and water level data, 

accompanied by predictions for the subsequent time intervals 

of 1, 3, and 6 hours. It is possible to optimize predictive 

models, even in the presence of river environment alterations 

or new infrastructure implementation. In such instances, the 

model is readily retrained by utilizing rainfall and water level 

data that has been gathered after any modifications. A study 

was undertaken to assess the precision of the novel model by 

employing this methodology on past river water level data, 

and it was verified that the prediction of water level increase 
can be achieved with consistent accuracy when the model is 

trained using rainfall data. 

In recent study, the application of Artificial Neural 

Network (ANN) with Multilayer Perceptron (MLP) has been 

investigated in the analysis of week-ahead forecasts, as 

demonstrated by the work conducted by [1]. Results show that 

the use of the Scaled Conjugate Gradient Gradient-Tangent 

model yields superior results compared to employing the 

Sigmoid activation function.  In a study conducted by 

researchers [2], a comparison was made between the Harris 

hawks optimizer and particle swarm optimization in the 

context of a rainfall-runoff model at Perak river. Research 
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studies have demonstrated that the application of a meta-

heuristic optimization technique has the potential to enhance 

the accuracy of measurements at Dorim stream in Seoul [3]. 

In recent studies, scholars have proposed the application of 

MLP as a predictive tool for streamflow forecasting in the 

Citarum river over different time intervals, including 2, 4, 6, 

8, 10, 12, and 24 hours ahead [4].  

A study has been conducted on predicting groundwater 

levels by adopting the Nonlinear AutoRegressive with 

eXogenous Inputs (NARX) methodology. The process of 
determining input and feedback delays entailed the utilization 

of seasonal trend decomposition and time series 

decomposition on the dataset. The remaining components 

were subjected to auto and cross-correlation algorithms to 

detect substantial time delays [5]. The NARX model is used 

in simulating  rainfall-runoff patterns within the Linyi 

watershed[6]. In a study conducted by researchers in [7], the 

combination of  Principal Component Analysis (PCA), Self-

Organizing Map (SOM) and NARX known as PCA-SOM-

NARX were used. The findings show that the PCA-SOM-

NARX methodology yielded reliable and precise predictions 
for flood inundation depth in several steps. Additionally, it 

demonstrated a stronger correlation with the geographical 

pattern of inundation resulting from heavy rainfall events. 

There is a study on sea level projects that help in flood 

forecasting using NARX-ANN model at Kuala Terengganu 

[8]. The findings indicate an upward trajectory, even when 

considering a data intake spanning over a decade. In a recent 

study, researchers used historical data spanning a period of 15 

years.  

This paper proposes modeling rainfall-runoff using ANN-

MLP and NARX based on time series rainfall and water level 
data. It is organized as follows: Section 2 describes the 

materials and methodology; Section 3 presents all results and 

related discussions; and finally, Section 4 presents 

conclusions. 

II. MATERIALS AND METHOD 

A. Research Focus and Objectives 

The research focuses on developing an advanced machine-

learning model for short-term rainfall-induced flood 

forecasting. Specifically, the study aims to leverage pre-
processed data and ANN-MLP and NARX models to predict 

water levels 1, 3, and 6 hours ahead based on historical rainfall 

and river water level data input. The objective is to enhance 

flood forecasts' accuracy and lead time, which is crucial for 

effective disaster mitigation and emergency response. The 

research focuses on developing an advanced machine-

learning rainfall-runoff model for short-term rainfall-induced 

flood forecasting. Explicitly focusing on ANN-MLP and 

NARX. The aim of the study aligns with the following 

objectives: 

1) To identify data and pre-processing by compiling 
historical rainfall rate and water level data from relevant 

sources, implementing robust pre-processing techniques, 

including handling missing values, outlier detection, and 

ensuring time-series alignment and extracting relevant 

features and construct suitable input sequences to facilitate the 

training and evaluation of the forecasting models. 

2) To develop a forecast model by designing and 

implementing a baseline ANN-MLP for a 1-hour prediction 

of water level using preprocessed data, extending the 

predictive capabilities to forecast water levels for 3 hours to 6 

hours ahead, employing improved model architectures and 

training strategies and finally developing the NARX-based 

neural network for 1, 3 and 6 hours ahead water level 

forecasting, explicitly accounting for temporal dependencies 

within the data. 

3) To evaluate the forecast model using Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and 

correlation coefficients, conducting comparative analyses to 

assess the forecasting accuracy of both MLP and NARX 

models for different lead times (1, 3, and 6 hours). 

Through these objectives, this research significantly 
enhances the precision and lead time of rainfall-induced flood 

forecasts, contributing to more effective flood risk mitigation 

strategies and emergency response plans. 

B. Study Area and Data 

This research investigates meteorological data collected 

from the irrigation and drainage stations located in Sungai 

Batu Pahat, Sungai Simpang Kanan (Parit Karjo) and Sungai 

Simpang Kanan (Parit Besar) as depicted in Fig. 1. The 

distance between station Sungai Batu Pahat and station 
Sungai Simpang Kanan Parit Besar is 8 km. Data used in this 

study consists of three years’ hourly data from 2017 to 2019. 

TABLE  I and Fig. 1 shows the location of the stations. The 

data consist of discernible upward trend in precipitation levels 

commencing in October 2018 and persisting through the 

conclusion of the year 2019.  

TABLE  I 

STATION LOCATION 

 

The observed rise in precipitation levels can be attributed 
to the occurrence of the Southeast Monsoon, which typically 

takes place from May or June through September or early 

October. The Southeast Monsoon is observed exclusively in 

the southern region of Malaysia. According to Department of 

Meteorology Malaysia, peninsular Malaysia experiences three 

distinct monsoon seasons, the Northeast Monsoon, which 

occurs from November to March, the Southeast Monsoon and 

the Inter-Monsoon period, spanning from April to October. 

Batu Pahat experiences a significant amount of rainfall, even 

during the period of lowest precipitation. According to the 

Köppen-Geiger climate classification, the climate in this region 
is categorized as wet equatorial climate [9].  

According to statistical data, the average temperature in the 

city of Batu Pahat is documented as 26.4 °C. Annually, a total 

of 2492 mm (98.1 inches) of precipitation is recorded. Fig. 2 

shows the hourly data for rainfall and river level for Sg. Batu 

Pahat Station in 2019. The Batu Pahat region is situated near 

Station Latitude Longitude Station No. 

Sg Batu 
Pahat 

1.8406483 N 102.92366 E 1829078 

Sg Simpang 
Kanan (Parit 
Besar) 

1.8957564 N 102.97170 E 1829054 

Sg Simpang 
Kanan (Parit 

Karjo) 

1.87496944 N 103.05663 E 1831080 
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the equator, resulting in a challenging task of defining the 

warm weather season. 
 

 
Fig. 1  Map of the stations 

 
Fig. 2  Hourly data Rainfall and River level for Sg. Batu Pahat Station in 2019 

C. Research Materials and Methodology 

The materials and methodology for the rainfall-runoff 

model integrating machine learning, featuring pre-processing, 

ANN-MLP and NARX architecture, and comprehensive 

validation, encompasses a multifaceted approach. Historical 

rainfall and runoff data are the foundational materials, 

particularly the pre-processed data used to rectify missing 

values, detect outliers, and normalize the dataset. Relevant 

hydrological features are extracted to enhance model 

performance. The ANN-MLP and NARX model is 

constructed, utilizing hourly rainfall data as input and past 

river level runoff information as an exogenous time series. 
The model undergoes rigorous training through 

backpropagation, optimizing weights and biases to minimize 

errors for 1-hour, 3-hour, and 6-hour river water level 

predictions. Extensive validation uses various techniques, 

including cross-validation and time series splitting, to ensure 

the model's robustness. Performance is evaluated using 

metrics like MAE, RMSE, and correlation coefficients across 

different prediction horizons, thus furnishing a versatile and 

accurate rainfall-runoff modeling framework. This 

methodology enables the development of a data-driven 

rainfall-runoff model capable of accurately simulating 
hydrological processes. 

1)  Data Preprocess: 

Data preprocessing is an essential stage for data analysis 

and machine learning in the pipeline. It entails cleansing, 

organizing, and transforming unstructured data into a format 

suitable for analysis or modeling [10]. Appropriate data 

preprocessing can have a substantial influence on the quality 

and performance of the analytical and machine-learning 

models [11]. The flow of Data Preprocessing in this study is 

illustrated in Fig. 3. 

 

 
Fig. 3  Data Preprocessing Process 

 

Data Preprocessing steps begin according to Fig. 3 by 

acquiring the dataset. The raw data inside the dataset refers to 

the unprocessed and unmodified data directly obtained from 

the primary sources. In this research, the dataset used is hourly 
river level data and rainfall data received from the Malaysia 

Department of Irrigation and Drainage. The following steps 

involve identifying and managing outliers, missing values, 

and noise reduction. The occurrence of missing data in water 

level and rainfall monitoring stations can be attributed to 

various sources, such as machine malfunctions, human errors, 

or other contributing variables. Hence, the station can fail to 

capture the data occasionally or for the recorded value to 

assume a negative value.  

 Missing Value 

The river level dataset presents a notable presence of 

negative values, contradicting the reference to mean sea level 

in water level measurements. This absence of data diminishes 

the study's statistical robustness. While it's common for data 

to be missing, increasing the sample size to compensate, it 

doesn't eliminate potential bias and attention must be given to 

the issue of missing data [12]. The challenge was overcome 

by employing a data interpolation algorithm. Interpolation, a 
mathematical technique, approximates function values by 

fitting available data points. Common in time-series analysis, 

it replaces missing values with preceding ones, resolving the 

difficulty [13]: 

 � � �1 � �����	

�����	
 ∗ � � 1
 (1) 
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where x and y are unidentified figures, that will determine 

through the other values. y1, y2, x1 and x2 are given variables 

that will help determine unknown values in (1). 

 Remove Outlier 

In data preprocessing, removing outliers is crucial for 

accurate summary statistics. Outliers, extreme data points 

deviating from the norm, often signal errors or rare events. In 

discharge measurements, inaccuracies arise from faulty water 

level data due to human error, recorder faults, or flow 

obstructions. The presence of outliers distorts statistics like 

mean and standard deviation, hampering accurate 

representation of data. This study employs a dynamic Hampel 

Filter, using a moving window mean or median for outlier 

detection. The method's adaptability enhances sensitivity to 

contextual variations, striking a balance between precision 
and broader outlier identification [14]. The approach, a 

moving-window version of the Hampel identifier by Davies, 

relies on robust estimates like median absolute deviation 

(MAD) for effective outlier removal [15]. This outlier 

detection approach relies on the use of the median and the 

MAD scale estimator. Specifically, the filter’s response is 

given in (2): 

 �� � ��|� � ��| � ���
��|� � ��|⟩���

� (2) 
the median value from the moving data window is denoted as ��,whereas the MAD scale estimate is represented by ��. 

 �� � 1.4826 x median& ∈ (�), )+,|��- � ��|.  
This technique proves valuable in diverse fields, from 

anomaly detection in data analysis to recognizing 

irregularities in spatial or temporal patterns. In the 

experimentation of rainfall and water level in this study, the 

best fitting to define the outliers is set to more than three local 

standard deviations from the local mean within a five-element 

window. The parameters were selected based on descriptive 
statistical analysis, that provide the initial values of 

interpolation of data pattern. 

 Noise Reduction 

The next steps are noise reduction. Data noise reduction is 

the process of reducing or eliminating random or unwanted 

variations in data that can hide meaningful patterns or make 
data analysis and modeling more difficult. A Gaussian filter 

smoothens data by manipulating it with a Gaussian function 

were used in this study in (3). This weighted average reduces 

noise and highlights underlying trends. The Gaussian function 

is defined as:  

 /0�, �
 � 	
�123 45 6� �37�3

�23 8 (3) 

In this equation, the value of the Gaussian function at 

coordinates(x,y) which is G(x,y). 0  (sigma) is the standard 

deviation of the Gaussian distribution, which controls the 
width or spread of the Gaussian function. 

2)  Artificial Neural Networks: 

ANN has made big changes in many areas, such as 

healthcare, banking, image recognition, and natural language 

processing. ANN are made up of several computational 

components known as neurons, which process information 

based on how they change in reaction to outside stimuli. These 

neurons mimic neurons found in biology. Every neuron takes 

in information, processes it and then produces an output[16]. 

It is comprised of three layers. The initial layer is referred to 

as the input layer. The neural network comprises input 

neurons responsible for transmitting information to the hidden 

layer. The hidden layer is responsible for conducting 

computations on the input data and subsequently transmitting 

the resulting output to the output layer. The factors 
encompassed in this context are weight, activation function 

and cost function[17]. 

In the early model of ANN, feed forward neural network 

being introduced and established as perceptron. It uses one 

perceptron layer, input directly fed to the output [18]. The 

weakness of this method is perceptron cannot be trained to 

recognize many classes of pattern. Each neuron composed of 

2 parts: weight coefficient and transfer function (Fig. 4). It 

consists of a summing function with an internal threshold and 

weighted inputs as shown below: 
 

 
Fig. 4  Weighted input 

 

For a neuron receiving n inputs, each input 9 (i ranging from 

1 to n) is weighted by multiplying it with a weight :; . The 

equation (4) illustrate that the sum of the ;:;  products gives 

the net activation of the neuron.  This activation value is 

subjected to a transfer function (f) to produce the neuron’s 

output. 

 <�= � ∑ ;:;
?;@	  (4) 

3)  MLP or Feedforward Neural Network: 

The MLP is a commonly utilized feed-forward ANN 

structure that finds extensive applicability across a range of 

machine learning tasks. MLP functions by inserting additional 
layers of nodes connecting the input and output nodes. These 

nodes are organized into an input layer, an output layer, and 

multiple hidden layers. The fundamental architecture of a 

MLP comprises an input layer, which is responsible for 

receiving and encoding the input features or variables from 

the dataset[19]. After the input layer, there exists one or more 

hidden layers, which consist of several neurons, also referred 

to as nodes or units. The concealed layers in a neural network 

are accountable for acquiring complex patterns and 

representations within the dataset via a sequence of weighted 

connections and activation functions. The output layer, 
situated at the terminal point of the network, generates the 
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ultimate prediction or classification outcome by utilizing the 

acquired representations in the hidden layers. During the 

process of feed-forward propagation, the input data is sent 

across the network. At each neuron, weighted sums and 

activation functions are applied to the input data, resulting in 

the generation of the final output[20]. A simple ANN-MLP is 

shown in Fig. 5. The significance of the dependent variables A; in forecasting is contingent upon the specific collection of 

independent variables provided,; , …, ?.. The quantity of 

neurons in the input layer of ANN is equivalent to the total 

number of attributes being used in this architecture act as 

independent variables. 
 

 
Fig. 5  Feedforward Multi-Layer Neural Network 

 

The last layer corresponds to the output of the network. 

During the learning process, the weights are modified in order 

to reduce the error between the actual and predicted values for 
the dependent variables. The equation (5) illustrates the 

hidden node 		  output is estimated by specifying the input 

vectors, weights and bias utilized by each neuron. The inputs �C; , . . . , ?D
 provided to the corresponding neuron are 

multiplied by their respective weights �C:			 , . . . , :?		 D
and 

the bias value �E		
 is added to estimate the output from each 

neuron. The backpropagation learning algorithm is commonly 

employed for the computation of derivatives pertaining to the 

weight and bias variables, specifically in relation to the 

performance of the mean square error[21]. 

 F		 � <�∑ ;:;G	?;@	 � E		
 (5) 

In this study, ANN-MLP is in a layered architecture. 

Comprising input, hidden and output layers, each layer 

contains interconnected nodes. Input parameters are rainfall 

rate and river water level, the output forecast is the river water 

level. During training, the network adjusts weights through 
backpropagation, minimizing the error between predicted and 

actual outcomes. Activation functions introduce non-linearity, 

enhancing the model's capacity to learn complex patterns. 

4)  Recurrent Neural Network: 

Recurrent Neural Networks (RNN) are a variant within the 
branch of Deep Learning methodologies that incorporates the 

concept of recurrence by allowing it to leverage historical data. 

RNNs are utilized for the purpose of predicting future 

scenarios[22]. RNN is the modification of Feedforward 

Neural Network with the improvement of using characteristic 

of feedback from output to input. Beside on relying to the 

output, RNN output also depends on previous state and act as 

memory[23]. A specific type of recurrent neural network, 

referred to as an RNN with Nonlinear Autoregressive 

Exogenous architecture, has been designed for the purpose of 

studying dynamic systems, particularly time-series data. The 

objective of using the NARX model is to forecast values of a 

time series, referred to as the output, by utilizing its historical 

values with the values of other interconnected time series, 

known as the exogenous inputs. The primary difference 

between NARX and conventional ANN is that NARX can 

manage time-based data compared to conventional ANN. 
Researchers frequently assert that NARX is superior to ANNs 

for predicting temporal data because it can incorporate 

external information, making it more effective in situations 

where temporal dependencies and external effects are crucial 

[24]. It is essential to comprehend this distinction to select the 

appropriate design for various time-series modelling tasks in 

machine learning and related disciplines. Fig. 6 is the 

illustration of NARX architecture. 

 

 
Fig. 6  NARX architecture 

 

The NARX input-output model is commonly employed to 

explain a significant class of nonlinear dynamic systems that 

possess both input u and output y variables in discrete time. 

 ��H � 1
 � <��H

 (6) 

In this context, (y = k+1) represents the anticipated output 

at a future time point (k+1), whereas x(k) refers to the 

regressor vector. The regressor vector is composed of a 

limited number of historical inputs and outputs: 

 <��H

 � (��H
. . . ��H � I� � 1
J�H � IK � 1+L �7
 
where I� and IK : the dynamic order of the system. The 

challenge of nonlinear system identification requires 

deducing the unknown function f in (7) based on a set of 
sampled data sequences {(u(k),y(k))} where k = 1,2,...,N. 

In this study the NARX methodology for river water level 

prediction integrates with the historical river water levels and 

input rainfall rates to predict 1, 3 and 6 hours ahead. Unlike 

the ANN-MLP this approach utilizes the RNN architecture, 

leveraging past outputs and external factors to capture 

complex dependencies in river behavior. 

5)  Experimental design: 

The experimental design used in this study is displayed in 

Fig. 7. The Department of Irrigation and Drainage of Malaysia 

provides information on rainfall and river levels. While river 

level is the objective statistic, input data also includes rainfall 

data. The data must first be preprocessed using the Gaussian 

Noise Reduction technique, Outlier Hamper Filters, and 

Spline Data Interpolation. The ANN-MLP and NARX 

models' imputation process is prepared by an experimental 
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design. The network training process includes a detailed 

construction of hidden layers, connecting nodes, external 

factors for NARX and the activation function. Next, the MAE, 

RMSE and R were used to compare the accuracy of ANN-

MLP with NARX. The predicted value must then be 

contrasted with the runoff threshold based on the results or 

outcomes. 

 
Fig. 7  Experimental Design for River Water Level forecast 

D. Performance Evaluation 

The model performance was evaluated by using MAE, 

RMSE and R. 

 NOP � 	
? ∑ |�Q � �RQ|?Q@	  (8) 

 SN�P � T	
? ∑ ��Q � �RQ
�?Q@	  (9) 

where �Q  is the real value, �RQ  is forecast value and I is the 

number of observations. A lower RMSE indicates better 

model performance, as it means the squared errors are 

minimized. Like RMSE, a lower MAE suggests better 

performance. It's more robust to outliers compared to RMSE. 

The correlation coefficient is used to gauge the linear 

relationship between two random variables, providing a 

measure of the strength of their association. In this context, it 

was utilized to evaluate the link between actual values and 

their corresponding forecasts. If each variable has n scalar 

observations, then the Pearson correlation coefficient is 

defined as [25]: 

 S � ? ∑ �U�RU��∑ �U
�∑ �RU

V?�∑ �U3
��∑ �U
3�T?W∑ �RU3X��∑ �RU
3 (10) 

III. RESULT AND DISCUSSION 

A. Preprocessing Data for Imputation 

Data preprocessing is a critical phase in data analysis, 

particularly when dealing with missing data. The utilization 

of Spline Data Interpolation, Outlier Hamper Filters and 

Gaussian Noise Reduction. Fig. 8 shows the implementation 

of data interpolation to handle missing value. Various 

Exploratory Data Analysis (EDA) were conducted to 

visualize and analyze the distribution of data before and after 

preprocessing [26]. The data preprocess will enhance the 

quality of imputation that will contribute to accurate and 

meaningful outcomes. 

When the imputations were created after data reprocessing, 

the final stage is to verify the imputed data using Gaussian 

Kernel Density Estimation (KDE). KDE is a non-parametric 

method to estimate probability density function (PDF) of a 

random variables [27]. It is a method used for visualizing the 
distribution of a dataset. The basic idea involves placing a 

kernel (a smooth, often Gaussian-shaped function) at each 

data point and then summing up these kernels to create a 

smooth curve, which provides an estimate of the underlying 

probability density. Fig. 9 shows PDF between original data 

and imputed data for river water level datasets is identically 

distributed and it can be concluded that the imputation method 

is satisfactory.  

 
Fig. 8  Missing value with Interpolation. 

 

 
Fig. 9  Comparison of Original and Imputation Data 

B. ANN-MLP 

After data preprocessing was successful, the architecture of 

the ANN-MLP was carefully designed, with variations in 

hidden layers, activation functions, and optimization 

algorithms systematically explored. Rigorous parameter 

tuning and cross-validation ensure the robustness of our 

findings. The experimental results reveal the unparalleled 

performance of the ANN-MLP model across various domains. 

In comparison to single layer perceptron, MLPs indicate a 

marked improvement in accuracy, particularly in scenarios 

with non-linear decision boundaries. The impact of different 
activation functions on convergence speed and overall 
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accuracy is thoroughly examined, providing insights into 

optimal choices for specific tasks. Research indicates that 

reducing the number of hidden layers in a neural network 

directly influences its accuracy. Although achieving high 

accuracy is a goal, it comes at the cost of increased time 

complexity. With fewer hidden layers, there's a risk that the 

network may not train adequately, potentially leading to 

subpar predictions in applications like rainfall-runoff 

modeling[28]. 

TABLE  II 

RESULTS ON ANN-MLP FOR STATION BATU PAHAT 

Hour 

Prediction 

No of 

Hidden 

Layers 

Epochs MAE RMSE R 

1 1 1000 0.6015 0.7358 0.9998 
1 5 1000 0.6016 0.7470 0.9967 

1 10 1000 0.5983 0.7410 0.9982 

3 1 1000 0.5176 0.5313 0.8367 
3 5 1000 0.5133 0.5411 0.9355 
3 10 1000 0.5244 0.5608 0.8335 

6 1 1000 0.3064 0.3835 0.3665 
6 5 1000 0.3002 0.4616 0.6099 
6 10 1000 0.3008 0.3783 0.3968 

TABLE  III 

RESULTS ON ANN-MLP FOR STATION PARIT KARJO 

Hour 

Prediction 

No of 

Hidden 

Layers 

Epochs MAE RMSE R 

1 1 1000 0.4733 0.5665 0.9952 
1 5 1000 0.4775 0.5658 0.9993 

1 10 1000 0.4795 0.5684 0.9989 

3 1 1000 0.4526 0.4964 0.9994 
3 5 1000 0.4643 0.4906 0.9652 
3 10 1000 0.4600 0.4849 0.9646 

6 1 1000 0.4778 0.4799 0.1399 
6 5 1000 0.4666 0.4697 0.1131 
6 10 1000 0.4728 0.4775 0.0748 

TABLE  IV 

RESULTS ON ANN-MLP FOR STATION PARIT BESAR 

Hour 

Prediction 

No of 

Hidden 

Layers 

Epochs MAE RMSE R 

1 1 1000 0.8765 0.8936 0.9997 
1 5 1000 0.8793 0.8961 0.9988 
1 10 1000 0.8790 0.8957 0.9985 

3 1 1000 0.8842 0.8879 0.9936 
3 5 1000 0.8890 0.8923 0.9724 

3 10 1000 0.8892 0.8931 0.9601 

6 1 1000 0.8849 0.8852 0.8823 
6 5 1000 0.8816 0.8841 0.1680 
6 10 1000 0.8811 0.8835 0.1725 

 

The model's performance was evaluated using R, RMSE, 

and MAE. According to the analysis based on these metrics, 

a lower MAE and RMSE indicate a lower prediction error. On 

the other hand, a value of R closer to 1 is preferable as it 

signifies a stronger linear relationship and a more accurate 

indication of the direction between two variables.  TABLE  
II’s result indicates that the value of R is near to 1. When the 

number of hidden layers increases from 1 to 10, the values of 

RMSE and MAE tend to slightly increase as well. With five 

hidden layers, the model works best for 6-hour predictions. In 

TABLE  III, the results demonstrate a notable level of 

accuracy, as constant high accuracy is observed in both the 1 

hour and 3 hour forecast intervals. TABLE  IV displays MAE 

and Root RMSE values, indicating a lower level of precision 

in forecasting when compared to the remaining stations. 

Based on the conducted study, it is evident that the ANN-MLP 

model demonstrates strong performance in short-term 

prediction like presented by Fig. 10. When the value of 

regression showed in Fig. 11 near to 1 and the black data 

points are tightly clustered around the line of perfect fit, which 

is a positive indicator. 
The accurate predictions can be achieved by allowing an 

RMSE of 1-hour prediction. The features that influencing the 

predictions were identified, with time series analysis 

revealing the model’s proficiency in capturing temporal 

patterns. It is required to minimal overfitting through training 

and validation phases. The neural network, comprising 5 

layers, showcasing its efficacy. 

 

 
Fig. 10  Actual vs Prediction for 1 hour ahead 

 

 
Fig. 11  ANN-MLP Regression for 1 hour ahead  

C. RNN-NARX 

The architecture of the RNN with NARX is thoroughly 

configured, with attention to parameters such as sequence 

length, recurrent layer depth and the influence of exogenous 

inputs. Rigorous cross-validation and comparative analyses 

ensure the reliability and generalizability of our findings. The 

results demonstrate the superior performance of the RNN with 
NARX in comparison to ANN-MLP architectures, especially 

in scenarios with complex temporal dependencies and 
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external influences. The model exhibits enhanced predictive 

accuracy and the ability to capture long-term dependencies, 

making it well-suited for applications such as time-series 

forecasting and dynamic system modelling. Furthermore, our 

study investigates the impact of varying sequence lengths on 

the model's predictive capabilities. Surprisingly, the RNN 

with NARX exhibits robust performance even with shorter 

sequences, showcasing its resilience in scenarios with limited 

historical data. TABLE  V illustrates that lower hour 

predictions, such as those for 1 hour, tend to have slightly 
lower values of MAE and RMSE. This suggests improved 

performance in these cases. The observed R values exhibit a 

moderate level of magnitude, indicating a moderate degree of 

correlation. TABLE  VI routinely demonstrates the highest 

level of accuracy in its performance. TABLE  VII has higher 

MAE and RMSE values, which suggest a lower level of 

predictive accuracy. 

TABLE  V 

RESULTS FOR RNN-NARX FOR BATU PAHAT STATION 

Hour 

Prediction 

No of 

Hidden 

Layers 

Epochs MAE RMSE R 

1 1 1000 0.2642 0.3620 0.8897 
1 5 1000 0.2646 0.3591 0.8988 
1 10 1000 0.2656 0.3603 0.8970 

3 1 1000 0.2631 0.3613 0.7918 
3 5 1000 0.2647 0.3604 0.7971 
3 10 1000 0.2637 0.3603 0.7992 

6 1 1000 0.2675 0.3611 0.5880 

6 5 1000 0.2654 0.3604 0.5976 
6 10 1000 0.2646 0.3612 0.5967 

TABLE  VI 

RESULTS FOR RNN-NARX FOR PARIT KARJO STATION 

Hour 

Prediction 

No of 

Hidden 

Layers 

Epochs MAE RMSE R 

1 1 1000 0.2034 0.3276 0.9487 
1 5 1000 0.1977 0.3236 0.9621 
1 10 1000 0.1967 0.3245 0.9570 

3 1 1000 0.2616 0.3948 0.7532 
3 5 1000 0.2558 0.3936 0.7582 
3 10 1000 0.2542 0.3923 0.7557 

6 1 1000 0.2979 0.4523 0.5528 
6 5 1000 0.2933 0.4549 0.5569 
6 10 1000 0.2899 0.4513 0.5532 

TABLE  VII 

RESULTS FOR RNN-NARX FOR PARIT BESAR STATION 

Hour 

Prediction 

No of 

Hidden 

Layers 

Epochs MAE RMSE R 

1 1 1000 0.3265 0.6523 0.8824 
1 5 1000 0.3214 0.6259 0.8875 
1 10 1000 0.3219 0.6240 0.8895 

3 1 1000 0.3590 0.6409 0.7706 
3 5 1000 0.3551 0.6415 0.7192 
3 10 1000 0.3540 0.6415 0.7180 

6 1 1000 0.3775 0.6536 0.8640 
6 5 1000 0.3768 0.6543 0.7812 
6 10 1000 0.3750 0.6544 0.7877 

 

The NARX model yielded convincing outcomes in the 

range of river water level prediction. Employing a complex 

interplay of historical data and external factors, the model 

exhibited a commendable RMSE of 5 hidden layers, attesting 

to its accuracy. RMSE and correlation coefficient further 

validated the model's predictive ability, showcasing its ability 

to encapsulate the dynamics of river water fluctuations. 

Analysis of feature importance highlighted the significant role 

of certain variables, revealing the factors crucial for precise 

predictions. Time series evaluations underscored the model's 

adeptness in capturing temporal dependencies as focal aspect 

in water level forecasting. is the optimized predictive 

performance. The degree of variation between the predicted 
and actual values can indicate the volatility of river water 

levels, which can be a significant determinant of the 

predictive capacity of the model showed in Fig. 12. The points 

in Fig. 13 are grouped around the Y=T line, which represents 

the line of best fit, indicating that the model's predictions are 

fairly near to the actual targets. The lack of notable outliers 

suggests that the faults in the model are very moderate and 

stable. 

 

Fig. 12  NARX Actual vs Forecast for 1 hour ahead 

 
Fig. 13  NARX Regression for 1 hour ahead 

D. Comparative Analysis 

Comparative assessments against alternative 

methodologies such as ANN-MLP models, underscored the 

NARX model’s superiority. Challenges such as sensitivity to 

input variations were observed, prompting consideration for 

robustness in real world scenarios. According to Fig. 14 and 
Fig. 15, the distinguishing factor between two graphs utilizing 

identical datasets is the variation in time steps. The temporal 

intervals would be interconnected inside the procedure of 

forecasting time-series data. In summary, the NARX model 
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proves to be a proficient instrument for predicting river water 

levels, demonstrating a sophisticated grasp of dynamics and 

adaptability. Delving into aspects such as input sensitivity 

could further expand its practicality, consolidating its role as 

a valuable asset in hydrological forecasting. The outcome 

demonstrates that an hourly forecast may be made with a 

decent value of R that is almost equal to 1 by applying ANN-

MLP.  The researchers' BPN model achieves accuracy on a 3-

hour timescale using only the water level parameter. In 

contrast to this research, the application of water level and 
rainfall as parameters can improve the accuracy result into an 

accuracy of one hour and provide a better prediction, with the 

prediction value closely grouped around the line of perfect fit.  

Similar to this study, another researcher's use of ANN-MLP 

for hourly river level forecasting surpassed the Adaptive 

Neuro Fuzzy Inference System (ANFIS), achieving RMSE 

(0.01740) with four hidden layers as opposed to RMSE 

(0.8961) with five hidden layers[29]. 

E. Rainfall-runoff 

In rainfall-runoff forecast modeling using ANN with 

rainfall and historic water level data, the consideration of 

thresholds for runoff in three rivers in this study is crucial. 

ANN models excel in capturing complex, non-linear 

relationships inherent in hydrological systems, recognize 

patterns and predict runoff that offering a dynamic 

understanding of flood risk. The incorporation of river-

specific thresholds further refines accuracy. These levels in 

TABLE  VIII are used to keep an eye on and deal with flood 

threats. The "Normal" range shows normal and safe water 

amounts. As the levels rise to the "Alert" and "Warning" 
levels, people should be more careful and take steps to get 

ready for possible floods. The "Danger" level means that there 

is a high chance of floods, and that immediate action may be 

needed to protect people and property. 
 

 
Fig. 14  Actual vs Forecast NARX 

 
Fig. 15  Actual vs Forecast ANN-MLP 

 

The threshold value is provided by Malaysia Department 

of Irrigation and Drainage [30]. From the different stations' 
threshold levels, Sg Batu Pahat threshold level is higher. Fig. 

16 shows the distribution of river water level for Sg Batu 

Pahat. This means it has more capacity or a different risk 

profile than the other two stations. Sg Simpang Kanan (Parit 

Besar), on the other hand, has the lowest limits, which means 

it may flood more easily or not be able to handle high water 

levels as well. The water levels at Sg Simpang Kanan (Parit 

Karjo) are in the middle of the other two stations, which could 

mean that the risk level or potential for water levels is 

moderate. 

TABLE  VIII  

THRESHOLD VALUE FOR WARNING ALERT 

Station Name Normal 

(m) 

Alert 

(m) 

Warning 

(m) 

Danger 

(m) 

Sg Batu Pahat    1.00  2.30    2.60    3.00 

Sg Simpang Kanan 

(Parit Besar) 
   0.50  1.60    1.80    2.00 

Sg Simpang Kanan 
(Parit Karjo) 

   1.30  2.00    2.10    2.30 

 

The distribution of actual and forecast for river water level 

of Sg Batu Pahat in Fig. 16 and Fig. 17 indicate the prediction 

model is acceptable. The adaptability of ANNs to evolving 

conditions and their ability to process vast datasets swiftly 

make them indispensable tools for timely and reliable flood 
forecasts based on the runoff threshold level. 

 

 
Fig. 16  Distribution of Water Level for Sg Batu Pahat River 

 
Fig. 17  Distribution of Water Level forecast for Sg Batu Pahat River 
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IV. CONCLUSION

This research explored the application of ANN-MLP and 

NARX models for river level prediction for 1, 3 and 6 hours 

ahead. Commencing with accurate data preprocessing, 

extensive testing involving appropriate network structures 

and epochs was conducted for both ANN-MLP and NARX 
models. Results show that ANN-MLP outperformed NARX. 

The ANN-MLP model has higher correlation coefficient. The 

NARX model has lower error metrics of RMSE and MAE, 

suggesting that it is better at predicting the exact values. This 

study faces a notable constraint linked to the reliability of the 

raw data acquired from the monitoring station. While 

gathering the data, a section was identified to have negative 

values resulting from errors in the data reading process. 

Another notable limitation of this study pertains to the process 

of hyperparameter tuning. Future considerations involve 

hybrid models of Convolutional Neural Networks (CNN) and 
Long Short-Term Memory (LSTM) networks [31], inclusion 

of additional weather parameters, or improved preprocessing 

for enhanced flood prediction accuracy. In conclusion, 

computational intelligence, exemplified by models like ANN-

MLP and NARX, proves pivotal in flood forecasting. Their 

adeptness in handling complex relationships and temporal 

dynamics enhances accuracy.  
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