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Abstract— In the Transport layer, there are two types of Internet Protocol are worked, namely- Transmission Control Protocol (TCP) 

and User datagram protocol (UDP). TCP provides connection-oriented service and it can handle congestion control, flow control, and 

error detection whereas UDP does not provide any of service. TCP has several congestion control mechanisms such as TCP Reno, 

TCP Vegas, TCP New Reno, TCP Tahoe, etc. In this paper, we have focused on the behavior performance between TCP Reno and 

TCP Vegas, TCP New Reno over TCP Reno, when they share the same bottleneck link at the router. For instigating this situation, we 

used drop-tail and RED algorithm at the router and used NS-2 simulator for simulation. From the simulation results, we have 

observed that the performance of TCP Reno and TCP Vegas is different in two cases. In drop tail algorithm, TCP Reno achieves 

better Performance and throughput and act more an aggressive than Vegas. In Random Early Detection (RED) algorithm, both of 

congestion control mechanism provides better fair service when they coexist at the same link. TCP NewReno provides better 

performance than TCP Reno. 
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I. INTRODUCTION 

There are two internet protocol are used in networking 

system namely: UDP and TCP. The protocol defines the 

collection of rules associated with the communication 

system. By using the protocol, data moves one host to 

another host.  The protocol contains three types of 

characteristics like- Syntax, semantics, and timing. The 

transmission control protocol (TCP) defines a set of rules 

which used to send data in the form of bit streams between 

host/device over the Internet. TCP is a connection-oriented 

protocol, means before delivery of data TCP establish the 

handshaking procedure.  Handshaking procedure defines 

when the sender sends data to the receiver or receiver 

receive data from the sender, they both of gets 

acknowledgment from both sides.  TCP provides reliable 

data transfer, congestion and flow control, and error 

detection whereas UDP does not provide all of the services 

because UDP is a connectionless protocol. TCP ensures a 

long message is divided into the small packets and reunite 

the packets into the complete message at the receiver side. 

Congestion-control mechanism occurs in the network layer, 

it means there is more data in a queue when they are ready to 

send. If the sending rate and receiving rate is not equal in the 

network, then congestion occurs. To overcome this problem, 

we used the Flow control mechanism, means controls the 

sending and receiving transmission rate when congestion 

occurs in the network. In this paper, we have evaluated the 

performance of congestion-control mechanisms such as TCP 

Reno and TCP Vegas when they coexist at the same link and 

TCP New Reno over TCP Reno. Fairness defines sharing the 

bandwidth equally when they exist at the same link. To 

describe our simulation, we have to know some term related 

to network systems like- Throughput, propagation delay and 

Round-Trip time and window size. Throughput or network 

throughput defines the average rate of message delivery over 

a physical or logical link. The unit of throughput is measured 

in bits per second (bps). Propagation delay is the time 

required to propagate from one router to another router 

which is separated by the propagation speed. The formula of 

propagation delay is d/s, where d is the distance of two 

routers and s is the propagation speed of the link. The round-

trip time is the travel time which means a bit takes time for 

visiting a   sending device to a receiving device and then 

back again to the sending device on the same network, 

which is recognized as Round-Trip-Propagation delay 

(RTPD). Window-size defines the total amount of data 

which will be received before the acknowledgment. This 

sliding window is dynamically changeable. From the 

previous paper analysis, there are several related papers 

exists which explained about the fairness between TCP Reno 

and Vegas. 



276 

 

II. LITERATURE REVIEW 

We have studied related paper on Fairness of TCP 

congestion control. KM. Avni Yadav et al. was used additive 

increase and multiplicative decrease (AIMD) algorithm for 

controlling TCP congestion. In this paper, they 

recommended a new Tax based AIMD method for TCP 

Congestion Control. This paper showed a comparison of a 

different queue management algorithm. From the 

comparison, it's showed that TAX AIMD algorithms provide 

better performance than other algorithms [1]. Dharamdas 

Kumar et al.  was proposed an Active Queue Management 

(AQM) algorithm for evaluating performance as well as 

optimal (minimum) queue length in network congestion 

control.  This method provides higher control in congestion 

control [2]. Domanski, Adam, et al. was used fluid flow 

approximation to investigate the performance of the TCP 

NewReno and Vegas congestion control mechanisms on 

CWND evolution, packet loss probability, queue length, and 

its variability. In this method, TCP Vegas provide fair 

service than Reno [3]. There is another paper which presents 

a comparison of TCP variants for Congestion Control in the 

network. They considered the basis of various performance 

metrics such as end-to-end wait, throughput, and queue 

dimension and packet delay rate using Network Simulator-2 

(NS-2). In high congested network, Vegas gives the best 

performance and in the low cohesive network, Reno gives 

the best result [4]. Zhou, Liu Wenjia, et al. was introduced a 

modification approach called DYNAMIC Vegas which 

adopt the slow start algorithm and modifies the increase or 

decrease rate in congestion avoidance phase [5]. In this 

paper an analytic model [6] for the throughput of TCP 

NewReno is described that builds upon the well known Reno 

model. This paper used three important ways to differentiate 

NewReno from Reno.They are fast-recovery algorithm, 

timeout behavior- timeout during fast-recovery is also 

considered, and two-parameter loss model- considers both 

the loss event rate and burstiness of segment losses. There 

are lots of paper we studied [8]-[12], where TCP congestion 

control and their performance described. 

III. OVERVIEW OF DROP-TAIL AND RED 

In TCP Reno, the window size is increased when packet loss 

occurs at the buffer. In sender side TCP, it takes 1 RTT 

(round trip time) [sec] to detect the packet loss at the router 

buffer. In TCP Vegas connections, the window size is 

controlled by RTTs of the sending packets and the number 

of buffered packets remain in the router buffer from  

[packets]. In TCP Vegas connections, the window size is 

decreased when the RTTs became larger and also reduced 

the throughput of the connection. If we controlled the 

window size, then packet loss doesn't occur in the 

connection. In TCP Reno connections, the window size is 

increased when the RTTs became larger. In TCP Vegas, the 

window size is updated by applying the congestion 

avoidance formula: 

                (1)        

          

Therefore, the total window size,  the average value 

of   of the TCP Vegas connections are 

achieved by using the formula [7]: 
 

                                                  (2)     

                                                                        (3) 
 

In TCP Reno connections, the total window 

size,  is obtained as follows [7]: 

                                                           (4) 
 

In TCP Reno, the window size is updated by applying the 

congestion avoidance formula: 
 

 

    (5)   

 

The probability of the packet loss for each connection is 

proportional to its window size. In buffer overflow of the 

network, the numbers of packet losses of TCP 

Reno,  and Vegas connections  , 

are obtained as follows [7]: 
 

                                                          (6) 

 

                                                             (7) 

 

After the buffer overflow, we can obtain the total window 

size of the TCP Reno connections by using the below 

formula [7]: 
 
 

( )                                            (8)       

         

         

         

         

         

                                                                       (9) 

 

Finally, the average value of the total window size,  of 

TCP Reno connections [7]: 

 

                                       (10) 

 

Now, the average number of packets at the router buffer of 

TCP Reno and TCP Vegas, 

                                                     (11) 
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Finally, the average throughput of the connections of TCP 

Reno and TCP Vegas can be calculated as follows [7] 
 

                    

 

  
In the RED algorithm, the probability p is used for all packet 

losses when buffer overflow free. Each connection can send 

1/p packets in one cycle on the average. For one cycle, the 

number of packets transmission is 
 

p
N P

1
=

 
 

Here, retransmission timeout expiration and fast retransmit 

algorithm are used to detect the packet loss based on the 

window size. In retransmission timeout expiration, 

throughput remains large. We can calculate the probability 

of occurring timeout expiration in the window by [8] 
 

                                      (15)   

 

 If retransmission timeout expiration occurs, the window size 

is reset to 1 [packet] and the slow start is updated 

by . So, the time duration of the slow start 

phase,  [7] 
 

                                                              (16) 

The number of packets,  transmitted in the 

slow start phase as follows [7]:  
 

                                                                    (17)    
          
In the congestion avoidance phase, the window size is 

increased by 1 [packet] per RTT [sec] and the time 

duration,  is [7]: 

        

 

The number of transmitted packets,  in the 

congestion avoidance phase, is: 
 

              
 

 

In the slow start phase, the time durations,  and the 

number of transmitted packets is zero. In the 

congestion avoidance phase, the time durations and the 

number of transmitted packets is [7], 
 

                 

                    

                

Finally, the number of transmitted packets in one cycle and 

window size, can be calculated by using the formula [7]:      

 

= (23)         

 

The total window size of all TCP Reno connections; 
 

                                                             (24)       
 

Finally, and in the RED case is similar to the drop-tail 

case.  
 

TABLE I 

DESCRIPTION OF PARAMETERS 

Parameter Definition 

α ,β Parameters for controlling the change 

of cwnd 

µ Bandwidth of the bottleneck link 

 

Total propagation delay 

B Buffer size 

rto [sec] Retransmission timeout value of the 

connection. 

rtt [sec]   Mean value of RTT of sending packet 

 

Sender hosts of TCP Reno 

 

Sender hosts of TCP Vegas 
 

IV. PROPOSED NETWORK MODEL AND SIMULATION RESULTS 

For TCP Reno and TCP Vegas: 

In the simulation, a simple dumbbell network topology is 

used where TCP Reno and TCP Vegas connections coexist 

at the same bottleneck link. We used the bandwidth of 

access link between S1 to R1 is 2Mb and propagation delay 

is 10ms. The bandwidth of access link between S2 to R1 is 

2Mb and propagation delay is 10ms and so on. The 

bandwidth of bottleneck link is 0.3Mb and the propagation 

delay is 200ms. The bottleneck capacity is 10 packets. For 

the RED queue management, the minthresh and maxthresh 

are set to 5[packets] and 0.6[packets]. The advertised 

window size by the receiver is 8000bytes. The packet size is 

552 byte. To compare the fairness between TCP Reno and 

Vegas, drop-tail and RED algorithms are used at the router. 

The dumbbell topology which considers for implementation 

is shown below: 

 
Fig. 1 Proposed Dumbbell topology 

 

For TCP NewReno over TCP Reno: 

The simulation is done for both single and multiple 

bottleneck-link. In the case of single bottleneck-link, two 

types of queue management mechanisms are used- DropTail 

and RED. All experiments have two long-duration flows: 

one NewReno flow and one Reno flow. Here three TCP 

sources and one UDP source are used. The bottleneck 

bandwidths vary from 0.7Mbps to 2Mbps. Here two types of 

traffic flows are used- FTP and constant bit rate UDP flows. 

The propagation delays vary from 1ms to 20ms. For RED 
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queue management, the minthresh and the maxthresh are set 

to 1/10 and 3/10 of the corresponding queue size limit. The 

maximum congestion window size is 8KB and packet size is 

0.5KB. The UDP flow uses a rate of 0.01Mbps, the packet 

size is 1KB, and the propagation delay is 7ms. The FTP 

flows start at uniformly distributed times between 0 and 7 

seconds. 
 

 
Fig. 2 A dumbbell topology for single bottleneck link 

 

 
Fig. 3 Dumbbell topology for multiple bottleneck link 

 

A.  Effect of drop-tail 
 

In TCP Vegas, the window size is converged to the fixed 

value and no packet loss occurs. It is different from TCP 

Reno in which the packet loss is necessary to invoke the 

congestion control. Comparison between congestion window 

of TCP Reno and TCP Vegas is shown in figure 1. Figure 

4(a) and 4(b) shows that the time-dependent behavior of the 

window size of TCP Reno and TCP Vegas. 

 
Fig. 4(a) The change of window size of TCP Reno 

 

 
Fig. 4(b) The change of window size of TCP Vegas 

 
In TCP Vegas, the window size is met to the fixed value 

and no packet loss occurs. It is different from TCP Reno in 

which the packet loss is necessary to invoke the congestion 

control which is shown in figure 4(a). 

 
 

Fig. 5 Comparing the congestion window of TCP Reno and TCP Vegas 

 

To investigate fairness between two connections, we 

mainly focus on changes of the congestion window. Figure 5 

shows that TCP Vegas changes its congestion window 

according to RTT whereas TCP Reno does not depend on 

RTT. TCP Reno increases its congestion window until it 

detects any loss and it has an ability to keep a fair service 

among connections, on the other hand, TCP Vegas can 

change congestion window before any loss occur, by 

observing RTT of sending packets. TCP Vegas cannot 

achieve fairness between connections because of the 

difference of base RTT of two connections. When 

connection 2 joins the network, the switch buffer is occupied 

by several segments of connection 1. Thus, base RTT of 

connection 2 includes some buffering delay at the switch and 

it becomes larger than that of connection 1. Therefore, the 

window size of connection 2/TCP Vegas becomes lower to 

satisfy the equation (7). 
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Fig. 6: Comparing the buffer occupancy of TCP Reno and TCP Vegas 

 
Fig. 7 Comparisons of average throughput of TCP Reno and TCP Vegas 

 

Figures 6 and 7 show that the buffer occupancy of the 

TCP Reno connections and TCP Vegas connections and the 

average throughput of two versions of TCP. From the above 

figures, we can say that when TCP Reno and TCP Vegas 

connections share the bottleneck link, TCP Reno connection 

occupies the link bandwidth. Then, TCP Vegas connection 

suffers from significant performance dilapidation and low 

throughput compared with TCP Reno connection because of 

the difference of buffer occupancy at the router. TCP Vegas 

does not provide fair service when the buffer size is too 

small,  because the window size of TCP Vegas connection is 

fixed and cannot increase their window size larger than β 

whereas TCP Reno connections increase their window size 

until the buffer becomes full and packet loss occurs. 

TCP Vegas increases its window size conservatively, 

which means that if RTT becomes large, it decreases the 

window size. On the other hand, TCP Reno increases the 

window size aggressively until a packet is lost. 

 
For TCP NewReno and TCP Reno: 

In case of Drop Tail queue router, a single bottleneck link 

is used that has 0.7Mbps bandwidth, buffer limit is of 20 

packets. The congestion window is of 8KB, the roundtrip 

propagation delay for each TCP flow is 20ms. In this 

simulation process, the change of congestion window size 

over time is graphically shown in figure 8 and 9. 

 
Fig. 8 Congestion window change in NewReno 

 
Fig. 9 Congestion window change in Reno 

 

From the above figures, it is shown that the Reno needs 

more multiple reductions of the congestion window than the 

NewReno because of its multiple entries. The figure given 

below shows the throughput obtained in Reno and NewReno. 

 
Fig. 10 Throughput change over time 

 

From the above figure, it obtained that in case of the 

DropTail queue management the throughput of TCP 

NewReno is about 15%-25% higher than the Reno. The 

packet loss against time during data transmission is shown in 

the below figure- 
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Fig. 11 Packet loss rate with time. 

From the simulation result, we obtain that the NewReno 

suffers from 2%-3% less loss rate than the Reno model. 

B. Effect of Random Early Detection 
 

RED uses a probability for dropping packets. Packets 

losses occur when buffer overflow is created. Comparison 

between the congestion window of TCP Reno and TCP 

Vegas are shown in figure 12. 

 
Fig. 12 Comparing the congestion window of TCP Reno and TCP Vegas 

 

From this figure, we can see that, TCP Reno connection 

cannot expand their window sizes until the router buffer 

become fully-utilized, since packet losses occur before the 

buffer becomes full, which is caused by the RED algorithm. 

Figure 13 and 14 shows that the buffer occupancy of the 

TCP Reno connections and TCP Vegas connections and the 

average throughput of two versions of TCP.  

 
Fig. 13 Comparing the buffer occupancy of TCP Reno and TCP Vegas 

 
    Fig. 14 Comparisons of average throughput of TCP Reno and TCP Vegas 

 

When the RED algorithm is used in the router buffer the 

buffer occupancy of TCP Reno connections is weakened 

which decreases the difference of the throughput of the TCP 

Reno and TCP Vegas connections.  

 
For TCP NewReno over TCP Reno: 

With RED queue the bottleneck link has the bandwidth of 

2Mbps, propagation delay is 1ms, buffer limit is of 50 

packets, the minthresh is set to 5, maxthresh is 15, and 

congestion window size is 2KB. Here 25 flows are used with 

per TCP source. The congestion window changes over time 

during this session are shown in figure 15 and 16: 

 
Fig. 15 Congestion window change in NewReno 

 
Fig. 16 Congestion window change in Reno 

 

Comparison of throughput changes over time between 

these two models has shown in figure 17: 
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Fig. 17 Throughput change over time 

 

From the simulation, it is found that TCP NewReno 

provides 10%-15% higher throughput than the Reno. The 

loss rate scenarios are shown below- 

 
Fig. 18  Packet loss rate with time 

 

The simulation result shows that Reno suffers from 20%-

25% more losses than NewReno. 

 

Multiple Bottleneck 

Now the experiment is conducted with two bottleneck 

links connected in series. Each link has a bandwidth of 

0.3Mbps, propagation delay 20ms, and buffer size is 10 

packets. The congestion window size is 8KB and packet size 

is 552bytes. The queue management algorithm is DropTail. 

The throughput change for each model with time is shown in 

figure 19- 

 
Fig. 19 Throughput change over time 

 
In case of multiple bottlenecks, TCP NewReno provides 

10%-11% more throughput than TCP Reno. In figure 10 loss 

rates for these two model with multiple bottlenecks are 

shown 

 
Fig. 20 Packet loss rate with time 

 

From the simulation results, it is found that Reno suffers 

from 20%-25% losses than New Reno 

V. CONCLUSIONS 

In this paper, we described the TCP congestion control 

mechanism like TCP Reno and TCP Vegas; TCP NewReno 

and TCP Reno on based their window size, buffer occupancy, 

average throughput and loss of the packet. From the 

simulation results, it is derived that the TCP Vegas does not 

provide better performance with drop-tail because of the 

difference of buffer occupancy of the router buffer. But in 

the case of the RED algorithm, they provide better 

performance.  In the simulation, the performance of TCP 

NewReno and TCP Reno are also compared using ns-2 

simulator. The performance is evaluated in case of single 

and multiple bottleneck links, and two queue management 

mechanisms- DropTail and RED. The results from the 

simulation illustrate the significant performance advantages 

of NewReno over Reno. The simulation results indicate that 

TCP NewReno is more advantageous than TCP Reno, as the 

later one suffers from more losses and gives lower 

throughput between the two. 
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