
275

Performance Evaluation of TCP Vegas over TCP Reno and

TCP New Reno over TCP Reno

Tanjia Chowdhury#, Mohammad Jahangir Alam#

Department of Computer Science and IT, Southern University Bangladesh, Bangladesh
E-mail: tanjiacse5@gmail.com, jahangir@southern.edu.bd

Abstract— In the Transport layer, there are two types of Internet Protocol are worked, namely- Transmission Control Protocol (TCP)

and User datagram protocol (UDP). TCP provides connection-oriented service and it can handle congestion control, flow control, and

error detection whereas UDP does not provide any of service. TCP has several congestion control mechanisms such as TCP Reno,

TCP Vegas, TCP New Reno, TCP Tahoe, etc. In this paper, we have focused on the behavior performance between TCP Reno and

TCP Vegas, TCP New Reno over TCP Reno, when they share the same bottleneck link at the router. For instigating this situation, we

used drop-tail and RED algorithm at the router and used NS-2 simulator for simulation. From the simulation results, we have

observed that the performance of TCP Reno and TCP Vegas is different in two cases. In drop tail algorithm, TCP Reno achieves

better Performance and throughput and act more an aggressive than Vegas. In Random Early Detection (RED) algorithm, both of

congestion control mechanism provides better fair service when they coexist at the same link. TCP NewReno provides better

performance than TCP Reno.

Keywords— Drop-tail algorithm, Fairness, RED, TCP Congestion control.

I. INTRODUCTION

There are two internet protocol are used in networking

system namely: UDP and TCP. The protocol defines the

collection of rules associated with the communication

system. By using the protocol, data moves one host to

another host. The protocol contains three types of

characteristics like- Syntax, semantics, and timing. The

transmission control protocol (TCP) defines a set of rules

which used to send data in the form of bit streams between

host/device over the Internet. TCP is a connection-oriented

protocol, means before delivery of data TCP establish the

handshaking procedure. Handshaking procedure defines

when the sender sends data to the receiver or receiver

receive data from the sender, they both of gets

acknowledgment from both sides. TCP provides reliable

data transfer, congestion and flow control, and error

detection whereas UDP does not provide all of the services

because UDP is a connectionless protocol. TCP ensures a

long message is divided into the small packets and reunite

the packets into the complete message at the receiver side.

Congestion-control mechanism occurs in the network layer,

it means there is more data in a queue when they are ready to

send. If the sending rate and receiving rate is not equal in the

network, then congestion occurs. To overcome this problem,

we used the Flow control mechanism, means controls the

sending and receiving transmission rate when congestion

occurs in the network. In this paper, we have evaluated the

performance of congestion-control mechanisms such as TCP

Reno and TCP Vegas when they coexist at the same link and

TCP New Reno over TCP Reno. Fairness defines sharing the

bandwidth equally when they exist at the same link. To

describe our simulation, we have to know some term related

to network systems like- Throughput, propagation delay and

Round-Trip time and window size. Throughput or network

throughput defines the average rate of message delivery over

a physical or logical link. The unit of throughput is measured

in bits per second (bps). Propagation delay is the time

required to propagate from one router to another router

which is separated by the propagation speed. The formula of

propagation delay is d/s, where d is the distance of two

routers and s is the propagation speed of the link. The round-

trip time is the travel time which means a bit takes time for

visiting a sending device to a receiving device and then

back again to the sending device on the same network,

which is recognized as Round-Trip-Propagation delay

(RTPD). Window-size defines the total amount of data

which will be received before the acknowledgment. This

sliding window is dynamically changeable. From the

previous paper analysis, there are several related papers

exists which explained about the fairness between TCP Reno

and Vegas.

276

II. LITERATURE REVIEW

We have studied related paper on Fairness of TCP

congestion control. KM. Avni Yadav et al. was used additive

increase and multiplicative decrease (AIMD) algorithm for

controlling TCP congestion. In this paper, they

recommended a new Tax based AIMD method for TCP

Congestion Control. This paper showed a comparison of a

different queue management algorithm. From the

comparison, it's showed that TAX AIMD algorithms provide

better performance than other algorithms [1]. Dharamdas

Kumar et al. was proposed an Active Queue Management

(AQM) algorithm for evaluating performance as well as

optimal (minimum) queue length in network congestion

control. This method provides higher control in congestion

control [2]. Domanski, Adam, et al. was used fluid flow

approximation to investigate the performance of the TCP

NewReno and Vegas congestion control mechanisms on

CWND evolution, packet loss probability, queue length, and

its variability. In this method, TCP Vegas provide fair

service than Reno [3]. There is another paper which presents

a comparison of TCP variants for Congestion Control in the

network. They considered the basis of various performance

metrics such as end-to-end wait, throughput, and queue

dimension and packet delay rate using Network Simulator-2

(NS-2). In high congested network, Vegas gives the best

performance and in the low cohesive network, Reno gives

the best result [4]. Zhou, Liu Wenjia, et al. was introduced a

modification approach called DYNAMIC Vegas which

adopt the slow start algorithm and modifies the increase or

decrease rate in congestion avoidance phase [5]. In this

paper an analytic model [6] for the throughput of TCP

NewReno is described that builds upon the well known Reno

model. This paper used three important ways to differentiate

NewReno from Reno.They are fast-recovery algorithm,

timeout behavior- timeout during fast-recovery is also

considered, and two-parameter loss model- considers both

the loss event rate and burstiness of segment losses. There

are lots of paper we studied [8]-[12], where TCP congestion

control and their performance described.

III. OVERVIEW OF DROP-TAIL AND RED

In TCP Reno, the window size is increased when packet loss

occurs at the buffer. In sender side TCP, it takes 1 RTT

(round trip time) [sec] to detect the packet loss at the router

buffer. In TCP Vegas connections, the window size is

controlled by RTTs of the sending packets and the number

of buffered packets remain in the router buffer from

[packets]. In TCP Vegas connections, the window size is

decreased when the RTTs became larger and also reduced

the throughput of the connection. If we controlled the

window size, then packet loss doesn't occur in the

connection. In TCP Reno connections, the window size is

increased when the RTTs became larger. In TCP Vegas, the

window size is updated by applying the congestion

avoidance formula:

 (1)

Therefore, the total window size, the average value

of of the TCP Vegas connections are

achieved by using the formula [7]:

 (2)

 (3)

In TCP Reno connections, the total window

size, is obtained as follows [7]:

 (4)

In TCP Reno, the window size is updated by applying the

congestion avoidance formula:

 (5)

The probability of the packet loss for each connection is

proportional to its window size. In buffer overflow of the

network, the numbers of packet losses of TCP

Reno, and Vegas connections ,

are obtained as follows [7]:

 (6)

 (7)

After the buffer overflow, we can obtain the total window

size of the TCP Reno connections by using the below

formula [7]:

() (8)

 (9)

Finally, the average value of the total window size, of

TCP Reno connections [7]:

 (10)

Now, the average number of packets at the router buffer of

TCP Reno and TCP Vegas,

 (11)

277

Finally, the average throughput of the connections of TCP

Reno and TCP Vegas can be calculated as follows [7]

In the RED algorithm, the probability p is used for all packet

losses when buffer overflow free. Each connection can send

1/p packets in one cycle on the average. For one cycle, the

number of packets transmission is

p
N P

1
=

Here, retransmission timeout expiration and fast retransmit

algorithm are used to detect the packet loss based on the

window size. In retransmission timeout expiration,

throughput remains large. We can calculate the probability

of occurring timeout expiration in the window by [8]

 (15)

 If retransmission timeout expiration occurs, the window size

is reset to 1 [packet] and the slow start is updated

by . So, the time duration of the slow start

phase, [7]

 (16)

The number of packets, transmitted in the

slow start phase as follows [7]:

 (17)

In the congestion avoidance phase, the window size is

increased by 1 [packet] per RTT [sec] and the time

duration, is [7]:

The number of transmitted packets, in the

congestion avoidance phase, is:

In the slow start phase, the time durations, and the

number of transmitted packets is zero. In the

congestion avoidance phase, the time durations and the

number of transmitted packets is [7],

Finally, the number of transmitted packets in one cycle and

window size, can be calculated by using the formula [7]:

= (23)

The total window size of all TCP Reno connections;

 (24)

Finally, and in the RED case is similar to the drop-tail

case.

TABLE I

DESCRIPTION OF PARAMETERS

Parameter Definition

α ,β Parameters for controlling the change

of cwnd

µ Bandwidth of the bottleneck link

Total propagation delay

B Buffer size

rto [sec] Retransmission timeout value of the

connection.

rtt [sec] Mean value of RTT of sending packet

Sender hosts of TCP Reno

Sender hosts of TCP Vegas

IV. PROPOSED NETWORK MODEL AND SIMULATION RESULTS

For TCP Reno and TCP Vegas:

In the simulation, a simple dumbbell network topology is

used where TCP Reno and TCP Vegas connections coexist

at the same bottleneck link. We used the bandwidth of

access link between S1 to R1 is 2Mb and propagation delay

is 10ms. The bandwidth of access link between S2 to R1 is

2Mb and propagation delay is 10ms and so on. The

bandwidth of bottleneck link is 0.3Mb and the propagation

delay is 200ms. The bottleneck capacity is 10 packets. For

the RED queue management, the minthresh and maxthresh

are set to 5[packets] and 0.6[packets]. The advertised

window size by the receiver is 8000bytes. The packet size is

552 byte. To compare the fairness between TCP Reno and

Vegas, drop-tail and RED algorithms are used at the router.

The dumbbell topology which considers for implementation

is shown below:

Fig. 1 Proposed Dumbbell topology

For TCP NewReno over TCP Reno:

The simulation is done for both single and multiple

bottleneck-link. In the case of single bottleneck-link, two

types of queue management mechanisms are used- DropTail

and RED. All experiments have two long-duration flows:

one NewReno flow and one Reno flow. Here three TCP

sources and one UDP source are used. The bottleneck

bandwidths vary from 0.7Mbps to 2Mbps. Here two types of

traffic flows are used- FTP and constant bit rate UDP flows.

The propagation delays vary from 1ms to 20ms. For RED

278

queue management, the minthresh and the maxthresh are set

to 1/10 and 3/10 of the corresponding queue size limit. The

maximum congestion window size is 8KB and packet size is

0.5KB. The UDP flow uses a rate of 0.01Mbps, the packet

size is 1KB, and the propagation delay is 7ms. The FTP

flows start at uniformly distributed times between 0 and 7

seconds.

Fig. 2 A dumbbell topology for single bottleneck link

Fig. 3 Dumbbell topology for multiple bottleneck link

A. Effect of drop-tail

In TCP Vegas, the window size is converged to the fixed

value and no packet loss occurs. It is different from TCP

Reno in which the packet loss is necessary to invoke the

congestion control. Comparison between congestion window

of TCP Reno and TCP Vegas is shown in figure 1. Figure

4(a) and 4(b) shows that the time-dependent behavior of the

window size of TCP Reno and TCP Vegas.

Fig. 4(a) The change of window size of TCP Reno

Fig. 4(b) The change of window size of TCP Vegas

In TCP Vegas, the window size is met to the fixed value

and no packet loss occurs. It is different from TCP Reno in

which the packet loss is necessary to invoke the congestion

control which is shown in figure 4(a).

Fig. 5 Comparing the congestion window of TCP Reno and TCP Vegas

To investigate fairness between two connections, we

mainly focus on changes of the congestion window. Figure 5

shows that TCP Vegas changes its congestion window

according to RTT whereas TCP Reno does not depend on

RTT. TCP Reno increases its congestion window until it

detects any loss and it has an ability to keep a fair service

among connections, on the other hand, TCP Vegas can

change congestion window before any loss occur, by

observing RTT of sending packets. TCP Vegas cannot

achieve fairness between connections because of the

difference of base RTT of two connections. When

connection 2 joins the network, the switch buffer is occupied

by several segments of connection 1. Thus, base RTT of

connection 2 includes some buffering delay at the switch and

it becomes larger than that of connection 1. Therefore, the

window size of connection 2/TCP Vegas becomes lower to

satisfy the equation (7).

279

Fig. 6: Comparing the buffer occupancy of TCP Reno and TCP Vegas

Fig. 7 Comparisons of average throughput of TCP Reno and TCP Vegas

Figures 6 and 7 show that the buffer occupancy of the

TCP Reno connections and TCP Vegas connections and the

average throughput of two versions of TCP. From the above

figures, we can say that when TCP Reno and TCP Vegas

connections share the bottleneck link, TCP Reno connection

occupies the link bandwidth. Then, TCP Vegas connection

suffers from significant performance dilapidation and low

throughput compared with TCP Reno connection because of

the difference of buffer occupancy at the router. TCP Vegas

does not provide fair service when the buffer size is too

small, because the window size of TCP Vegas connection is

fixed and cannot increase their window size larger than β

whereas TCP Reno connections increase their window size

until the buffer becomes full and packet loss occurs.

TCP Vegas increases its window size conservatively,

which means that if RTT becomes large, it decreases the

window size. On the other hand, TCP Reno increases the

window size aggressively until a packet is lost.

For TCP NewReno and TCP Reno:

In case of Drop Tail queue router, a single bottleneck link

is used that has 0.7Mbps bandwidth, buffer limit is of 20

packets. The congestion window is of 8KB, the roundtrip

propagation delay for each TCP flow is 20ms. In this

simulation process, the change of congestion window size

over time is graphically shown in figure 8 and 9.

Fig. 8 Congestion window change in NewReno

Fig. 9 Congestion window change in Reno

From the above figures, it is shown that the Reno needs

more multiple reductions of the congestion window than the

NewReno because of its multiple entries. The figure given

below shows the throughput obtained in Reno and NewReno.

Fig. 10 Throughput change over time

From the above figure, it obtained that in case of the

DropTail queue management the throughput of TCP

NewReno is about 15%-25% higher than the Reno. The

packet loss against time during data transmission is shown in

the below figure-

280

Fig. 11 Packet loss rate with time.

From the simulation result, we obtain that the NewReno

suffers from 2%-3% less loss rate than the Reno model.

B. Effect of Random Early Detection

RED uses a probability for dropping packets. Packets

losses occur when buffer overflow is created. Comparison

between the congestion window of TCP Reno and TCP

Vegas are shown in figure 12.

Fig. 12 Comparing the congestion window of TCP Reno and TCP Vegas

From this figure, we can see that, TCP Reno connection

cannot expand their window sizes until the router buffer

become fully-utilized, since packet losses occur before the

buffer becomes full, which is caused by the RED algorithm.

Figure 13 and 14 shows that the buffer occupancy of the

TCP Reno connections and TCP Vegas connections and the

average throughput of two versions of TCP.

Fig. 13 Comparing the buffer occupancy of TCP Reno and TCP Vegas

 Fig. 14 Comparisons of average throughput of TCP Reno and TCP Vegas

When the RED algorithm is used in the router buffer the

buffer occupancy of TCP Reno connections is weakened

which decreases the difference of the throughput of the TCP

Reno and TCP Vegas connections.

For TCP NewReno over TCP Reno:

With RED queue the bottleneck link has the bandwidth of

2Mbps, propagation delay is 1ms, buffer limit is of 50

packets, the minthresh is set to 5, maxthresh is 15, and

congestion window size is 2KB. Here 25 flows are used with

per TCP source. The congestion window changes over time

during this session are shown in figure 15 and 16:

Fig. 15 Congestion window change in NewReno

Fig. 16 Congestion window change in Reno

Comparison of throughput changes over time between

these two models has shown in figure 17:

281

Fig. 17 Throughput change over time

From the simulation, it is found that TCP NewReno

provides 10%-15% higher throughput than the Reno. The

loss rate scenarios are shown below-

Fig. 18 Packet loss rate with time

The simulation result shows that Reno suffers from 20%-

25% more losses than NewReno.

Multiple Bottleneck

Now the experiment is conducted with two bottleneck

links connected in series. Each link has a bandwidth of

0.3Mbps, propagation delay 20ms, and buffer size is 10

packets. The congestion window size is 8KB and packet size

is 552bytes. The queue management algorithm is DropTail.

The throughput change for each model with time is shown in

figure 19-

Fig. 19 Throughput change over time

In case of multiple bottlenecks, TCP NewReno provides

10%-11% more throughput than TCP Reno. In figure 10 loss

rates for these two model with multiple bottlenecks are

shown

Fig. 20 Packet loss rate with time

From the simulation results, it is found that Reno suffers

from 20%-25% losses than New Reno

V. CONCLUSIONS

In this paper, we described the TCP congestion control

mechanism like TCP Reno and TCP Vegas; TCP NewReno

and TCP Reno on based their window size, buffer occupancy,

average throughput and loss of the packet. From the

simulation results, it is derived that the TCP Vegas does not

provide better performance with drop-tail because of the

difference of buffer occupancy of the router buffer. But in

the case of the RED algorithm, they provide better

performance. In the simulation, the performance of TCP

NewReno and TCP Reno are also compared using ns-2

simulator. The performance is evaluated in case of single

and multiple bottleneck links, and two queue management

mechanisms- DropTail and RED. The results from the

simulation illustrate the significant performance advantages

of NewReno over Reno. The simulation results indicate that

TCP NewReno is more advantageous than TCP Reno, as the

later one suffers from more losses and gives lower

throughput between the two.

REFERENCES

[1] KM. Avni Yadav, DR. Sachin Kumar, “Novel Additive Increase And

Multiplicative Decrease Algorithm For Congestion Control In Tcp,”
International Journal of Pure and Applied Mathematics, vol. 118,

pp1059-1066, 2018

[2] Kumhar, Dharamdas, “Performance Analysis of AQM Algorithms in

Network Congestion Control,” International Journal of Advanced

Research in Computer Science ,vol 8(3), pp.204- 208 ,March – April
2017

[3] Adam Doma´nski, Joanna Doma´nska, Michele Pagano,and Tadeusz

Czach´orski, “The Fluid Flow Approximation of the TCP Vegas and
Reno Congestion Control Mechanism,” ISCIS, pp. 193–200, 2016.

[4] Chaudhary, Pooja, and Sachin Kumar. “A review of comparative

analysis of TCP variants for congestion control in network,”
International Journal of Computer Applications, vol. 160(8), pp. 28 -

34 , February 2017 .

[5] Zhenwei Zhu, Yu Qian, Zhou, and Liu Wenjia,Keren. "Dynamic

Vegas: Efficient Congestion Control Mechanisms," in International

Conference on Information Technology and Computer Science,

Springer India, pp. 333-340,2014.

282

[6] Nadim Parvez, Anirban Mahanti, and Carey Williamson, “An

Analytic Throughput Model for TCP NewReno,” IEEE/ACM

Transactions on Networking, vol. 18, No.2, April 2010.

[7] Kenji Kurata, Go Hasegawa, Masayuki Murata, "Fairness

comparisons between TCP Reno and TCP Vegas for future

deployment of TCP Vegas," in Proceedings of INET, pp-1-9, 2000.

[8] C. Samios and M. Vernon, “Modeling the Throughput of TCP

Vegas,” In Proc. Of ACM SIGMETRICS, San Diego, USA, June

2003.
[9] Khalid Mohamed, Said Hussein and Asad Abdi, Abubakr El

Seddiq ,"Studying the TCP Flow and Congestion Control

Mechanisms Impact on Internet Environment." International Journal
of Computer Science and Information Security (IJCSIS) ,vol. 16, No.

11, pp. 174- 179, November 2018

[10] Mudassar Ahmad, Majid Hussain, Beenish Abbas, Omar Aldabbas,

Uzma Jamil, Rehan Ashraf, Shahla Asadi, "End-to-End Loss Based

TCP Congestion Control Mechanism as a Secured Communication

Technology for Smart Healthcare Enterprises," IEEE Access 6, vol.6,

pp. 11641-11656, 2018

[11] Yesin Sahraoui, Atef Ghanam, Sofiane Zaidi, Salim Bitam,

Abdelhamid Mellouk, "Performance evaluation of TCP and UDP

based video streaming in vehicular ad-hoc networks." 2018

International Conference on Smart Communications in Network
Technologies (SaCoNeT). IEEE, pp.- 67- 72, 2018.

[12] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and stability of

the congestion control mechanism of TCP,” in Proceedings of IEEE
INFOCOM 99, pp. 1329–1336, March 1999.

