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Abstract—Progressively, the energy demands and responsibilities to control the demands have expanded dramatically. Subsequently, 

various solutions have been introduced, including producing high-capacity electrical generating power plants, and applying the grid 

concept to synchronize the electrical power plants in geographically scattered grids. Electrical Power Transmission Networks (EPTN) 

are made of many complex, dynamic, and interrelated components. The transmission lines are essential components of the EPTN, and 

their fundamental duty is to transport electricity from the source area to the distribution network. These components, among others, 

are continually prone to electrical disturbance or failure. Hence, the EPTN required fault detection and activation of protective 

mechanisms in the shortest time possible to preserve stability. This research focuses on using a deep learning approach for early fault 

detection to improve the stability of the EPTN. Early fault detection swiftly identifies and isolates faults, preventing cascading failures 

and enabling rapid corrective actions. This ensures the resilience and reliability of the grid, optimizing its operation even in the face of 

disruptions. The design of the deep learning approach comprises a long-term and short-term memory (LSTM) model. The LSTM model 

is trained on an electrical fault detection dataset that contains three-phase currents and voltages at one end serving as inputs and fault 

detection as outputs. The proposed LSTM model has attained an accuracy of 99.65 percent with an error rate of just 1.17 percent and 

outperforms neural network (NN) and convolutional neural network (CNN) models.  
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I. INTRODUCTION

Transmitting significant quantities of electrical energy 

from the area where it is created, such as a power plant or 

power station, to an electrical substation is called electrical 

power transmission. Alterations are made to the voltage 

before it is sent to consumers or other substations. These 

alterations take place at the electrical substation. A 
"transmission network" is the name given to the system of 

linked power lines that makes it possible to move electrical 

energy from one location to another. This term is often used 

when referring to the system in question. These lines, when 

combined, make up an Electrical power transmission network 

(EPTN), more commonly referred to as the power grid [1]. 

It is made up of a great variety of different components, 

each of which is unique, intricate, dynamic, and interrelated. 

Every one of these components is constantly susceptible to 

disruptions or electrical malfunctions. Power generators and 

transmission protective devices have to be used to avoid the 

intermittent operating conditions of the system, such as the 

increased use of high-capacity electrical power plants and the 

formation of a grid in which electricity generators and 

transmission-distribution networks are organized into 

synchronized electrical power systems and distributed 

networks. The activation of fast-acting corrective measures 
that ensure that the power system can function at a persistent 

state in the smallest possible time intervals is feasible [2]. This 

was the key factor that inspired the creation of the character, 
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as well as making the electrical system continue operating. 

The resulting power plant is characterized by nearly all the 

electricity being produced at 11 kV or 33 kV typical voltages. 

On the transmission level, it is the same - 100 kV to 700 kV 

and even a bit higher to handle the power swings. This voltage 

level is added at the source through the use of transformers 

and after that is transmitted to the distribution centers more 

rapidly via transmission lines. Furthermore, when the 

magnitude of the voltage gets higher, the distance that must 

be transmitted is even larger. In contrast, a shorter distance 
should be covered as a result of the lowest voltage magnitude 

presented [4]. 

The electrical current's voltage is elevated to such levels to 

enhance efficiency, thereby minimizing the I2R loss during 

transmission. This is accomplished by increasing the voltage 

of the electrical current. When the voltage is raised, the 

current flowing through the circuit drops in proportion to the 

voltage to maintain the same amount of power. Because of 

this, the I2R losses are cut down significantly [5]. Primary 

transmission involves sending a significant amount of 

electrical power from the power generators to substations via 
overhead electrical cables. This process is commonly known 

as "primary transmission" [6]. In certain circles, this stage is 

sometimes referred to as "primary transmission." In certain 

countries, the transfer of information across shorter distances 

may also take place via the use of underground cables, which 

are used when the transmission takes place [7]. 

The electrical power voltage is typically decreased from 66 

to 33 kilovolts (kV) on a scale of zero to one hundred when it 

reaches a receiving station [8]. Electricity is accepted at the 

receiving area of the station and travels along transmission 

lines to electric substations close to the "load centers," which 
may include town, urban, and village areas. Therefore, it is 

named the secondary transmission. When the train arrives at 

a substation, a regulator, a step-down transformer, will lower 

the voltage to around 11kV, which is much closer to its 

original production level. At this point, the transmission phase 

gives way to the distribution phase, which is responsible for 

satisfying the electrical power demands of both primary and 

secondary customers [9]. 

It is anticipated that problems will be found in the electrical 

power system's transmission lines at some point. After that, 

they are intended to be classed appropriately, and ultimately, 

they are supposed to be eliminated as soon as it is physically 
possible. It is feasible to use the protection system for a 

transmission line to initiate the starting of the other relays that 

are required to keep the power system protected from 

disturbances. When a high-quality fault detection system is 

used, a relaying operation has the potential to be effective, 

reliable, swift, and risk-free. 

Electrical utility businesses face a number of challenges on 

their path to achieving their objectives of enhanced efficiency 

and reliability. One of the most significant of these challenges 

is the management of failures in power systems [10]. To 

achieve this objective, these companies employ a diverse 
range of advanced techniques and methodologies that 

leverage modern advancements in information, 

communication, and technology. Within the Secondary 

Distribution Network (SDN), electrical faults represent a 

segment of the network spanning from the low-voltage 

transformer to the end-users [11]. The SDN is a network 

component that reaches all the way from the low-voltage 

transformer to the end-users. Customers or personnel at utility 

companies in many developing countries are increasingly 

responsible for physically and visually identifying and 

reporting electrical faults. In most instances, diagnostic and 

repair work on the electrical services will call for the 

involvement of a maintenance crew, which the customer 

support representatives will be expected to delegate to them. 

Finding and reporting errors by phone requires an excessive 

amount of time due to the nature of the medium. There is an 
insufficient number of methods for problem-solving, and 

there are insufficient tools to identify and classify problems. 

As a result, the overall inefficiency of the process is 

significantly impacted.  

In scientific literature, fault detection models are integrated 

into power line components. The essential components of 

these models include filtering (Hough transform, and Gabon 

filters), clustering, and mathematical conventional pattern 

recognition algorithms. Song et al. [12] utilized a Canny edge 

detector in conjunction with a Hough transform to find 

transmission line spacers that had been damaged. This step 
was taken to increase the precision of their findings. Initially, 

a scan window was produced along the conductor's path. 

Subsequently, candidates' spacers were located in all sliding 

windows, if they existed during the convolution process. 

Based on the measurement of the linked components, the 

shape configuration parameters are used to ascertain whether 

or not the perceived spacer was compromised. The 

information that was gathered served as the basis for this 

conclusion. Insulator extraction was the primary focus of the 

study carried out by Zhai et al. [13], which made use of a 

pattern descriptor (variable) that was developed using the 
Saliency Aggregating Faster Pixel-wise Image (FPISA) 

method. Based on the color channel that is included inside the 

Lab color space, the flashover area of the observed insulator 

was calculated.  

The system was able to obtain a detection rate of 92.7 

percent after being put through its paces with a hundred 

photographs of flashover fault insulation. Zhai et al. [14] and 

Han et al. [15] applied a comparable concept to detect faults 

associated with the absence of insulator caps, utilizing 

saliency and adaptive morphology (S-AM), which integrates 

form and pattern factors. Both of these studies were published 

in [14] and [15]. The insulator's cap was missing, resulting in 
these problems. The good features of past investigations play 

an important role in reaching high levels of accuracy. This 

should be kept in mind when concentrating on the positive 

aspects. However, the procedures that were utilized to process 

the data for the different EPTN components are arduous, 

involve a substantial amount of time, and need a certain 

degree of knowledge from the person doing the processing. 

Moreover, the method falls short in handling individual 

placement, multi-class classification, and error identification, 

of complex environments like those of the EPTN.  

Wang et al. [16] use a Sparse Autoencoder (SAE) and a 
dataset collected from the power system dispatching 

department for categorizing defects in the power system. 

Because the SAE was constructed with concealed layers of 

varied dimensions, the influence that such layers have on the 

accuracy rate of diagnosis may be seen as a direct outcome of 

its construction. The accuracy of the SAE was measured 
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against that of backpropagation (BP), and it was found to be 

71.3% accurate.  

James et al. [17] proposed a method using a joint detection 

technique of WT-based Deep Neural networks (DNN)s for 

islanding microgrids. The proposed model, for which they 

gave a result, has produced an average precision accuracy rate 

of 98.27%. This methodology consists of the definition of the 

type, the discernment of the phase, and the indication of the 

location of the fault. The Zhang et al. [18] research focuses on 

the utilization of LSTM and SVM algorithms that can be used 
for the prediction of line trips in power systems so that 

operational dependability and system stability can be further 

enhanced. The prediction accuracy of the researchers was 

exaggerated by 97.7 percent by this method. It is evident from 

the data indicated in [16], [17], and [18] can be deduced that 

deep learning algorithms excel significantly over other 

standard methods. 

Authors [19] Wang et al. came up with the FF-DNN-based 

architecture to supervise and detect the gearbox faults of WTs 

using SCADA acquisition data. This mechanism was installed 

to localize and feature the causes of the reasons. The 
framework was developed to help HM detect and monitor the 

faults of the WT gearbox. The DNN way of generating results 

gives high-quality predictions that are better than the five 

data-driven approaches that use them as a benchmark. 

Furthermore, aiming at featuring SAE and Deep Belief 

Network (DBN) and DNN, Cheng et al. [20] also suggest 

using a rotor current signal for wind turbine gears 

commissioned into the drivetrain. The same as that presented 

by Zhang et al. [21], the novel strategy of defect diagnostic 

testing was given for the systems of solid oxide fuel cells 

(SOFCs). The SAE algorithm formed the basis of this method. 
Then the SOFCs, which have many industrial applications, 

such as auxiliary power units and stationary power generators, 

were studied using this approach. Raw, unprocessed data from 

SOFC are fed to the feedforward neural network model, 

which at this stage achieves an accuracy of 79.94 %. Any data 

acquired from a real system can be supplied to this model, 

regardless of going through an intermediary stage. 

The development of computer vision is becoming the 

major milestone in gradually overcoming the restrictions 

associated with the RGB cameras and the traditional methods 

for detecting and recognizing the problems within the EPTN 

used. One of the pioneering steps in this obstacle is the 
identification of the surface discoloration due to flashover on 

the insulator which was implemented by means of a 

convolutional neural network (CNN) classifier employing a 

pre-trained AlexNet. This research has also been one of the 

first attempts at implementing deep learning in defect 

recognition in the field. This research, published by Zhao et 

al. [22], was among the first of its sort. On a total of 1000 

samples, the trials obtained a mean Average Precision (mAP) 

score of 98.71 percent. The proposed architecture performed 

better than the manual approach. However, it could only 

categorize insulator condition inspection photos, 
necessitating extensive feature engineering.  

In addition, Liu et al. [23] introduced the Faster R-CNN 

method for identifying insulators without caps. Three distinct 

voltage transmission line levels were used to examine the 

system, and 1,000 training samples and 500 testing samples 

were created for each level. The assessment was conducted. 

The identification of missing cap flaws needed around 120 

pictures (80 of which were for training). Due to the tiny size 

of the dataset, the research additionally emphasizes the 

possibility of overfitting and applies data augmentation to 

enlarge the dataset physically.  

Jiang et al. [24] developed a new way of retrieving default 

insulator defects from high-quality images (1920 x 1080 

pixels) using a single-shot detector (SSD) as the main network 

with three perception levels as the meta-architecture: low, 

medium, and high perception. Ensemble learning is used for 
integration. This method was proposed to tackle the problems 

that are of multi-scale level images based on the paper of Liu 

et al. [23]. The RUIE (Region of Interest (ROI) Union 

Extraction) image preprocessing technique was employed to 

generate perception images of medium and high levels. The 

proposed strategy was tested on the data set which comprised 

the images with different perception levels and missing cap 

insulators and achieved an absolute accuracy of 93.69 % and 

the recall rate of 91.09 %. However, the studies of this kind 

of work were limited to the contextual features of a particular 

fault inspection in the transmission line that were related to 
the insulator component. They only focused on the other 

problems that occurred at the same time and they did not take 

into account other technical concerns involved. In this aspect, 

the research has a significant flaw. The bulk of the time, the 

characteristics formed by these techniques may not accurately 

depict the insulators, and the imaging utilized in these 

processes may need modifications. 

II. MATERIALS AND METHODS 

Fault detection on a smart grid will not only ward drops but 

will result in the effective and reliable operation of the EPTN. 

Fault detection plays a crucial role in improving the stability 

of an electrical power transmission system in a smart grid for 

several reasons: 

1) Fast response time: Traditional fault detection methods 

are usually dependent on human inspection or a tedious, slow 

process of automation. But in smart grids, the use of advanced 

sensing systems dealing with real-time data analytics enables 

the identification of faults and the response to them within a 

very short time. The sooner the system identifies and takes 
action, the higher the likelihood of avoiding a disruption in 

the grid. 

2) Prevention of cascading failures: In an EPTN, when a 

fault occurs at one end of the grid, there is a possibility of 

system-wide failures through a cascading effect, meaning the 

fault propagates across the grid to other parts of the network 

and causes serious power outages. Quick and accurate 

detection of defects, followed by their immediate isolation, 

allows the grid operators to prevent or alleviate further 

failures within the system and lower the risk of being 

impacted by these particular failures. 

3) Isolation of faulty components: Location-finding 

intelligent fault detectors can identify the exact source of a 

fault in the grid almost instantaneously. By tracking down the 

fault within the grid, the operators could isolate the affected 

parts and limit the impact on the remaining system, and the 

unchanged areas of the grid can be monitored to ensure the 

stability of the power system. 
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4) Integration with control systems: Modern smart grids 

consist of state-of-the-art control systems that can operate 

automatically reacting to fault detection. These control 

systems are flexible, and they can perform functions such as 

reconfiguration of the grid, adjusting various generation and 

heavy load levels, and many other actions to maintain grid 

stability in the event of a fault. 

5) Optimized grid operation: The operators in the power 

grid are able to get insights into the overall health and 

performance of the system by constantly monitoring the 
system for any fault. The data gathered could be used for grid 

operation optimization, for re-routing of power flows, and 

even for preventive maintenance. All of the above factors 

combined ensure better stability of the system. 

6) Enhanced resilience: Smart grids not only identify flaws 

quickly, but with fast remedial actions, smart grids are also 

more resistant to disturbances like equipment failure, extreme 

weather, and cyber-attacks. A higher resilience level that is 

obtained as a result eventually leads to a stable and reliable 

EPTN. 

A. Electrical Fault Dataset 

Jamil et al. [25] developed a dataset that was used in this 

investigation of electrical faults. MATLAB was used to do the 

modeling and simulation of it. The constructed method that is 

based on ANNs has been simulated, developed, and put into 

reality using a system that is indicative of a conventional 400 

103 V three-phase transmission line. The system also contains 

generators positioned at both ends of the transmission line. 

Each end of the transmission line is home to one of the 

system's two generators, each of which produces a voltage of 
400 103 V. These power generators have been strategically 

placed in these particular locations so that any issues that may 

arise with the transmission line may be seen, documented, and 

investigated. 

The transmission line has been referred to as a distributed 

type of property, which makes the proposed approach fit for 

the application of very long transmission lines with high 

accuracy, which consequently produces more credible results. 

This is facilitated by the modeling that can be done of 

transmission lines of significant distances. The simulated 

system model is implemented using the SimPowerSystems 
toolbox, an internal part of the Simulink instruction set which 

is a tool of MATLAB [26]. The experiment is done by 

employing Simulink. ZP and ZQ depict the impedances of the 

sources of active power of generators on the left and right 

sides, respectively. By using SimPowerSystem's three-phase 

V–I measurement block for terminal A, the toolbox allows us 

to get crucial three-phase voltages and currents at the start of 

the simulation. Simulation of the transmission line of 300km 

with models that describe different faults that occur at 

different locations on the line by considering the difference of 

the fault resistance values. In this study, the radiation of 50Hz 
is taken into consideration. 

B. Long Short-Term Memory 

A detailed examination of the problem of vanishing 

gradients may be found in [27]. When the gradient of the 

neural network's error function is sent back through a unit of 

the neural network, that unit scales it by a certain factor before 

sending it on to the next unit. This takes place every time the 

gradient is sent back through an individual unit of a neural 

network. In essentially all of the practically meaningful 

possibilities that may be evaluated, this factor is either more 

than one or less than one. Because of this, the gradient rapidly 

increases or decreases over time in a recurrent neural network. 

(From the perspective of language modeling, time steps are 

analogous to different places that words occupy in a phrase.) 

Therefore, the gradient either comes to dominate the 

subsequent stage in the weight adaptation process or 
essentially disappears. To circumvent this scaling effect, the 

authors of the study redesigned the unit that makes up a neural 

network (NN) in such a manner that the scaling factor that 

corresponds to it is always set to one. The new unit type that 

is produced as a result of achieving this design aim has fairly 

restricted capabilities when it comes to learning [28]. As a 

consequence, the unit was improved by adding several gating 

units. The completed device can be shown in Figure 1, where 

we have included two changes to the LSTM unit that were 

first presented in [29] and [30]. 

 
Fig. 1  LSTM memory cell with gating units [31]. 

�� � �����ℎ�
�, �� � �� 

�� � �����ℎ�
�, �� �  �� 

�� � �����ℎ�
�, �� �  �� 

(1) 

To further explain the formula, �� stands for the input gate, 

��  stands for the forget gate, �� stands for the output gate, � 

stands for the sigmoid function, �� stands for the weight of 

the representative x gate, ℎ�
�  stands for the output of the 

previous LSTM block, �  stands for input at a current 

timestamp, and �� stands for the basis of the respective gate 

x. 

When a ���ℎ activation function is utilized, a CNN unit I 

only has two components: the input activation ��  and the 

output activation ��. These two components are connected in 

the following ways: 

�� � tanh ���  (2) 

The LSTM unit includes the following additional 

intermediate steps: After the application of the activation 

function to ai, the resulting value is then multiplied by a factor 

named b. Then, being self-connected, the inner activation 

value at the previous step influences the summation which is 

a result of bφ multiplication. After that, the output is 

multiplied by b and then input into yet another activation 

function, which ultimately produces �� . The extra units 
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displayed as blue circles and referred to as input, output, and 

forget gate, respectively, are responsible for controlling the 

components �!, �", �# ∈ (0, 1), which are represented by the 

little white circles. The gating units sum up the activations 

from the previous hidden layer and the activations from the 

current layer at the previous time step, along with the inner 

activation of the LSTM unit, before incorporating them into 

the overall output. After applying a logistic sigmoid function, 

the final number is squashed, and the function's output is 

either �!, �", �% �#, depending on the case. For brevity's sake, 

we will not go into the relatively lengthy equations that 

describe the LSTM network. These examples can be found, in 

[32]. Figure 2 shows our proposed model. 

 
Fig. 2  Proposed LSTM architecture 

 

One possible interpretation of the whole LSTM unit, 

including the gating units, is that it is a differentiable kind of 

computer memory. Because of this, LSTM units are often 

referred to as LSTM memory cells in addition to their more 

common name. The vanishing gradient issue can be solved 

using the LSTM design for just a minor increase in the 

computing costs, and this is true regardless of whether or not 

one accepts the suggested interpretation of the gating units. In 
addition to this, it has the advantageous quality of being able 

to accommodate regular recurrent NN units as a special case.  

III. RESULT AND DISCUSSION 

Task accomplishment of LSTM has relied on the sequence 

or fed used to input and output the system. To attain an 

effective performance, the perfect training set is required that 

consists of 10 different kinds of typical faults occurring 

respectively at 10 usual positions of the transmission line to 
be analyzed. This is how a simple outcome can be 

accomplished. Due to all those concerns, there were created 

by the team as many as a hundred single incident scenarios 

for the construction of both the 10 primary and less typical 

groups of failures. The current inserted to define fault 

behavior now starts with a number of potential faults across 

multiple real-time scenarios. It entails identifying the type of 

problem that occurs at the defective phases, and the range of 

the problem along the EPTN. 

In essence, this experiment aimed to determine the many 

types of electrical faults that may occur inside a power 
transmission system. The LSTM model that is being used has 

undergone training by making use of a dataset with four 

sensors that have been strategically positioned to capture the 

data from the current and the voltage of the power 

transmission system. As shown in Table 1, the collected 

findings demonstrate that LSTM has surpassed all of the other 

classifiers discussed in the section under Related Work. Table 

1 shows our obtained results using the same dataset used in 

[17] with ANN. We can see clearly how the proposed LSTM 

model had far outperformed the ANN and CNN models. 

TABLE I 

THE RESULTS OF THE TESTED MODELS 

Model Accuracy Loss Precision Recall F1-score 

ANN 93.55 - 50.27 44.28 46.81 

CNN 94.60 - 95.13 94.77 94.95 

LSTM 99.65 1.17 99.63 99.65 99.646 

 
An alternative way of determining how well a trained NN 

performed is to plot the confusion matrices for the various 

kinds of errors that were made by the neural network. This 

step is done as part of the evaluation process. Figure 3 

presents the confusion matrix for the three phases of the 

LSTM classifier's development: training, testing, and 

validation. 

 
Fig. 3  Confusion Matrix 

 

The confusion matrix compares results to predicted labels, 
with 0 indicating no faults and 1 denoting faults. The NN 

picked has almost one hundred percent accuracy in 

identifying faults. The graphs for accuracy and loss during 

testing and training are shown in Figure 4. As can be seen 

from the plots in Figure 4, the selected LSTM has performed 

quite well, as seen by the fact that there is almost no 

overfitting, which is a sign of successful outcomes. Figure 4 

(a) resamples the accuracy curve for training and testing over 

one hundred epochs to show that the accuracy went up to near 

95 percent in just the 10th epoch and kept a steady and stable 

performance over the next 90 epochs after that. This graph is 
a resampling of the original graph that was shown on the left. 

The error rate of the LSTM has decreased from 60 percent to 

5 percent in the 15th epoch and has continued to go lower to 

reach 1.17 percent over the next 85 epochs. The plot of Figure 

4 (b) illustrates the loss or errors of the model, which are the 

rows that were classified incorrectly. 
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(a) accuracy 

 
(b) loss 

Fig. 4  The result plots of the LSTM model 

 
This shows that the LSTM error rate has decreased 

significantly. Our study has made one step toward developing 

LSTM-based fault detection in power transmission systems. 

However, the largest are still needed for improvement of the 

accuracy and efficiency of these approaches for ensuring the 

stability and reliability of the power grid. These future 

engagements may provide alongside the improvement of the 

system’s overall efficiency and dependability, which can, in 

the end, be beneficial for both utility providers and the end-

user. 

IV. CONCLUSION 

The study explored both defect detection and classification 

in a three-phase transmission lines system as its primary focus, 

with recurrent neural networks and its typical Long Short-

Term Memory (LSTM) networks being the tool of choice. We 

simulated three-phase power grid faults as either changes in 

voltage or current, which were then combined into the LSTM 

network and normalized using the pre-developed method to 

accurately detect line-to-ground faults, which is crucial in the 
power transmission systems. The proposed LSTM model has 

attained an accuracy of 99.65 percent with an error rate of just 

1.17 percent and outperforms NN and CNN models. On the 

other hand, the findings of our study also indicate the need for 

the extension of the research to include the other fault types 

like line-line faults, double-line-to-ground faults, and 

symmetrical three-phase faults which would eventually 

enable the future study and development of the energy sector. 

In the scope of the research, the LSTM model proved to be a 

promising structure because of the ability to simultaneously 

store and exploit large volumes of data while the accuracy of 

the localization was the outstanding feature of the model. The 

support for this claim is the results of comparing the method 

with the other methods illustrated in the related literature, 

where our approach consistently performed better than the 

uncompetitive techniques. In the future, research could be 

directed towards expanding the scope of LSTM models to 

accommodate a wider spectrum of fault types. Thus, the 

system’s efficiency would be significantly enhanced, and the 
system could be integrated with other existing technologies. 

Along with this, the works could be prioritized on clarifying 

the normalization mechanism and tuning the model 

parameters that are used for detection to increase the accuracy 

and speed. Besides, thorough information fusion technologies 

like integrating data from multiple sensors or sources would 

become the crucial element for superior fault performance and 

practicability in real-world scenarios. Moreover, assessing the 

feasibility of linking the LSTM-based fault detection systems 

with current technologies, including edge computing and 

Internet devices of Things (IoTs), may lead to the 
development of real-time monitoring and decision-making 

systems that will also enhance the reliability and resilience of 

the grid. Another aspect of technology transfer is an industry 

that put together field testing and validation trials that would 

inform on the practicality of the steps and the possibility of 

scaling up the process. 
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